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ABSTRACT:

This paper develops an algorithm for linear object reconstruction without interior orientation. First we introduce
the Thompson and Longuet-Higgins equation as well as the fundamental matrix. After defining the affine model,
we show that some of its components can be linearly withdrawn from the fundamental matrix, which in turn is
linearly determined up to a scale factor by minimum eight image correspondences. This decomposition of the
fundamental matrix leads to a full use of the information within a stereo. Unlike the well-known DLT algorithm
where minimum six known points are required on each image of a stereo, our algorithm requires that only four
of them appear on the other one. In addition to the fully compatible accuracy with the DLT algorithm, tests
with an aerial stereo show the robustness of this algorithm as well.

1. MOTIVATIONS

For quite a long time it seemed to be a rule that the
interior orientation has to be completed before any
other photogrammetric computation is done. This
was overthrown by the time the well-known DLT (Di-
rect Linear Transformation) algorithm was publisched
by Abdel-Aziz and Karara in 1971 (c.f, Slama, 1980,
pp.801-803). It directly relates the object point to
its obligue image coordinates. This problem seems
to be fully solved if we neglect the drawbacks of the
DLT algorithm. In fact it recovers an object directly
from its images rather than from its photogrammetric
model, therefore, the inherent information behind the
stereo is not fully utilized. Moreover, it requires at
least siz known points on each of the images to re-
construct the object. Keeping those issues in mind,
the question arises that, how could we reconstruct an
object without knowledge of interior orientation by
fully employing the information behind a stereo 7

Our motivation also has its deep root in computer
vision and close-range photogrammetry, where un-
calibrated camera is widely adopted and the interior
elements are either unknown or different from image
to image.

Linear solution always benefits a lot, especially in
computer vision and close-range photogrammetry,
where finding reasonable initial values is crucial to
the success of iterative algorithms.
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Regarding to these backgrounds, our purpose is to find
a linear solution for object reconstruction without in-
terior orientation, which can fully use the information
behind a stereo and has less requirement on known
points than the DLT algorithm.

2. REVIEW OF THE RELATED WORK
AND OUR SCOPE

As our topic falls both in photogrammetry and com-
puter vision, the related work in both areas should
be mentioned. Photogrammetrists seem to rely much
on the DLT algorithm and hence on sufficient number
of known object points. In contrast, besides paying
interests in camera calibration, scientists in computer
vision area have fully studied the problem ” motion
or relative displacement estimation from uncalibrated
camera”. Most recently, quite a few literatures are
focused on this issue. They claimed that without in-
terior elements the object can be reconstructed up
to either an affine or a perspective transformation
(Faugeras, 1992; Hartley, 1992; Hartley, et al, 1992).
Obviously this is of fundamental importance for object
reconstruction without interior orientation ( Faugeras,
1993; Hartley, et al, 1993).

A linear solution for model reconstruction may date
back to the well-known contribution of Longuet-
Higgins (1981) in computer vision. IHowever, the
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basic idea behind this solution was essentially origi-
nated from the early work of Thompson (1968), where
he expressed the coplanarity equation via an unknown
3 x 3 matrix which is acknowledged today as essen-
tial matriz (c.f., Longuet-Higgins, 1981; Huang et al,
1989; Faugeras, et al, 1990; Hartley, 1992; Hartley et
al,1993). Photogrammetrists did not recall Thomp-
son’s idea for quite a time. Recently, Brandstitter
(1992) employed this idea for image rectification.
Wang’s work (1995) threw a light on this idea upon
which a linear algorithm was designed to reconstruct
the photogrammetric model based on the interior ori-
entation. Most recently, the stability of this algorithm
was studied by Barakat et al (1994), Deriche et al
(1994), Forstner (1995) and Luong et al (1994).

Our wotk is highly inspired by the work of Hartley et
al, Faugeras et al and Wang. Section 3 starts from
an affine transformation in the image plane, and then
generalizes the Thompson and Longuet-Higgins equa-
tion to the case of unknown interior elements. Section
4 is focused on the affine model and the recovery of
its components. Unlike Faugeras’s work (Faugeras,
1992) where traditional projective geometry is uti-
lized, we fully take advantage of the properties of the
skew-symmetric matrix and make our development as
parallel as possible to photogrammetry. After defin-
ing the affine model analogous to the traditional one,
we show some of its components can be withdrawn
from the so-called fundamental matriz. This leads to
a complete employment of a stereo. In section 5 we
use a 3D affine transformation to fully recover the
object. Unlike the well-known DLT algorithm where
minimum six known points are required on each image
of a stereo, our algorithm allows that one image may
have only four of them. Tests with an aerial stereo
in section 6 show that our algorithm is robust both
to the configuration of known points and to the affine
image deformation. Fully compatible (or even slightly
better) results with the DLT algorithm are obtained
as well.

3. THOMPSON AND LONGUET-HIGGINS
EQUATION

In this section we derive the Thompson and Longuet-
Higgins equation which plays a fundamental role in
our problem. A short comment is thereafter made on
the fundamental matrix.

We write the well-known coplanarity equation as
(Slama,1980, pp.54-56)

xi [b* (Rxz)] = 0 (1)

In Eq.(1)
b=(Bx By Bz )" )

is the base component vector. R is the orthogonal ro-
tation matrix of the second image relative to the first
one which is assumed to be as a reference. And

xi=(z1 w1 ~A) x=(2 w —f )
(3)
are coordinates of conjugate image points py, ps in the
first and second image spaces respectively. In Eq.(1)
* denotes the scalar product of two vectors.

For any 3 x 1 vector x we have
bx*x = Bx (4)

where B is a 3 x 3 skew-symmetric matrix whose en-
tries are composed of the elements of b, i.e.,

0 -Bz By

B= By 0 —Bx (5)
-By Bx 0
Applying Eq.(4) to Eq.(1) yields
xTExy =0 (6)
where
E = BR (M

Eq.(6) is namely the Thompson and Longuet-Higgins
equation which was initially derived by Thompson
(1968) and rediscovered by Longuet-Higgins(1981).
Matrix E, which is the product of the base component
matriz B and the orthogonal rotation matriz R, is
named as essential matriz by Longuet-Higgins(1981)
and thereafter widely accepted and studied in com-
puter vision (Huang,et al,1989; Faugeras et al ,1990).

It is straightforward to generalize Eq.(6) to the case
when the interior orientation is not done. Suppose
image points are measured in an obliqgue image coor-
dinate system (Z,y) which is generally considered as
a linear or an affine transformation of (z,y), namely
we have

X = A1xy X9 = AgXo (8)

where
a1 @12 a3 a11 ai2 13
A =1 asn az azs As=| axn ax as
0 0 -h/, 0 0 —f
(9)

_ o _ . T
x1:(m1 Y1 1)T x2=(.’l}2 Y2 1) (10)
X1 and Xy are essentially homogeneous coordinates of
image points. Substituting Eq.(8) back to Eq.(6) we
obtain B
*TExy =0 (11)
where

E=ATEA, = ATBRA, (12)
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is called fundamental matriz (Faugeras et al, 1992).
Eq.(11) and (12) are generalization of Eq.(6) and (7).

Note that matrix E could only be determined up to a
scale factor. This fact directly follows if we notice that
Eq.(11) is homogeneous and therefore multiplication
of a scale factor does not change its value. Therefore,
there are only eight linearly independent parameters in
matrix E. We need minimum eight image correspon-
dences to linearly determine the E matrix. However,
since |E| = 0, only seven degrees of freedom, i.e., free
parameters, exist.

There are three degrees of rank deficiency in the re-
construction of the affine model. A simple numeric
counting may show this fact. Among 2 x 11 degrees of
perspective transformation in a stereo, 7 could be re-
covered in relative orientation step and 12 in absolute
orientation step. This remains 2 x 11 — (7 +12) = 3
degrees of deficiency to be removed by leaving them to
the exterior orientation step, that will yield 1243 = 15
exterior orientation parameters.

4. AFFINE MODEL AND RECOVERY OF
ITS COMPONENTS

In the following derivation we suppose the fundamen-
tal matrix E has been determined up to a scale factor
by at least eight image correspondences with Eq.(11).

4.1 Affine model and its components

Applying collinear condition to the first and second
image respectively, we obtain

p=XRx:+b (13)

pP=Mx1

where r
p:( XY Z ) (14)

is the coordinates of object point P in the first image
space coordinate system. A; and A, are scale factors of
vector x; and x5 relative to vector p and p —b, which
take the first and second perspective center as their
origins respectively. Substituting Eq.(8) to Eq.(13)
yields

P= /\QRAQ)_Cg -+ b (15)

The next step is essential for solving our problem. We
write Eq.(15) in a way similar to Eq.(13)

pP=MAIX)

P= :\lil P= :\2Ri2 +b (16)

where

(17)
(18)
(19)

X1 and )y are proportional to A\; and Ay respectively,
since they may take into account the multiplication
factor inherent in E matrix.

We define p = ( XvYy Z )T as the affine coordi-
nates of object point P, since it is a linear, i.e., affine
transformation of its Cartesian coordinates. The col-
lection of all affine points forms an affine model of the
object. Similarly, b is known as affine base component
vector, and R is specified as affine rotation matriz.

Now we are due to rewrite the fundamental matrix E
in Eq.(12) as

E=(ATBA|)(A7'RA,)=TR (20)
where T = ATBA, is a skew-symmetric matrix. As
Tb = 0, we are led immediately to

Tx Ty 1Ty

—_— e— I =

Bx By Bz
ie, T is proportional to B. As any multiplication
factor in matrix T can be taken into account in the

fundamental matrix, we may simply let ¢ = 1. Thus,
Eq.(20) becomes

E =BR (21)
where - _
(0 -Bs By
B= Bg 0 —-Bx (22)
—-By By 0

is defined as the affine base component matrir ana-
logues to B in Eq.(5).

Being parallel to the essential matrix E of Eq.(7),
Eq.(21) reveals the following primary and important
fact:

The fundamental matric E can be decomposed as a
product of B and R, where B is a skew-symmetric
matriz composed of the affine base componentis, rep-
reseniing the displacement of the second perspective
cenlre in the first affine image space, and R. is an
affine rotation matriz representing the orieniation of
the second camera with respect to the first one.

4.2 Recovery of the affine model components

We start from computing the affine base component
vector b. Since BTb = 0, we have

ETb=0 (23)
This is a set of homogeneous equations. By setting

Bx an arbitrary positive constant, we then could ob-
tain the other two affine base components By and Bz.
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Now we may move on to computing matrix R. Eq.(21)
is now written columnwise as

Bf; = &; (:=1,2,3) (24)
where T; and &; are the column component vectors
of R and E respectively. Since rank(B)=2, for each
column of R we can only determine two parameters,
namely three indepedent parameters (degrees of rank
deficiency) remain unknown altogether. By choosing
T11, 712, 13 as independent parameters, in such a way
a solution will always be assured, we have

Fg1 = (Bw_'n + 531)/BX T31 = (Bzfn - 521)/BX
To2 = (By 12 + €32)/Bx Taa = (Bz 712 — €32)/Bx (25)
o3 = (By 13 + €33)/Bx 33 = (Bz¥13 — €23)/Bx

Moreover, we can also get the length ratio, i.e., Az/X1,
of the two conjugate projective rays. Equalizing the
two equations in Eq.(16) and multiplying B in both
sides yields

ﬁExz Bx; (26)
A1
Its least squares solution is
— \ e T R %
F=22 = w (27)
/\1 (EXz) (EXz)

In summary, with pure image correspondences or the
fundamental matrix, we could recover the {wo ratios
of the three affine base components, as well as siz
relationships among the nine components of the affine
rotation matrix. Moreover, for each image correspon-
dence, we could determine its length ratio of the two
conjugate projective rays.

Since there are three degrees of rank deficiency, the
affine model can not be fully reconstructed without
known object points.

5. OBJECT RECONSTRUCTION

In this section we first present the transformation
between object space and the affine model. Then a
linear algorithm is designed to perform the exterior
orientation of the partially recovered affine model.

It is trivial to show that the transformation between
object space and the affine model takes the form
(affine transformation)

ay as as a4 g
P=Au= by by b3 by W (28)
Ci1 €y (3 (4 1

where uT = (U V W 1) is the homogeneous coordi-
nates of a point in object space, A is the transfomation
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matrix specified by twelve independent parameters.

Inserting Eq.(16) into Eq.(28) yields

Au = /—\1}—(1 Au= /—\21—17—(2 -+ b (29)
which are elementary to perform the exterior orienta-
tion. Eq.(29) has 12 (from matrix A)+3 (from matrix

R)=15 independent orientation parameters.

To design a linear solution, we eliminate A; in Eq.(29)
and get a DLT-type equation

. a U +asV +asW + aq

U +coV+esW+eq
_ b1U + b2V + b3W + ba (30)
u CIU+62V+C3W+C4

The twelve parameters could be linearly determined
up to a scale factor with six given object points
appearmg on the first 1mage, namely the ratio
ai = a;fca,b i = b;ifes,c i = ¢ifea (c4 = 1) are ob-
tained.

Immediately after that, the remainder four parameters
are determined linearly with the second set of Eq.(29)
by minimum four given object points, i.e.,

-t

A'u=FEN R, + —b (31)

b, c. similar to

where matrix A’ is composed of a;,b;, ¢;

matrix A,
X, = U+ eV +esW+1 (32)

and k is computed from Eq.(27).

The object reconstruction is then finally performed by
inversing Eq.(28)

-1

U ay as das }‘? — a4
V | = b by bs Y —bs | (33)
w c1 €2 C3 Z - Cq4

Comparing to the DLT algorithm which relates every
image independently to the object space, our algo-
rithm fully employs the information within a stereo.
Therefore, only 15 instead of 2 x 11 parameters are
dependent on known object points. To ensure a lin-
ear solution, one image of a stereo may have mini-
mum six known object points, while minimum four of
them appear on the other one. It is apparent that in
this minimum configuration, the DLT algorithm fails,
while a linear solution is available in our algorithm.

Furthermore, this algorithm could be feasibly applied
to successive images for object reconstruction if only
each of them has minimum four conjugate known
points.
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6. TESTS AND ANALYSES

In this section we first describe the implementation
of our algorithm and then report the test results with
an aerial stereo.

The primary step in this algorithm is to determine the
fundamental martix E. As only the ratios among the
entries of E could be determined, we may simply let
one of its component equal to one. It is proper to set
€32 = 1 as it is approximately equal to Bx 722 which
may never be zero. All image correspondences are in-
cluded to determine E. Moreover, since there are only
seven degrees of freedom in the fundamental matrix,
the condition

|E| =0 (34)

may also be included in the solution procedure
(Barakat et al,1994).

In exterior orientation, the entries of matrix A’ is
determined with six known points by Eq.(30). Other
four parameters are then obtained by Eq.(31). After
that the object could be fully reconstructed.

We use an aerial stereo to evaluate our algorithm. Its
primary parameters and the distribution of the six
ground control points (GCPs) are shown in Fig.1 and
Tab.1 respectively

Tab.1l Photographic parameters 1 2 3

Flight height: ca. 2250m

Principle length: 88.94mm

Frame size: 230mm*230mm

Camera: RC-10

Overlap: ca. 65% | 4 5 6
Fig.1 GCPs
distribution

Altogether 36 image points as well as their 3D ground
coordinates are measured with an analytical plotter.
The latter are treated as ”best values” to check the
validity of our algorithm. Moreover, the DLT algo-
rithm and the traditional collinear algorithm are also
implemented. In order to check the efficiency of our
algorithm, results under different control configura-
tions and various image deformations are presented
respectively in Tab.2 and Tab.3, in which all numerics
are relative to the ”best values”.

In Tab.2, the DLT algorithm and collinear algorithm
are implemented with all six conjugate GCPs, while
our algorithm is evaluated with different GCPs con-
figuration on the second image and six common GCPs
on the first image.
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It is no wonder that the collinear algorithm holds
the best results (c.f., item Colli. in Tab.2). Item a
and item DLT in Tab.2 show our algorithm obtains
essentially the same rigorous results as the DLT algo-
rithm when they have the same GCPs configuration.
Through item b to fof Tab.2 where the DLT algorithm
is not applicable, our algorithm behaves completely
robust to various GCPs configurations. The small
differences, rarely up to maximum decimeters, are
within the tolerance of GCPs themselves. Moreover,
the most encouraging is in each minimum GCPs con-
figuration we could still reach the same accuracy as
the full GCPs configuration - a benefit due to the
complete employment of the imformation within a
stereo.

Tab.2 Results under different GCPs (in meters)

GCPs config. on | RMSE to best values
the second image | ox oy oz

a: 1-2-3-4-5-6 1.936 | 1.595 | 1.722
b: 2-3-4-6 1.892 | 1.455 | 1.722
¢ 1-2-4-5 1.944 | 1.648 | 1.723
d: 2-3-5-6 1.887 | 1.444 | 1.722
e: 2-4-5-6 1.915 | 1.539 | 1.722
f: 1-2-3-5 1.954 | 1.633 | 1.722
DLT algorithm 1.954 | 1.580 | 1.736
Colli. algorithm | 1.376 | 1.365 | 1.745

Tab.3 shows the results of our algorithm under dif-
ferent affine image deformations, where s, @ and d
refer to the scale factor, rotation angle and the dis-
parity of the principal point respectively. In order to
testify the validity of our algorithm, simulated affine
deformations based on these parameters are added to
the original image observations, where the first and
second image take different signs of the parameters
respectively. The GCPs configuration for this table
is ¢tem b in Tab.2. Since the DLT algorithm presents
the same result under different image deformations, it
is appended there only in the last row.

Tab.3 Results under image deformations (in meters)

Amount of image defor- RMSE to best values
mation parameters ox oy oz
1. no deformation 1.892 | 1.455 | 1.722
2. s=1.1,0 = 10°,d=10mm | 1.926 | 1.460 | 1.715
3. 5=0.9,a0 = 20°,d=20mm | 1.907 | 1.466 | 1.719
4. s=1.3,a = 30°,d=30mm | 1.923 | 1.465 | 1.748
5. 5=0.7,&c = 40Y,d=40mm | 1.911 | 1.488 | 1.743
| DLT algorithm | 1.954 [ 1.580 | 1.736 |

It could be clearly seen that our algorithm is practi-
cally invariant and robust to different amount of affine
image deformations, since only trivial changes (maxi-
mum up to centimeters) might occur among them.

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B3. Vienna 1996



7. CONCLUSIONS

Object reconstruction without interior orientation
can be linearly accomplished with the aid of the affine
model. By making complete employment of a stereo
we can determine 2 ratios of the affine base compo-
nents and 6 relationships among the 9 entries of the
affine rotation matrix. The partially reconstructed
affine model is oriented to an object frame via de-
termining 15 independent parameters. Unlike the
DLT algorithm where minimum 6 known points are
required on each image of a stereo, this algorithm al-
lows one image may have only 4 of them. In addition
to its completely compatible accuracy with the DLT
algorithm, it is robust to control configurations and
image deformations.
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