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ABSTRACT:

Object recognition has a long history in pattern recognition and computer vision. A major problem addressed
is the development of models which are suitable for recognition and scene interpretation tasks. Two principal
paradigms are emphasized. On the one hand side statistical and neural models making use of representative
training samples optimizing parameters of decision functions. Contrarily, knowledge based techniques build
explicit representations by modeling the structure and the constraints associated with a specific task. The
main point of this paper is to show that both paradigms shall and can be incorporated to achieve efficient
problem solutions for complex problems. According to this goal the basic techniques for object recognition
and scene interpretation will be presented and discussed. Based on this evaluation a hybrid system has been
evolved which tries to combine the advantages of the fundamental paradigms. The system is derived from
the knowledge representation scheme of procedural semantic networks integrating the advantages of neural
network approaches for classification and scoring purposes. Thus, explicit semantic models are combined with
learning sample dependent analogous representations. One application of this environment the reconstruction
of three dimensional scenes illustrates that this approach is appropriate for complex tasks. Furthermore, the
accuracy of the results shows that hybrid and distributed modeling of objects and scenes is a powerful and
efficient technique for scene interpretation tasks.

1 Introduction In this paper the cooperation and integration of

these basic techniques is proposed. In our opin-

Object recognition and scene interpretation are ion, the development of systems which are able to
great challenges in various scientific fields. The de- solve complex tasks requires the study of various
velopment of algorithms and system architectures approaches and their use for subtasks within the
is mainly influenced by research activities in pat- overall task of a system. In order to substanti-
tern recognition, neural computer science, and ar- ate this, we discuss the problem on three differ-
tificial intelligence. Although the problem is ad- ent levels. First of all, the baselines of the general
dressed by a large number of projects, there is not paradigms are discussed. Of course it is not pos-
a unique baseline algorithm or a general paradigm sible to give a complete review of all algorithms,
to solve these complex tasks. According to the clas- representation schemes, and languages. The pre-
sical problem solving techniques of the three men- sentation aims at the general ideas, advantages,
tioned disciplines, approaches have been developed and methodology with respect to the task of ob-
for many applications. Additionally, the aspect of ject recognition and scene interpretation. Detailed
suitable models for image processing, image under- descriptions on pattern recognition techniques are
standing, or computer vision is increasingly empha- given in [15, 25, 5, 7, 18], artificial neural networks
sized. Two main streams are considered. Semantic with different models and applications are discussed
models are derived from representation techniques in [22, 23, 12, 19, 29]. General knowledge repre-
mainly developed in artificial intelligence research. sentation is addressed in [24, 21, 6, 27]. [2, 16, 3]
Statistical and neural network based approaches are discussing semantic models for scene understand-
studied mainly in the context of computer vision ing. Computer vision methodology is outlined in
providing algorithms for classification and localiza- [1, 2, 13]. Secondly, with respect to this discussions
tion of objects. While semantic models emphasize a hybrid representation system for object recogni-
on structural properties, both analogous techniques tion and scene interpretation is presented. It com-
concentrate on a holistic viewpoint of an entire ob- bines and integrates semantic networks as a knowl-
ject. edge based approach with artificial neural networks.
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Finally, we demonstrate the use of this environment
for the detection of 2D-objects and for the recon-
struction of 3D-scenes.

2 The Basic Techniques

Although object recognition has a long history in
the field of pattern recognition and computer vi-
sion there is no unique solution. Presently, three
paradigms of algorithms are in some sense com-
peting with each other but also work together in
what is called hybrid approaches. Before discussing
these paradigms, namely statistical methods, ar-
tificial neural networks, and knowledge based ap-
proaches, the general baselines and goals of each
family of algorithms are presented.

The common goal is the automation of perceptive
skills. Therefore, the environment of a pattern
recognition system is at least restricted by the set
of measurable quantities. As a matter of fact, it is
not possible to construct a system which is able to
interpret all potential measurements in an arbitrary
situation. It is necessary to restrict on a certain
small type of sensor quantities as well as on a spe-
cific task Q which is called the problem domain. The
elements of this set are called patterns. Of course,
this set is not explicitly available. It may be either
described by a representative sample or by explicit
knowledge about the domain. Viewed as measure-
ments, a pattern is given by a function f(x) with
analogous or discrete domain and range both pos-
sibly of higher dimensions. It is assumed that for
one task the dimensions of f and x are arbitrary
but fixed. However, this restriction must not hold
for a complete system. Sensor data fusion can be
acquired at different levels of interpretation. For
example, complex systems may integrate visual and
acoustic signals. But for each of the subsystems the
restriction must be fulfilled at least in processing
steps which handle the signals or derive features.
A pattern is restricted to a certain domain. Only
within this domain it has a meaning and can be as-
sociated with a concept of the task. Thus, a pattern
or object is a triple

M = (£(x),Q, B) 1)

covering the measured signal f(x), i.e. the appear-
ance of the object, the problem domain Q, and its
description B. This description does not only de-
pend on the problem domain but also on the specific
task of a system. For instance, it may be sufficient
for a certain task to detect a set of objects whereas
another one also requires the estimation of the ob-
ject locations and a detailed analysis of its features.
The most simple description of a pattern is given by
the name of its class. For example, reading machines
have to classify letters. In such a situation, we are
talking about simple patterns. ‘If a detailed indi-
vidual description is asked for we refer to complex
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patterns. Here, features, attributes, parts, and re-
lationships within the pattern build up the descrip-
tion.

Classical statistical pattern recognition deals with
classification tasks. The entire pattern given by
measurements f(x) is mapped into a class . The
name of this class gives the description. Each pat-
tern is assumed to be member of one unique class.
The problem domain is completely characterized by
a fixed number of classes. The measurements of
a pattern are modeled by stochastic processes each
one generating a certain class (0. It is assumed that
numerical features can be extracted from the sensor
data. The features of patterns having the same class
should be neighbored in the feature space, and pat-
terns of different classes are separated in this space.
The relationship between measurement and classes
is given by a suitable number of examples. The pa-
rameters of the classification system are adjusted
according to a learning sample.

Contrarily, the generation of individual symbolic de-
scriptions of patterns require explicit assumptions
about their structural properties. In this sense,
a complex pattern has parts which are related to
each other and together compose the entire pattern.
Parts can be complete objects as a whole or ob-
ject components which do not occur independently
of an entire object. The arrangement of the parts
as well as the mutual location of objects are re-
stricted by the problem domain. This fact forms the
basis for knowledge based approaches. The collec-
tion of restrictions, which are the parts of an object,
how they are arranged, which relationships between
them must be fulfilled, etc., is viewed as knowledge
about the problem domain. Explicit representa-
tion of these facts requires a knowledge representa-
tion scheme. An adequate representation formalism
must be able to cover both structural and numerical
properties of an object. Furthermore, it must pro-
vide algorithms associated with the scheme to make
use of stored knowledge in order to achieve symbolic
descriptions efficiently.

Whereas knowledge based techniques are based on
explicit models, artificial neural networks claim the
opposite way. The use of “know how of the nature”
is the overall idea. Principals how animals perceive
and act shall form the basis also for technical sys-
tems. Taking into account the ability of neural net-
works to learn they are a flexible instrument for ob-
ject recognition and computer vision. But similar
to statistical approaches a representative sample is
required. Learning is equivalent to parameter ad-
justment in a statistical sense. In this way, neural
networks and statistical methods make both use of
implicit representation techniques.
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2.1 Statistical Pattern Recognition

Statistical pattern recognition techniques are char-
acterized by looking at patterns as high dimen-
sional random variables. Decomposition into parts
or structural properties are not taken into account.
If such classifiers shall be applied on complex scenes,
segmentation is required. Then, each resulting area
can be classified as an entire unit. It is mapped
onto a class as one entity. The architecture of such
a classification system is outlined in Fig. 1. Given
the measurement of an entity to be classified a fea-
ture vector c is calculated. This point in the N-
dimensional feature space is the argument of a de-
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Figure 1: Architecture of a Classification System

cision function. We assume that the feature vectors
are already available and we concentrate on the de-
cision function. The task is to construct a mapping
from the feature space into the set of indices char-
acterizing the classes Q). The decision function is
denoted by

D)=k ke{l,.. K}. 2)

In order to optimize this function with respect to
a given learning sample it is convenient to use a
decision vector in the following way

d(c) (dy(c),...,dg(c))

K
and de(c) =1.
k=1

(3)

The choice of an optimization criterion determines
the functions dg. Both classical approaches, i.e.
minimizing a cost function and approximation of the
perfect decision function, will be outlined.

To minimize the costs of decisions it is required that
the density functions p(c|Qx), the a priori probabil-
ities pr, and the pairwise error classification costs
51,0 < rgp < e < 1 are known. 7y denotes the
costs of a classification of a pattern belonging to
class { into class k. The average costs evoked by the
decision function are therefore given by

K
V(d) = Zpk

k=1

K
> [ el . (@)
1

=

The costs are minimal if the decision function is cho-
sen to

K
1 if k= ; piplc| Q)},
di(c) = I C”"gmml{Jg1 TZJPJP( ‘ J)}

0 otherwise

D(c) = argmazi{di(c)} . (5)
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Based on this general decision optimization, special
variants of classifiers can be derived. Restricting the
costs to rp, = 0 and 75 = 1,1 # k the Bayes classi-
fication rule of maximum a posteriori probability is
given. Fixing p(c|€2) to be Gaussian results in the
normal distribution decision rule.

The perfect decision function

1 if ceqy
{ 0 otherwise 6

is approximated by a polynomial decision rule. This
function is to be defined according to the learning
sample. The decision functions d; approximating
the perfect ones make use of polynomial expansions
of the feature vectors ¢. Given an arbitrary but fixed
polynomial expression x(c) over the coefficients of ¢
the decision functions are expressed by

84 (c)

di(c) = aix(c) - (7)
Rewriting in vectorial form leads to
d(c) = ATx(c) . (8)

Learning or adjusting the classification rule is equiv-
alent to the estimation of the parameter matrix A.
According to the Weierstrass Theorem, arbitrary
functions can be approximated where the accuracy
only depends on the degree of the polynomial x(c).
The optimal matrix A* is that one minimizing the
error between the perfect and the estimated decision
rule. Therefore, it has to fulfill the criterion

e(A") = mAinE{(é(c) — ATx(c))?} . (9)
A closed form solution can be achieved resulting in
the simple scheme

1 N 1 N
Ar=(7 30 x(e)x(e) ) (D x(e3)3(es))- (10)

The only assumption is that the matrix to be in-
verted is not singular. But this is not a serious prob-
lem if a representative learning sample and therefore
a sufficient number of feature vectors and their cor-
responding classes are available.

Both classification rules depend on the learning sam-
ple. The parameters of the decision rule results
from an optimization process. Above, an off-line
estimation has been presented. Nevertheless, there
exist recursive estimation procedures for both ap-
proaches. They can be applied in a supervised or
un-supervised training. In the latter case, a suf-
ficient initial estimation is required. An incoming
feature vector is classified according to the present
parameters. The result is used to update the param-
eters of a certain class. This class can be the result
of classification or can be achieved by a randomized
decision which must take into account the values of
the decision vector d(c). It should be pointed out,
that both approaches are optimal with respect to
the chosen criteria. The semantics of a domain is
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reflected by the training sample and the perfect de-
cision rule. An implicit distributed representation
of the objects is used.

2.2 Artificial Neural Networks

While most classical statistical pattern recognition
systems follow the sequential architecture outlined
in Fig.1, the development of architectures based on
simple units is one of the main goals of neural net-
works research activities. As in biological systems
information about objects or classes is represented
in a distributed fashion. The basic processing of a
system is performed by units which adopt models
of neurons. Although such artificial neurons do not
provide calculations with high precision their mu-
tual interaction results in systems of globally high
performance. A network of neurons establishes an
ensemble of nonlinear joint processes. Architecture
deals with the arrangement of neural units and their
synchronization in the network. As a consequence,
a system is viewed as a strong interrelationship be-
tween structure and functionality. Subnets form
specialized modules. Because of the simple basic
units, an artificial neural network has a high connec-
tivity and it provides a massive parallel computing
environment.

Models for neurons are based on the principle of
synaptic summation. The following processing steps
are carried out: The input vector x is manipulated
with respect to a weight vector w giving a scalar
value s(x,w). Then a bias term is subtracted. The
third step provides a nonlinear mapping which may
be enriched by stochastic processes. Hence, the neu-
ral model can be expressed as a function y(x) de-
fined by

y(x) = fs(x,w) - 6) (11)

Frequently used combinations for s are the Euk-
lidian distance or the scalar product of x and w,
whereas the so called activation function f is real-
ized by the sign-function, tanh, Fermi, or Gaussian.
Its argument characterizes the state of the neuron.
Three major values are distinguished for this state z.
If z > 0 the neuron is called active, for z = 0 quiet,
and for z < 0 obstructing. Based on such kinds of
units an artificial neural network is constructed as a
directed graph defined by a set of states Z for each
node and a set of states W providing the weights
associated with the links between nodes, i.e. neu-
rons, and a set of input and output variables. The
state set of a network covering k nodes and k? links
is represented by

%=z x W, (12)

where one state o = (z, W) € . The activities are
denoted by a vector z € Z* and the weights in a
matrix W € W* . According to this connectivity
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matrix W = [w;;], the basic types of architectures
can be described

e complete connected network: w;; # 0Vi, j
e isolated neurons: W diagonal matrix

e weak connected network: w;; # 0 for only a
few pairs 4, j

e forward connectivity: w;; =0ifi < j
e small range connectivity: W band matrix

The processing behavior of neural networks is char-
acterized by state transitions, i.e. from a state o*
at time ¢ a new state o*! at time ¢ + 1 is achieved.
Like the states, also the transitions are divided into
two components. Changes of activities express the
short term dynamics of the network. For a certain
neuron ¢ it can be described by

2 = fi(s(z, w) ~ 6;) (13)

Long term dynamics refer to changes of weights ac-
cording to
(t+1)
ij

@ @

= wz(jt) + g5 (w5 2; ®

,Zj )
Both types of dynamics are of local character and
distribute domain knowledge several units. The pa-
rameters, i.e. the weights and thresholds shall be
learned automatically based on a training sample.
Therefore, two a priori decisions are necessary at
the present state of the art. First of all a unique
type of model neurons has to be selected. Although
a few examples of learning the topology for a net-
work exists, in most cases the number of units and
their connectivity is also fixed a priori. The train-
ing phase therefore adjusts the parameters in a sense
comparable to statistical classifiers.

A large number of neural network architectures is
covered by the description above. But it should be
mentioned, that further types have been developed
and are in successful use. As a few examples there
are Hebb networks, Kohonen maps, and associative
memories. Another type, the so called local linear
maps will be described in the context of hybrid sys-
tems.

w (14)

2.3 Knowledge Based Interpretation

Knowledge based techniques are influencing com-
puter vision and object recognition approaches for
nearly two decades. The goal is to generate indi-
vidual symbolic descriptions of domain entities, i.e.
objects. Contrarily to classical AT approaches which
deal with symbol to symbol transformations seman-
tic models for object recognition are concerned with
the transformation of numerical data into symbolic
descriptions. It is not possible to achieve the overall
goal by optimizing one decision function or by ad-
justing weights to a given problem, although both
techniques presented so far are of great importance

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B3. Vienna 1996



for intermediate steps. The task must be decom-
posed into several processing steps. But due to the
variability of the sensor data of an object and the
aim of individual descriptions, the sequence of pro-
cessing as well as the transformation steps to be ap-
plied can not be fixed a priori. Therefore, we have
to deal with a search process where for each step the
following question must be answered: What is the
best transformation at the present state to achieve
the overall goal of the analysis process? The search
process must be guided and restricted by informa-
tion about the problem domain and the specific task.
This knowledge about objects, events, structural
properties, and constraints must be explicitly rep-
resented in such away that it can be efficiently used
for the interpretation process. A knowledge base for
object recognition and description tasks must cover
semantic models which enable to establish connec-
tions between numerical sensor data and symbolic
entities. Fig. 2 reflects the two main lines which
must be incorporated in the construction of seman-
tic models and a knowledge base.

physical environment -- time and space constraints

explicit representation of structural properties
|

Y

declarative and
procedural knowledge

i

explicit representation of rules, algorithms

rules, algorithms

A

symbolic world -- experience, and common sense knowledge

Figure 2: Knowledge for Object Recognition and
Description

The base line of knowledge based object interpre-
tation systems is given by a state search approach.
The initial state is given by some complex pattern
f(c) and the knowledge base. This covers the se-
mantic models of objects, procedures, and functions
which realize transformations between and inside
both the numerical and the symbolic world, and in-
ference processes. An inference process provides a
state transformation by generating new or manipu-
lating data. If data(i) denotes the knowledge base
and already achieved intermediate results of state 4
and T = {T4,..., TN} is the set of transformations,
the complete interpretation process can be outlined
by a search tree as depicted in Fig. 3. The initial
state includes the input pattern and a final state its
description. In general, several transformations can
be applied to a certain state. They compete with
each other and the successful and optimal sequence
of transformations forms a path in the search tree.
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Figure 3: Search Tree of an Interpretation Process

One of the major problems in dealing with such sys-
tems concerns their architecture and functional or-
ganization. A widely used bases is the decompo-
sition of knowledge based systems into functional
modules. An adaptation to pattern interpretation
task is shown in Fig. 4. A centralized control
module supervises the process by activating suit-
able transformations and methods with respect to

| CONTROL ] l

I I I
| merHops || KNOWLEDGE | [ EXPLANATION | [ LEARNING | J

| I [ I
1 | RESULT } 1
| A‘ I !

i I - —
TN ———
|input signal f(x)| | description

Figure 4: Functional Modules of a Knowledge Based
System

the achieved intermediate results and the knowledge
base. Further modules for knowledge acquisition,
explanation, and user interfaces complete the archi-
tecture. An orthogonal viewpoint addresses the hi-
erarchy of processing steps. Fig. 5 shows this model.
Each level is characterized by the knowledge and
processes available and the results which can be
achieved at this processing step. Again, a central-
ized control module is used. It should be mentioned
that this model only determines hierarchies but not
necessarily the direction of information flow. Data
as well as expectation guided strategies can be im-
plemented.

Organization and use of knowledge is not reflected
by both approaches. It is often assumed that a cer-
tain problem domain forms a homogeneous uniform
type of knowledge or that it can be separated into
hierarchies or functional units. Contrarily, inquiries
on knowledge representation point out that different
types of knowledge must be distinguished. Except
declarative models and procedural knowledge, types
like definitions, descriptions, and constraints must
be separated. Furthermore, each such type provides
its own inferences and consequently its results. Each
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declarative inferences

(intermediate-)results

knowledge
g (procedural knowledge)
concepts data-driven: instantiation instances 1
(terms, objects, model-driven: propagation of modified concepts
events) .
constraints
concepts
attributes data-driven: extraction, combination values
(numerical, symbolic K K K
features) model-driven: to constrain range of values for attributes

scoring calculus algorithms

values

(15)

conditions data-driven: tests valid / not valid
(structural .
relations) judgment
model-driven: to constrain range of values for attributes
modified concepts
Figure 6: Knowledge Types for Image Understanding
tion can be characterized by
KNOWLEDGE  PROCESSES  RESULTS .
B*(f(x)) = argmazp{g(B, W,f(x))}
level n task eneration output: . . . .
£ high level where B denotes the implicitly given set of potential
description B descriptions, ¥V the knowledge base, and g a scoring
e oo C function of the chosen calculus.
leveli | objects matching symbolic I(\)I
names T 3 A Hybrid Representation System
e e . . R . N
level 2 | segmentation segmentation | segmented L The development of systems for object recognition
attern . . . .
P and scene interpretation requires the representation
level 1 | distortion normalization | enhanced pattern of logical and numerical models. Therefore, cooper-
ation of both knowledge based and statistical /neural
level 0 | pattern recording pattern £(%) techniques is necessary. Representations based on
formation the statistical evaluation of a training sample are the

Figure 5: Hierarchical Processing Model

one can be used in a top-down and bottom-up fash-
ion. Fig. 6 illustrates such knowledge types for im-
age understanding. The basic entities are concepts
modeling objects and events. The models are used
for verification and propagation purposes. Features
are described by attributes, again both directions
of data flow are performed. In a similar way, con-
straints as relationships between concepts and at-
tributes are established. One of the most serious
problems when dealing with noisy uncertain data is
scoring. The efficiency of a system strongly depends
on an adequate scoring calculus. It provides the
hints which transformation should be applied next,
which knowledge should be evaluated, and what in-
termediate results are to be processed.

This depiction of knowledge types forms the basis
for a hybrid knowledge representation system as de-
scribed in the next section. It allows us to handle
the complete interpretation process as state search
and as an optimization problem regarding a certain
scoring calculus. Assuming a knowledge base is con-
structed according to Fig. 6, the optimal interpreta-
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backbone for holistic object recognition based on nu-
merical features. Explicitly represented knowledge
provides the decomposition of objects into parts and
of scenes into objects. Furthermore, it enables the
use of constraints and relationships which describe
the structural properties of a problem domain and
a special task.

A hybrid representation system is described ac-
cording to the basic discussion above. Its archi-
tecture and overall organization of explicit knowl-
edge has been developed regarding the distinction of
knowledge types as outlined in Fig. 6. Within this
paradigm the integration of analogous models like
statistical classifiers and artificial neural networks is
achieved in a very natural way. Whereas the knowl-
edge based components deal with structural prop-
erties, neural networks are concerned with holistic
classification and scoring tasks.

In the next subsection the semantic network lan-
guage ERNEST is described which builds the frame-
work for the hybrid representation system. After-
wards, the hybrid approach is outlined combining
ERNEST and artificial neural networks® (ANNs).

In an analogous way statistical classifiers can be incorpo-
rated. For simplicity, however, we only refer to ANNs in the
following.
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3.1 A Semantic Network Language

In contrast to other approaches like KL-ONE or
PSN, in the ERNEST semantic network language
only three different types of nodes and three dif-
ferent types of links exist. They have well defined
semantics and we believe that these structures are
adequate to represent the knowledge for different
pattern understanding tasks. The node type Con-
cept represents classes of objects, events, or abstract
conceptions having some common properties. In the
context of image understanding an important step
is the interpretation of the sensor signal in terms
modeled in the knowledge base. The second node
type, called instance, represents these extensions of
a concept. It associates certain areas of the image
with concepts of the knowledge base. It is a copy
of the related concept where common property de-
scriptions of a class are substituted by values de-
rived from the signal. In an intermediate state of
processing instances of some concepts may not be
computable because certain prerequisites are miss-
ing. Nevertheless, the available information can be
used to constrain an uninstantiated concept. This
is done via the node type modified concept which
represents modifications of a concept due to inter-
mediate results of the analysis.

As in all approaches to semantic networks the part
link decomposes a concept into its natural compo-

nents (i.e. CAR MTYRE). However, in image un-
derstanding it often occurs that a certain concept
is only defined in the context of another one. For
example, if you want to find a spare tyre in an im-
age it only can be identified as a spare tyre in the
context of a related vehicle. Contrarily, an ordinary
tyre can be recognized without any context as the
definition of that term is independent of relation-
ships to other ones. However, the term front tyre is
context—dependent as this property can be only de-
termined by an appropriate context. To model this,
fact a part can be marked as context—dependent and
vice versa a context can be explicitly inserted in a
concept. That means, SPARE_TYRE is for instance

a context-dependent part (c%t) of JEEP and in
SPARE_TYRE the concept JEEP is inserted as a pos-
sible context. Another well-known link type is the
specialization which connects a concept with a more
general concept (i.e. CAR %JEEP). Closely re-
lated to that type of link is an inheritance mecha-
nism by which a special concept inherits all prop-
erties of the general one, unless they are explicitly
modified. In order to motivate the third link type,
the description of aggregation in [14] is reported:
“for example, the parts of John Smith, viewed as
a physical object, are his head, arm, etc. When
viewing as a social object, they are its address, so-
cial insurance number, etc.” Two conceptual sys-
tems are distinguished in this example. A concept
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modeling a person has different parts within each of
these systems. Parts in the social system are social
conceptions, parts in the physical system are physi-
cal conceptions. In complex applications, more than
one such conceptual system will occur, i.e., in image
understanding, lines, geometry, named objects, or
motions. Relationships between concepts belonging
to different conceptual systems are only established
by the link type concrete. Therefore, part and spe-
cialization are restricted in the way that they are
only allowed inside the same conceptual system. For
example, the concepts TYRE and CIRCLE represent
terms of different conceptual systems because bar
belongs to “named object”, while rectangle belongs
to “geometry”. According to the fact that circle is
more concrete to the signal than tyre, the following
link TYRE <3 CIRCLE is established.

In addition to its links, a concept is described by
attributes representing qualitative or numerical fea-
tures and restrictions on these values according to
the modeled term. Furthermore, relations defining
constraints for the attributes can be specified and
must be satisfied for valid instances.

The creation of modified concepts and instances con-
stitutes the knowledge utilization in the semantic
network. For the creation of instances, this process
is based on the fact that the recognition of a com-
plex object needs the detection of all its parts as a
prerequisite. For concepts which model terms only
defined within a certain context the instantiation
process must proceed in the opposite direction. In
this case the context must exist before an instance
of the context-dependent concept can be created. In
the network language, these ideas are expressed by
six problem-independent inference rules. Context-
independent parts, contexts, and concretes are the
prerequisites for the creation of instances and modi-
fied concepts in a data-driven strategy. The opposite
link directions are used for model-driven inferences.
Since the results of an initial segmentation are not
perfect, the definition of a concept is completed by
a judgment function estimating the degree of corre-
spondence of an image area to the term defined by
the related concept. On the basis of these estimates
and the inference rules an A*-like control algorithm
is applied. For a detailed description of the network
language and the control algorithm see [17, 9].

3.2 A Hybrid Approach

To overcome the respective disadvantages of knowl-
edge based and neural techniques we propose a hy-
brid system combining neural and semantic net-
works. The main idea is to associate or attach
ANNSs as holistic models to concepts of the semantic
network, with both components modeling the same
object?. That is, the interface between the different

2The same applies to other concepts modeled in the semantic
network, like events or abstract conceptions. For sake of simplic-

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B3. Vienna 1996




network types is not defined at one fixed level of the
segmentation hierarchy, rather it is determined as
appropriate for the given task, knowledge base, or
the current state of the analysis process. Given such
a hybrid knowledge base, different options are avail-
able to recognize a modeled object in a model-driven
strategy. If a concept node is to be instantiated the
associated ANN can be activated and the object is
recognized in a fast and robust way without the ne-
cessity to detect the parts of the object as modeled
by the semantic network. If no ANN has been at-
tached to a concept node the analysis works in the
usual manner pursuing the decomposition hierarchy.
In this mode of operation the semantic network is
mainly used to control the analysis process and fo-
cus the various ANNs attached to the semantic net-
work on different image regions. If in a later phase
of the analysis process information about parts and
attributes of an object is required which was holis-
tically instantiated by an ANN then the knowledge
about the structure of objects modeled in the se-
mantic network can still be exploited. An example
for such a situation is the detection of gripping po-
sitions to guide a robot hand after the object has
been detected holistically by a neural network. In a
data driven analysis strategy the interaction works
in a similar way. After an object has been recog-
nized by an ANN the corresponding concept can be
instantiated even if its parts are not (yet) detected.
In a mixed strategy the instantiated objects recog-
nized by ANNs can be used to select appropriate
goal concepts from more abstract levels of the se-
mantic network. In this way the number of com-
peting interpretations is drastically reduced and the
analysis process can be restricted propagating the
constraints from the estimated goal concepts and
the instantiated objects.

As indicated above, it is not necessary to attach
an ANN to each concept of the semantic network.
Rather, one might choose to first train and associate
ANNs for objects that occur frequently or that are
difficult to recognize by a semantic network. In cases
when sufficient training data are not available for a
successful training of an ANN, no ANN is bound
to the corresponding concept. On the other hand,
the hybrid approach gives the option not to fully
decompose some of the objects alleviating the ef-
fort to acquire and adapt the knowledge base of the
semantic network.

Further extensions of the hybrid approach include
the utilization of neural networks to compute at-
tributes and judgments during analysis as well as
to learn control information to guide the analysis.
This gives more possibilities to exploit the learning
capabilities and robustness of neural networks for
semantic nets. Another option is to explore addi-
tional ways to adapt ANNs: As indicated above it

ity, however, we only refer to objects in the following.
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is usually not feasible to train an ANN for each ob-
ject to be expected in a complex scene. However, the
results of the analysis of an image sequence can be
used to adapt ANNSs to objects occurring frequently
in the sequence.

4 Semantic Models for Object Recognition

The work described in the following is embedded in a
special research project studying advanced human-
machine communication. The machine should be
able to process acoustic and visual input and react
meaningfully by producing speech output or by ma-
nipulating objects in the environment of the com-
municating partners. The domain was chosen to be
the cooperative construction of a toy-airplane with
parts from a wooden construction-kit for children.
Object recognition and 3D-scene reconstruction are
necessary prerequisites for a robot to grasp parts in
a scene. Fig. 7 shows the main part of the hybrid
knowledge base solving these tasks.

Currently, the network consists of three levels of ab-
straction namely the image level (indicated by the
prefix 1), the level of perception (indicated by the
prefix PE_), and the level of 3D-reconstruction (in-
dicated by the prefix RC_). The concept I_Focus
mainly allows to focus on certain areas in the im-
age to restrict the object recognition task. This
focus can be established by an utterance or a ges-
ture during the construction dialogue (not yet con-
sidered at the moment) or by the objects detected so
far. This concept has two context-dependent parts
namely I_REGION representing a color segmented re-
gion and I_OBJECT representing an object hypoth-
esis. According to our hybrid approach both con-
cepts are associated with a numerical classifier per-
forming a holistic instantiation of a colored region
or of an object, respectively. Region segmentation
is done by a polynomial classifier whereas object de-
tection is done by a special form of neural networks
called Local-Linear-Map (LLM) [23]. From a color
segmentation algorithm realized on a special hard-
ware platform the neural network gets blob centers
as ‘focus points’. At each focus point and based on
an edge enhanced intensity image a feature vector
is extracted by 16 Gabor filter kernels. This is the
input for the LLM-network calculating up to three
competing object hypotheses [8] For each competing
LLM-hypothesis an instance I_oBigcT) is created
which are stored in competing search tree nodes.
Dependent on the object type detected by the LLM-
network the corresponding concept in the percep-
tual level is selected to verify the object hypothe-
sis according to the structural knowledge stored in
the semantic network. That means if an instance
I_oBsecT!) with type ‘bolt’ exists then a modified
concept PE_BOLTM) is created with the concrete
I_oBiecT), This link is inherited from the concept
PE_0BJECT. In the next step the control algorithm
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Figure 7: The hybrid knowledge base for object recognition and 3D-reconstruction

tries to detect the parts of a modified perceptual ob-
ject as they are modeled in the semantic network.
For our bolt example this yields in instances for ‘bolt
head’ and ‘bolt thread’. Every instance has a con-
crete of I_REGION which is created by a polynomial
classifier of sixth degree using intensity, hue, and
saturation as features for classification. During this
instantiation process restrictions for position, color,
and shape are propagated in a model-driven way.
Additionally, the restrictions of the current focus
are taken into account. If a successful instance of a
perceptual object is created.then it is added as part
of PE._SCENE which refers to all objects in the scene
detected so far. After this step the focus is adapted
according to the newly detected object and the next
object hypotheses — created by the LLM-network

International Archives of Photogrammetry and

and yielding into instances of I_.OBJECT — are pro-
cessed. In parallel, the corresponding concept on
the 3D-reconstruction level can be instantiated acti-
vating the individual reconstruction of the detected
object. This process is described in the next section.

5 Semantic Models for 3D Reconstruction
and Camera Calibration

Depth estimation is a well known problem in com-
puter vision. Various approaches using different as-
sumptions and heuristics try to reconstruct the miss-
ing depth information from images. Model-based
approaches use a priori known geometric object
models. Model-based 3D reconstruction is a quan-
titative method to estimate simultaneously the best
viewpoint of all cameras and the object pose param-
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eters by fitting the projection of a three-dimensional
model to two-dimensional features detected in the
image(s). We represent the 3D model information
in the reconstruction level of the hybrid knowledge
base (see Fig. 7).

For each object in the domain, there is one
concept (e.g. RC_3HOLED.BAR) in the knowledge
base where the necessary geometric information
is stored. = These concepts are linked by spe-
cialization links to the generic object concept
RC_oBJECT. The same specialization hierarchy ex-
ists in the PE-concrete level. So, direct links con-
nect the 3D object models and the reconstructed
objects to the recognized objects with all their de-
tected image features. While the concept RC_VIEW
collects the reconstructed objects per camera view,
the concept RC_SCENE establishes the connection
between all camera views (e.g. stereo images)
and stands for a 3D representation of the observed
scene. The concept RC_CAM_PARAM is a context-
dependent part of each camera view. This concept
models the external camera parameters and the fo-
cal length. Our method holds for one ore more views
of the scene. All concepts in the reconstruction level
are associated with a numerical model-fitting proce-
dure which minimizes a multi-variate cost functions
measuring all differences between projected model
and detected image features as a function of the ob-
jects’ pose and the camera parameters®. Common
features in the scenes we are dealing with are points
and circles.

5.1 Projection of model points

The projection of a model point is the transforma-
tion of the point x, from model coordinates o to
the camera coordinate system [ and the subsequent
projection onto the image plane b;. This can be ex-
pressed in homogeneous coordinates? as

Pflo(mo) 3! (7;)[1 “Tio - (I)(mo))

c(8)e(4)

<8(111)5(9)C(¢) - c(¥)s(e)

Ty,

Il

c(8)s(4) ta
s($)s(8)s(¢) +e(d)e(d)  s(p)e(®) 2y |,
0(111)8(9)8(053 = s(¥)e(4) C(wéC(G) tlz

—-s(8)

C(¢)S(9)C(¢g+5(¢)3(¢)

@(mo)> with  s(z)=sin(z) and ¢(z)=cos(z) (16)

® is a function for the transformation from affine
to homogeneous coordinates. The projection of a
model point in a second image plane b, needs one

3The specializations of RC_OBJECT inherit this feature.
4Homogeneous transformations are denoted by 7 with sub-
scripts indicating destination and source coordinate frame of the
% g
transformation.
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additional transformation 7,; from the reference co-
ordinate system which we place in the first camera
coordinate system [ to the second camera coordinate
system r,

ot (Topr = Tet - Tio - ®(x,)) (17)

:ib,n = ’Plfro(wa)

5.2 Projection of model circles

The perspective projection of circles which are pla-
nar figures can be understood as a collineation in
the projective plane IP%. The quadratic form of a
projected model circle is easily computed using four
projected points on the circle and the corresponding
cross ratio (see [26] for further details).

The projection of a model circle to the first and to
the second image plane are denoted by

Ty, = Plf,o(wo) =Ty (Tor - Tio - Te(20)) (18)

'('ibr = /P;ro(wo) = I‘b (ﬁrr . 7;'1 : Tio : I‘c(mo)) (19)

Ty is the function realizing the transformation of the
projected model circle in homogeneous coordinates
to the ellipse representation as center point, radii
and orientation. A model circle z, is characterized
by its center point, the radius and a normal vector in
model coordinates o. The function I, calculates the
four points that are projected and their cross ratio
in homogeneous coordinates. This formulation of
the perspective projection of a model circle allows
us to measure easily the deviation of projected and
detected ellipses comparing five parameters.

5.3 Model-fitting

The pose of an object is well estimated from the im-
age data if the value of the non-linear multi-variate
cost function

- T
Cla=3.2 (%i = Piola, :c)) KTt

i=1 jeB

(21, = Pijolasza))  (20)
is minimal. The cost function C measures the de-
viation of projected model features x,, — these can
be points or circles — from the corresponding image
features. The vector a contains all unknown param-
eters. B is the set of images of a scene. N is the
number of corresponding model and image feature
pairs. Depending on the feature, the vectors Tp,
and x,, contain different representations and the
projection functions Plfjo are the respective trans-
formations. K is a covariance matrix which is used
to model the admissible tolerance with respect to
deviation from projected model to detected image
features.
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5.4 Minimization

The main problem of non-linear parameter estima-
tion is to find a method which guarantees conver-
gence of the cost function (eq. 20) to a global mini-
mum. The minimization using the Levenberg-Mar-
quardt method (see [20]), which is a combination of
Newton’s method and a gradient descent, converges
to the nearest local minimum. The global minimum
is found with good initial parameter values. How-
ever, we do not have initial parameter estimates.
Thus, we divide the global model fitting problem
into three steps to enhance and monitor the param-
eter estimates.

Step I: In the first step, the poses of all objects are
reconstructed individually, and separately for each
camera view. This procedural knowledge belongs to
the concept RC_OBJECT and is inherited by every
specialization. The projection of one object model
depends on 7 parameters. As few parameters are
to be estimated, the individual reconstructions are
performed very quickly; however the minimizations
have to be monitored in order not to let them con-
verge to false local minima because of inappropriate
initial values. If the focal length leaves an admissible
range (10-100mm in our case), the object is rotated
by negating two rotational parameters and the min-
imization is restarted with the other parameters re-
set to their original initial values. The cost function
is also monitored during minimization. If the pro-
cess converges to a local minimum with inadmissible
high costs, the z-translation parameter is modified
according to a predefined scheme. This monitored
Levenberg-Marquardt iteration is stopped if either
the change of the parameter estimates from one iter-
ation step to the next is less than a given threshold,
or if the model fitting does not succeed, i.e. if a max-
imum number of iterations is reached or if the same
local minimum is found despite modified parameter
values.

Step II: If a successful instance of a reconstructed
object is created then it is added as part of
RC_viEw. This concept performs step II of the min-
imization process. For a given camera view the me-
dian of all estimates of the focal length from step I
is fixed at this step and it is used to reconstruct the
pose of each object in the scene. So during this step,
better initial estimates for objects’ poses are derived
for each view of the scene.

Step III: The median focal length and the resulting
objects’ poses of step II are used as initial values for
global model fitting. It is possible to estimate the
relative pose between different cameras from the ob-
ject correspondences. This step is part of the proce-
dural knowledge of the concept RC_SCENE. Within
this step it is possible to instantiate the concept
RC_CAM_PARAM.
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5.5 Camera Parameter Estimation

Classical camera calibration methods (e.g. [28]) can
not be performed on-line as they demand a special
calibration pattern. Depth estimation is then a two-
step process and it may lead to suboptimal solu-
tions. We have explicitly modeled the camera pa-
rameters in our projection functions and thus they
are estimated using the knowledge of the 3D struc-
ture of the objects in the scene as part of the pro-
cedural knowledge of the concepts RC_SCENE and
RC._caM_PARAM. We estimate the external cam-
era parameters and the focal length. The results
show that principal point and scale factors are sta-
ble enough for our off-the-shelf CCD cameras to as-
sume fixed values. The influence of lens distortion
to the results of our approach is quite small. Never-
theless, it is possible to model the estimation of lens
distortion in a manner similar to that of [10].

Tsai [28] shows that full camera calibration is pos-
sible with five coplanar reference points. A solu-
tion for calibration derived with four coplanar points
is unique because four coplanar points determine a
collineation in a plane and any further imaginary
points in that plane as intersections of lines between
lines through the four points can be derived. Six non
coplanar points determine a unique solution as well
(see [30]).

Scene reconstruction is possible with one camera
view. Taking a stereo image leads to much more ro-
bust results. Furthermore, the pose of a circle with
known radius can not be computed uniquely from
one view (see [11]). Taking at least two images for
reconstruction, the pose of a circle in space is, if the
focal lengths are known, uniquely defined up to the
direction of its normal vector (ref. [4]). The sign of
the normal can be determined due to the visibility
of the projected ellipse.

5.6 Results

Fig. 8 shows the object recognition results and
the 3D reconstruction of a stereo image typical for
our scenario. In Fig. 8 a) and b) the instances
of the corresponding specializations of the concept
PE_0BJECT (names in German) and their image re-
gions, obtained by the color segmentation, are visu-
alized. All objects are recognized correctly. Only in
the right image the small ring is missing. This is cor-
rected taking the left image in the 3D reconstruction
processes. Fig. 8 ¢) shows the final result of the 3D
scene reconstruction (instance of RC_SCENE). The
geometric object models are projected onto the right
image. The projected object models fit very well to
the objects in the images.

6 Conclusion

Based on a detailed discussion of object modeling
for object recognition and scene interpretation, a
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Figure 8: Results for a typical stereo image: a) result of the 2D object recognition for the left image; b) 2D
object recognition for the right image; c) result of the 3D reconstruction process projected onto the right
image.
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hybrid system has been developed. It combines and
integrates semantic networks for explicit knowledge
representation with artificial neural networks which
provide an analogous holistic object representation.
Besides the representation formalism, the described
system includes problem independent inference rules
as well as a judgment based control algorithms. As
an example for its abilities and efficiency for the
interpretation of complex scenes, a system for the
three-dimensional reconstruction of scenes has been
presented. Further investigations will integrate im-
age sequences and will also emphasize the use of
neural network learning algorithms for the training
of symbolic semantic networks.
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