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ABSTRACT

This paper introduces a hybrid image matching scheme that combines aspects of Feature Based Matching (FBM) with Area
Based Matching (ABM). Line features are extracted from the images using edge detection followed by line following. These
line features are classified using a descriptor function, the d¢(s) plot. The results of the feature classification determine
which features are considered to be suitable matching candidates. Matching feature candidates are matched in a novel, two-
step matching process. In the first step the matching probabilities are found by calculating the normalized cross-correlations
between the signature functions of the reference and candidate features. In the second step these matching probabilities are
used in conjunction with the feature topology to verify feature matches. The results of the feature matching process gives a
sparse point field of matching feature centre-of-mass points, which are used to calculate the initial relative orientation. This
orientation information is used to find more matching features and to subsequently update the relative orientation. The final,
high accuracy relative orientation is calculated from sub-pixel matched corners of matching feature pairs. In the final step the
matched features, matching corner points and the relative orientation information is combined to match points on the feature
boundaries. '

1 INTRODUCTION extraction, feature classification, feature matching, relative
orientation calculation and finally the matching of points on
the feature outlines. The main emphasis of this paper will be
on the feature matching step, which involves a novel, two-
stage matching algorithm that incorporates both the local
geometry and topology of line features.

In the field of image matching, research has tended to treat
area-based and feature-based matching as alternate tech-
niques. In this paper, a hybrid image matching technique
is presented that incorporates aspects of both feature- and
area based matching without any prior knowledge of the im-
age orientation parameters. A coarse-to-fine approach is used
throughout the matching and subsequent relative orientation

calculation. Feature matching is used to drastically reduce | jne features are extracted from the original greyscale images
the search-space for corresponding points, and the results of through edge detection with subsequent line following. Once
the feature matching stage are used to calculate an initial  {he pixel-level line features have been extracted, the feature
estimate of the relative orientation. Once the initial relative o undaries are recalculated to the sub-pixel level.
orientation has been determined the relative orientation is re-
fined using a combination of feature- and area based matching
and the epipolar conditions. The final point matches on the
matched feature outlines are also obtained in this way.

2 FEATURE EXTRACTION

The edge detector used is the Canny edge detector [2], which
calculates the gradient of the input signal with Gaussian
smoothing as an integral part of the operator. The level of

) ) smoothing is determined by the o of the Gaussian function.
One of the major strengths of the feature matching algo-

rithm presented here is its use of not only the local structure
of a feature, but also the spatial relations between a feature
and its neighbours. Schenk et af[17] presented a method for
matching line-features using ¢(s) plots. Horaud and Skordas
were one of the first groups to recognize the importance of  The edgels of the pixel-level line features are recalculated
not only the local structure of a line feature but also the rela- to the SUb—piXGl level us}ng a preservation-of-moments-based
tionship between line features and their surrounding features edge detector (Tabatabai et al [19]).

[13]. Hellwich and Faig improve on the relational matching
scheme presented by Horaud and Skordas by extending it to
curved lines and avoiding the use of epipolar constraints [11]
[12]. One of the first formulations of the image matching
solution as a combination between area based matching and
feature based matching was by Cochran and Medioni [3], who 3 FEATURE CLASSIFICATION
use image pyramids that are resampled in epipolar geometry
to perform a coarse-to-fine match.

Edge pixels (edgels) are linked together using an edge-linking
algorithm that is similar to chaincodes [6], with enhancements
to predict the locus of the next linking pixel and to handle
gaps in the edge chain.

The steps of feature extraction and feature classification are
described in more detail in a previous paper by the authors
[20].

Features are classified using a descriptor function, the d¢(s)
function, which is the first-derivative of the ¢(s) function.
This paper will describe the image matching steps of feature The ¢(s) function plots the tangential direction of a curve
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as a function of the distance travelled around the curve [16].
It indicates abrupt changes of direction as breakpoints in the
curve. These breakpoints are indicated as local maxima in the
first-derivative of the ¢(s) function, representing the corners
of the feature outline.

Using the feature descriptor function, features are classified
according to their size, type and number of corners.

The size of a feature is the length of the feature outline in
pixels.

The feature type broadly classifies a feature into three basic
types, namely ARCS, CIRCLES and POLYGONS. An ARC is
a linked edge chain that has two nodes at spatiaily separated
endpoints, i.e. an open line feature. A POLYGON is a closed
line feature where the start and end nodes are at the same
point. A CIRCLE is defined as a polygon that has zero corners
and with the ratio between the mean and standard deviation
of the d¢(s) plot below a certain level. ldeally, the d¢(s) plot
for a circle should be a horizontal line, but due to the discrete
nature of the input data there is some variation around the
mean value, which is quantified by the standard deviation.

The number of corners of a feature is calculated from the local
maxima of the d¢(s) plot. Prominent local maxima of the
d¢(s) plot indicate a prominent corner, and statistically-based
thresholds are calculated to ensure that only these corners are
detected.

The reader is referred to figure 1 for a plot of the LEFT and
RIGHT image features after feature extraction and classifica-
tion. The image features are obtained from a stereo pair of
printed circuit board (PCB) images.

The features have been classified and the results of the clas-
sification can be found in table 1. For ease of comparison
the Feature Classification Table has been arranged so that
matching LEFT and RIGHT images features appear next to
each other with corresponding numbers for ease of interpre-
tation. Throughout this paper examples using LEFT features
labelled L... and RIGHT features labelled R.. will refer to the
features as labelled in figure 1.

Note that only polygons (P) and circles (C) have been used
in this example. Arcs were very seldomly repeated in the
right image and were thus not used in the feature matching
scheme.

4 FEATURE MATCHING

The results of the feature classification stage are used to find
suitable matching feature candidates during a candidate se-
lection phase. These matching candidates are then matched
using a novel two-stage matching process. In the first step
an ordered “feature correspondence table” is generated. This
table orders the matching probabilities between reference fea-
tures and the matching candidates by calculating the nor-
malized crosscorrelations between the feature signature func-
tions. In this case the d¢(s) function was used as feature
signature function, but any suitable signature function could
be applied. During the second step the resultant matching
probabilities are used in conjunction with the feature topology
to verify feature matches. The feature topology is utilized by
forming triangles between the centre-of-mass points of the
reference feature and the centre-of-mass points of its nearest
neighbours in the left (L) image. The matching probabilities
obtained from the first matching step indicate the features
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L | Type | Size | Corn R | Type | Size | Corn
L6 | P 50 3 R6 | P 48 4
L8 | P 237 4 R8 | P 221 4

L0 | P 104 4 R10 | P 102 4
L14 | P 69 3 R14 | P 69 4
L19 | P 283 5 R19 | P 268 6
L21 | P 71 3 R21 | P 73 3
L25 | P 94 4 R25 | P 87 4
L29 | P 160 4 R29 | P 157 4
L32 | P 74 3 R32 | P 71 3
L33 | P 288 4 R33 | P 273 4
L40 | P 113 4 R40 | P 115 4
L46 | P 311 4 R46 | P 303 4
Ls7 | P 116 4 R57 | P 105 4
L58 | C 60 0 R58 | C 61 0
L62 | C 61 0 R62 | C 56 0
Le4 | C 53 0 R64 | C 51 0
L6s | C 56 0 R65 | P 67 3
L67 | P 56 4 R67 | P 50 2

Table 1: Feature Classification Table for matching LEFT and
RIGHT image features

of which the centroids could form the matching triangle in
the candidate image. The existence of a matching triangle
verifies the feature match.

In the following the details of the candidate selection and
subsequent two-stage feature matching is described in more
detail.

4.1 Candidate Selection Phase

To distinguish the feature candidates that are suitable for
matching to a specific reference feature the feature attributes
of size, type and number of corners are compared.

A matching candidate has to fulfil the following criteria:

e The feature sizes should differ by no more than ten
percent

e The number of corners should differ by no more than
one

e The feature types should be the same

Candidates that do not fulfil all of these criteria are immedi-
ately eliminated from the matching scheme. Successful can-
didates now go through the following, two-step procedure:

4.2 Matching d¢(s) Signatures Through Correlation

in the field of signal processing a measure that gives an in-
dication of the similarity between two random signals is the
Correlation function [14] [18]. The d¢(s) plots from differ-
ent images should be similar for the same feature, and the
correlation function can be used to quantify this similarity.
The d¢(s) plot is a one-dimensional function representing
the two-dimensional shape of the feature, and the “time"
variable used in this case is "s", the distance travelled along

the feature boundary.

The time-domain correlation function for two discrete func-
tions g[n] and h[n] of length N is defined as:

z
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Figure 1: LEFT and RIGHT image features after extraction and classification

where n is the lag in samples between the two data sets.
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Figure 2: Time-domain correlation functions between a) L40
and R10 and b) L40 and R40

Figure 2 shows the d¢(s) plots for feature L40 in the left
image compared with features R10 (2 a)) and R40 (2 b))
together with their respective correlation functions derived
through time domain correlation. The L40/R10 correlation
function has a number of peaks with a maximum correlation
value of 54.4 %. The L40/R40 correlation function displays
two local maxima peaks, with a maximum correlation value of
95.3 %. are registered due to the symmetry of a rectangular
feature about its centroid. Note that the plots in 2 are not
according to the same scale.

The d¢(s) plot is invariant under rotation and translation,
but the “s" or “time” axis is stretched and compressed due
to the scale. To take the scale difference between the left
and right images into account the d¢(s) plots are resampled
to the same length. Only one of the two functions being
correlated needs to be resampled to the same length as the

other to correct for the scale difference. Resampling can be
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done through bilinear interpolation or some other resampling
method.

For signals of length N, the time-complexity of time-domain
correlation is calculated to be N?, which could be computa-
tionally expensive for large features. A method of correlation
that is computationally less expensive is using Fast Fourier
Transforms (FFTs).

In the frequency-domain, the Fourier Transform &4, (£2) of
the correlation function can be related to the Fourier Trans-
forms G(Q) and H(Q) of the discrete signals g[n| and h[n]
as:

P41 (Q2) = GIQH™(Q) ()

where H*(Q) is the complex conjugate of H(S2).

For real valued functions such as the “d¢(s)" plots the imag-

inary part of the signal is zero and the complex conjugate is
simply H(—Q).

The discrete-time correlation function ®,4,{n] can now be re-
constructed by calculating the Inverse Fourier Transform of
®,5(2). The resultant maximum correlation values calcu-
lated from this reconstructed correlation function are 54.4%
and 95.3% respectively, exactly the same as for time-domain
correlation.

The FFT algorithm requires the input data set to be of an
integral power of two in length. The next integral power of
two above the feature size in pixels is calculated for each
of the left feature and the right candidate, and the d¢(s)
functions are resampled to this value. This resampling again
takes into account the scale difference between the left and
right images.

The output of the cross-correlation between signals g[n] and
h[n] cannot be compared as is, as it is dependent on the
width N of the sequence and the scale. To obtain a quan-
tity that can be used for comparison we have to normalize
the cross-correlation output. This normalized quantity can
directly be used for matching purposes and is called the cor-
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relation coefficient.

The correlation coefficient p is normalized by taking into ac-
count the autocorrelations of the signals g[n] and h[n]. The
correlation between a function and itself is called the auto-
correlation, which is used to calculate the amount of power
contained in the signal.

(égh)mar

a AV ‘ﬁggq)hh

where @, is the crosscorrelation between g[n] and h[n] and
®,, and ®p, are the autocorrelations for g{n| and h[n] re-
spectively.

3)

From the correlation coefficients between the LEFT features
and all potential matching RIGHT features a Feature Corre-
lation Table is obtained which orders the possible matches
according to the correlation coefficients. The correlation co-
efficients between left and right features are expressed as
a percentage. Only the two most probable candidates are
shown in the Feature Correlation Table (2) for the printed
circuit board (PCB) example .

[ Left [ Rightl | Correlation | Right2 | Correlation |

L6 R6 94.12 R67 88.41
L8 R8 95.23 R33 50.61
L10 R10 96.11 R57 93.72
L14 R14 99.41 R32 08.43
L19 R19 92.59 R33 83.38
.21 R32 08.98 R14 96.79
L25 R57 95.55 R25 03.86
L29 R29 90.01 - -

L32 R32 86.72 R65 85.17
L33 R33 87.05 R46 58.53
L40 R40 95.35 R57 64.18
L46 R46 97.21 R33 55.25
L57 R57 06.18 R10 89.88
158 R62 94.55 R58 93.25
L62 R62 95.63 R58 94,51
L64 R64 98.37 R62 93.83
L65 R62 01.14 R64 88.96
L67 - - - -

Table 2: Ordered Feature Correlation Table for Feature

Matching Candidates

This table indicates that for example the feature L6 has most
likely matching candidate R6 with a “probability” of 94.12%,
and second most likely matching candidate R67 with a “prob-
ability” of 88.41%. Throughout this paper the examples used
in the analysis of feature correlation will refer to table 2.

4.3 Match Verification Through Feature Topology

In the second step of the feature matching stage the possible
feature matches stored in the Feature Correlation Table are
either verified or discarded by examining the feature topology.
Where the d¢(s) plot only takes into account the local shape
of the feature, the feature topology also considers the spatial
relationship between a feature and its neighbours.

The method of similar triangles as described by Cox et al in
[5] for point pattern recognition was used to find the spatial
relationship between adjacent features.
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Feature triangles are formed between the reference feature
and two adjacent features.The two nearest features to the
reference feature are found and a triangle is formed with its
vertices at the centre-of-mass points (centroids) of each fea-
ture. Refer to figure 3 for an example of a feature triangle
between the reference feature f1 and the two nearest features
f2 and f3. The corresponding feature triangle T2 between
the corresponding features fi, f3 and f3 in the RIGHT image
is also shown.

LEFT

Figure 3: Triangle between feature f1 , f2 and f3

If the corresponding triangle T» can be found amongst the
possible triangle combinations in the RIGHT image then the
match is verified. The possible triangle combinations are de-
termined by the ordered feature correlation table (2). The
feature triangle takes into account not only the topology be-
tween the reference feature f1 and its surrounding features,
but also the topology between features f and fs. Even
though a matching triangle implies that the two neighbouring
features also match, only the initial candidate feature match
is verified.

Triangle 71 matches triangle T if

B

e

and

- )

ad
b
within a preset threshold, where a, b, ¢ and A, B, C are
corresponding triangle sides.

The same is true for corresponding angles. If two of the three
angles of the triangle are the same then a matching triangle
is found. In this matching scheme only the distance ratios
are used.

Feature matching candidates are confirmed or discarded by
comparing triangles formed between the most likely match-
ing candidates. To find the triangle in the RIGHT image that
matches the reference triangle in the LEFT image the possible
triangle combinations are deduced from the Feature Correla-
tion Table (Table 2). For a successful match to a reference
feature at least one possible matching candidate should be
listed in the Feature Correlation Table. In this example only
features that are classified as POLYGONS or CIRCLES are
used to form feature triangles. Due to spatial and radiometric
differences between the left and right images many features
labelled as ARCs do not have a matching pair, which would
lessen the chance of the matching triangle being formed.

In general not all the features will have the same number
of matching candidates. If a threshold is set to only select
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candidates with a high correlation value, then only the valid
candidates for each feature in the reference triangle need to
be checked. If the features fi, f2 and fs of figure 3 have I, J
and K valid matching candidates respectively then the total
number of possible triangle combinations will be I x J % K.
Note that for the example shown above only the two most
likely candidates are indicated thus I = J = K = 2, giving a
total of eight possible triangle combinations. )

L25 | L8 [ LI9

R57 | R8 | R19
R57 | R8 | R33
R57 | R33 | R19
R57 | R33 | R33
R25 | R8 | RI19
R25 1 R8 | R33
R25 | R33 | R19
R25 | R33 | R33

Table 3: Possible Matching Triangle Combinations for the
Triangle L25-18-L19

Table 3 shows the possible triangle combinations that can be
formed to verify the match between features L25 and R25.
The reference triangle has been formed between features L25,
L8 and L19. From table 2 the possible matching triangle
combinations can now be formed, as indicated in table 3. This
table is arranged such that the most likely matching triangle
is checked first through to the least likely matching triangle
last. The correct triangle combination R25-R8-R19 has been
highlighted in table 2. Note that illegal triangle combinations
can be formed, such as the fourth combination R57-R33-R33,
which is automatically discarded by the matching algorithm.
In this specific example the first four entries in table 3 have
R57 as the most likely matching candidate for L25. As R57
in figure 1 is situated far from the correct match R25, the
scale limit between the two triangles will be violated and all
four combinations will automatically be discarded. The scale
limit has been introduced to further reduce the search space
by limiting the size difference between corresponding sides of
the reference and candidate triangles to no more than twenty
percent.

Figure 4: Similar Triangles for L25 a) and R25 b)

The reader is referred to figure 4 for the matching trian-
gles verifying the match between features L.25 and R25. The
nearest neighbours to L25 in the LEFT image are L8 and L19
respectively, with the feature triangle between the centroids
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of these features shown in figure 4 a). The corresponding
triangle in the RIGHT image joins the centroids of R25, R8
and R19 shown in figure 4 b). Table 2 indicates that R25 is
the second most likely matching candidate for L25, R19 is the
most likely matching candidate for L19 and R8 is the most
likely matching candidate for L8. The confidence index for
the correct match is 94.30 %. Even though R25 was not the
most likely matching candidate the correct match was still
found.

The sides of the reference triangle have been arranged in
ascending order in size such that

a<b<ec (5)

as suggested by Cox and de Jager [4].

This has the effect of limiting the ratios used for triangle
comparison to the range between zero and one i.e.

0<+-<1 and O<§§1 (6)

o e

A confidence index is introduced to quantify the similarity be-
tween triangles, and is calculated using the Euclidean distance
between the triangle side ratios. The Euclidean distance € be-
tween the triangle side ratios is

O ™)

which is the error vector between the left and right triangle
ratios.

The error vector € can be normalised by introducing the the-
oretical minima and maxima of equation (7). The minimum
value for equation (7) (emin = 0) occurs when the matched
triangles are identical. A maximum for equation (7) arises for
T = % = 1, i.e. an equilateral triangle, and % = % close
to 0, a theoretical case which will not occur in practise. The
theoretical maximum is thus emaez = V2.

This normalizing factor of +/2 is now used to calculate the
confidence index CI as

€I =100(1 — %) (8)
If the triangle is perfectly matched the Euclidean distance
is zero and the confidence index is 100 %. As the Euclidean
distance increases due to dissimilar triangles the confidence
index becomes smaller. It is assumed that corresponding
sides have the same relationship as the reference triangle i.e.
A < B < C. In practice however this relationship might not
hold for an incorrect triangle, which could result in triangle
side ratios for the right triangle of greater than one, which
could result in negative values for the confidence index. These
negative values merely serve as an indication of a very strong
mismatch between the reference and candidate triangles.

5 REL’ATIVE ORIENTATION

The relative orientation is performed using a three step pro-
cedure that utilizes a “coarse-to-fine” approach. The first ori-
entation approximation relies on the centroids of the features
matched in the previous topology-based matching process.
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The epipolar line constraints derived from this first approxi-
mate orientation are then employed to find further matches
for centroids of features previously not matched successfully.
A second, updated relative orientation is executed with these
additional points. The newly obtained epipolar constraint
is now utilised to match the corner points of all conjugate
features by area based matching. A third and final relative
orientation incorporating the sub-pixel matched corner points
then provides final orientation parameters. The procedure de-
scribed here is fully automated and does not require any user

support.
ﬁ
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g

Figure 5: Relative orientation from matching feature cen-
troids and corner points

In the test case of the PCB images thirteen matching fea-
ture centroids, indicated as squaresin figure 5, were entered
into the first relative orientation. Two further features (the
rectangular shapes in the top left corner of the images) were
detected in the next stage and a second orientation with these
fifteen centroids was successfully executed. For the final rela-
tive orientation calculation only the forty five sub-pixel coor-
dinates of the matching corner points, indicated by crosses,
were used. During the first two orientations the assumption
was made that the centroids of matching features in each
image match, which is not entirely accurate. Due to large
disparities and the different viewing perspectives for different
images, these centroids can only be treated as crude approx-
imations to the matching points, and are thus discarded for
the final relative orientation calculation.

The relative orientation and subsequent epipolar line equa-
tions are solved for using the coplanarity condition, as de-
scribed by Haralick and Shapiro [10]. During the corner-
matching step, image correlation as described by Rosenfeld
and Kak [15] is employed to solve any ambiguities resolving
from more than one corner matching candidate appearing on
an epipolar line. The sub-pixel corner matches are calculated
using Least-Squares Matching (LSM) as described by Gruen
et al [7] [8] [9].

6 FEATURE-GEOMETRY CONSTRAINED AREA
BASED MATCHING

During the final step in the matching procedure intermediate
points on the matched feature outlines are matched to sub-
pixel level.

The initial estimates to the matching points for points situ-
ated on a matched line feature, as opposed to corner points,
are obtained by searching for the intersection between the
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corresponding line feature and the epipolar line.

Figure 6: Initial Maching Point Approximations Using Match-
ing Features and Epipolar Geometry

If in figure 6 the feature matching stage has matched feature
Fy in the left image to feature FY in the right image and the
subsequent corner matching stage using the epipolar condi-
tion and Least Squares Matching has correctly matched the
four corner points, then the search space for points on the
feature boundary can dramatically be reduced. In this exam-
ple corners 2 and 3 in the left image match corners 1 and 2 in
the right image. The search space for matching points along
line 2-3 in the left image is now reduced to line 1-2 in the
right image. If any ambiguities occur they are resolved using
area correlation, as done with corner matching.

It should be noted that the intersections between feature
boundaries and epipolar lines are subject to the well known
geometric conditions of the intersection, with best solutions
for rectangular intersects and no solutions for paralell lines.
Only by using more than two images and therefore more than
one epipolar line can this problem be solved.

Figure 7: Example of Finding Initial Maching Point Approxi-
mations

Figure 7 shows an example of finding the initial matching
point approximations for points on matched line features. In
this example the initial approximations to every tenth edge
element (edgel) of each line segment between feature corners
are shown. The edgels are indicated by crosses in the left im-
age and the corresponding point approximations with the rel-
evant epipolar line segments are indicated in the right image.
Note that, as expected, the line intersections for line seg-
ments parallel to the epipolar lines, which are near-horizontal
in this case, are poorly defined as shown in figure 8.

From these initial estimates the high accuracy, sub-pixel
matching is performed using LSM or Geometrically Con-
strained Least Squares Matching (GCLSM), as described by
Gruen [7] and Baltsavias [1].
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Figure 8: Zoomed Sub-images of Poorly Defined Epipolar
Line Intersections

7 CONCLUSION

We have presented an image matching scheme that incorpo-
rates both feature- and area based matching techniques. A
novel, two-stage feature matching algorithm was presented.
The two stages of the matching scheme take into account
firstly the local structure of a feature, and secondly the spa-
tial relation between a feature and its neighbours. Combining
these two aspects improves on matching schemes that em-
ploy only one or the other. We have also shown how feature
matching can be used to obtain initial estimates to the rel-
ative orientation, effectively enabling us to subsequently re-
fine this relative orientation using a combination of feature-
and area based matching and the resultant epipolar geom-
etry. This technique makes it possible to carry out a fully
automated relative orientation without any prior knowledge
of orientation parameter estimates.

Improvements can be made to this matching scheme, most
notably in the handling of ARCs and images with large dis-
parities. Extending this matching scheme to a multi-photo
and multi-resolution environment will also help in improving
the results obtained.
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