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ABSTRACT

A new solution to the problem of determining the parameters of satellite scanner exterior orientation is presented.
The scanner problem is simplified to that of the frame camera by making use translational and rotational
trajectory data recorded during the scanninging period. An accurate solution to the frame camera is then
presented which works even with poorly-distributed ground control points.

1 Introduction

Current scanner resection solutions are divided into
two main classes — those that ignore translational and
rotational variation over the imaging period, and those
which use polynomial approximations of motion vari-
ation [Shevlin, 1996]. The latter are significantly more
accurate than the former but owing to the amount of
approximation required they do not achieve optimal
estimates of the unknowns. As far as this author can
determine, no currently-published resection solution
uses actual trajectory data in finding the unknown pa-
rameters of exterior orientation. This paper explains
how the use of trajectory data can facilitate the near
optimal determination of the parameters of exterior
orientation.

With the advent of space-qualified GPs attitude and
orbit determination receivers the problem of satellite
scanner resection will not be as important in the near
future as it is today. At the current time, however,
resection is still required for remote sensing platforms
such as SPOT whose interior and exterior image ge-
ometry needs to be known precisely for photogram-
metric applications. Trajectory data supplied with
imagery typically consists of samples of angular ve-
locity recorded by the attitude and orbit control sys-
tem throughout the imaging period and estimates of
orbital position determined from Doppler analysis of
telemetry signals in conjunction with orbital models.

It has been shown by the author that a using suitable
parameterisations of rotation, angular velocity sam-
ples can be splined and integrated to yield a rota-
tional trajectory (specified as a set of discrete rota-
tions R;,7 = 1,...,n for n scanlines) relative to the
unknown orientation R at the start of the imaging
period [Shevlin, 1994; Shevlin, 1995]. Since the esti-
mates of position are approximated using orbital mod-
els they cannot be considered correct in terms of abso-
lute coordinates but they can be used to give an accu-
rate approximation of relative translation (specified as
a set of discrete translations t;) over the imaging pe-
riod. Hence rotational and translational trajectories
over the imaging period (which can be considered as
the parameters of interior orientation in scanned im-
agery) are known, the unknowns are the parameters
of exterior orientation - position pg and orientation
Ry at the start of the imaging period.
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2 Problem statement

Many different frame camera resection solutions have
been proposed. A dissertation from 1958 documents
over 80 different approaches (referenced in [Haralick
et al., 1989]). Considering that this was before the
advent of computer vision and digital photogramme-
try it gives some idea of how many solutions exist in
the literature (see [Tsai, 1987; Tsai, 1989] for compre-
hensive classification and review).

The vast majority of solutions rely on the same con-
straints relating the imaging and scene coordinate
systems — collinearity, coplanarity, and coangular-
ity. Different equations specifying these constraints in
terms of the unknowns are formulated and a wide va-
riety of techniques applied to solve them. Currently
published scanner resection solutions all seem to be
based on the collinearity constraint specified through
the equations of perspective projection. Primarily due
to the way in which motion is modelled these solutions
are not as accurate as they could be [Shevlin, 1995].
The aim of the work presented here is to use an accu-
rate model of scanner motion to achieve resection of
higher accuracy than that of current techniques.

In approaching this problem the author did not
want to duplicate or modify existing techniques since
most are already minor modifications of a few well-
established ones. A new perspective of the problem
was sought. This was eventually achieved with the
observation that scene point projections on the focal
plane and the focal point (as well as other interior
orientation parameters) are sufficient to form a bun-
dle of lines in the imaging coordinate system. These
lines specify the paths travelled by image-forming light
rays reflected off scene objects. This is shown for
the frame camera and scanner geometries in figure 1.
The collinearity condition for resection could then be
considered as fitting the bundle of lines to the scene
points, or more formally—

Given the relative positions and orientations of a set
of image-forming rays in an imaging coordinate sys-
tem and a corresponding set of observed control points
in a scene coordinate system, determine the exterior
orientation of the former system with respect to the
latter such that the perpendicular distances between
the rays and the corresponding control points are min-
imised.
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(a) Frame camera

(b) Scanner

Figure 1: Image-forming ray bundles
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3 Parameterisations

A computational process is required to find the least-
squared error solution of this problem. In order to
determine such a process the problem must be anal-
ysed using manipulable parameterisations of the prob-
lem domain elements. The elements are points, lines,
point-line distance, translation, and rotation (the lat-
ter two are required to describe both the known re-
lationship between lines and the unknown relation-
ship between coordinate systems). The motor alge-
bra [Brand, 1947] provides convenient parameterisa-
tions of all these elements. A point can be represented
by a vector s, a line can be written in Plicker coordi-
nates as 1 = n + ep x n, and a moment (proportional
to point-line distance) is 1 ® s = p x n — s X n where
p is a vector denoting a point on the line and n is a
unit direction vector.

4 Scanner problem analysis

In order to gain some insight into:the scanner resec-
tion problem it will be temporarily assumed that the
position and orientation of the scanner imaging co-
ordinate system with respect to the scene is kpown.

The squared error between image-forming rays 1; and
corresponding scene points s; is written,!

ZIL@S;‘I——-ZIp;xni—-sixnil. (1)
i=1

i=1

The vector difference on the right hand side can be
rewritten,

(pi —8i) x n;. (2)

This shows how the moment magnitude and direction
is a function of the vector between the scene point and
a point on the line. Note that the vector is unaffected
by a translation of its end points by t;,

pi—si=(pi—t)—(si—t;) =
pi—ti—si+t;=pi—si. (3)

The positions p; of points on scanner rays are speci-
fied by known translations t; with respect to an initial
unknown position po, p; = po + t;- Rewriting equa-
tion (2) gives gives,

(po+ ti — si) x n;. (4)

Making use of observation (3) gives,

Po+ti—s;=(po+ti—t;)—(si—t:) =
po—(si —ti). (5)

Since both s; and t; are known, artificial scene control
points s = s; — t; can be calculated and equation (1)

1la] is used to denote the square of vector magnitude, calcu-
lated as a - a.
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can be rewritten explicitly in terms of the unknown
initial position py,

n

leo X n; = s; X 1. (6)

i=1

This statement of the sum to be minimised for the
scanner bundle-fitting problem is the same as that
required for the frame camera bundle-fitting problem
assuming scene control points are labelled s;. As far
as the author can determine, this is the first {tme that
the scanner problem has been simplified to that of the
frame camera.

Although it seems that conventional frame camera re-
section solutions (such as those based on the collinear-
ity condition) may now be applied to solve the prob-
lem, this is not the case. The ground control points
have been translated towards one another, their dis-
tance being a function of the orientation of the scan-
ner at the time of imaging. Despite the fact that they
may have been well-distributed across the scene ini-
tially they have been translated to be spatially clus-
tered. Tests with SPOT trajectory data have shown
that ground control points whose image observations
were initially thousands of pixels apart are translated
such that the image observations are only tens of pix-
els apart [Shevlin, 1995] and that conventional resec-
tion solutions fail to converge to accurate estimates
when using these clustered points [Shevlin, 1996].

The unknown initial orientation of the imaging co-
ordinate system R has yet to be introduced into the
problem. Let n; = H,l1 Ring be the unit direction vec-
tors of lines in the imaging coordinate system specified
by known rotations R; of an initial vector ng (which
could be the optical axis, for instance). These vectors
are transformed into the scene coordinate system by
the unknown rotation Ry. Using this to rewrite equa-
tion (6) gives an expression explicitly in terms of all
unknowns,

n
Z Ipo X Ron; — s} x Rony|. (7

i=1

The author has made several attempts to find po and
Ry which minimise this sum, but without success.
This lead to the bundle-fitting formulation being put
aside. However the analysis was in no way a waste of
effort since it facilitated the simplification of scanner
problem to that of the frame camera for the first time.

Since conventional frame camera resection techniques
are not sufficient for this geometry a new one has been
derived. In general kinematic analysis is greatly facil-
itated by the fact that translation and rotation can
be treated separately therefore aim was to formulate
two separate resection problems, one for position and
one for orientation. Since reducing the dimensional-
ity of the unknown parameter space results in fewer
parameters being sought together, the probability of
their optimal determination is increased.

5 Coplanarity condition

The coangularity condition (Church’s condi-
tion [Ghosh, 1988, p. 104]) to constrain the resection
problem is that the angle § between a pair of rays in
the imaging coordinate system is the same as that
between the rays in the scene coordinate system. This
can be written as cosf;; = cosfry =mn; -n; = ny-ny
where the upper and lower case subscripts of angles
6 and unit vectors n refer to the rays in the image
and scene coordinate systems respectively. Analytic
solutions based on this constraint are presented
in [Ghosh, 1988; Wolf, 1983, pp. 104, 240 resp.],
however they are not least-squared error solutions.

This approach inspired the realisation that the prob-
lem is simplied by specifying the image-forming rays
with respect to the known scene points instead of the
unknown focal point. Instead of applying the coan-
gularity condition through equations written in terms
of direction vectors it was decided to investigate the
formulation which results using the scalar product of
Pliicker lines 1; - I; = 6 = 0 + ed. The dual angle 0
comprises the length d of a perpendicular joining the
two lines and a rotation of angle § about the perpen-
dicular.

Given lines I; = Rn; +e¢s; x Rn; and ij = Rnj +es; x
Rn; the scalar product 1; -1; is found by distributing
across the real and dual parts,

1; - ij =f+ed=
Rn; - Rn; + ¢ (Rn; - s; x Rn; + Rn; -s; x Rny).
(8)
This gives a new idea for a constraint — that the

perpendicular distance d between the rays at the focal
point should be zero,

d:Rni-Sj Xan+an~S,‘><Rni
=s;-Rn; x Rn; +s; - Rn; x Rn;
=s; - R(n; x n;) +s; - R(n; X nj)

(sj —si) - R(nj x nj) = 0. (9)

This expression is one of coplanarity. A vector be-
tween two scene control points is coplanar with vec-
tors defining the directions of their image projections,
see figure 2. The coplanarity constraint is more often
used for the relative orientation problem. The con-
straint equation (9) looks interesting for the resection
problem because the only unknown present is orien-
tation.

Letting? g; = ||s; — s;|| and ¢; = [|n; % njl|, the
squared error function of camera orientation R to be
minimised is,?

n

> (gi Rei)’

i=1

(10)

2||al] is used to denote the unit norm of vector a, calculated

as a/+/|al.
3(a,b) is used to denote the inner product, calculated as
a-b
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St

Figure 2: Coplanarity of image rays

Since achieving this the author has discovered a simi-
lar minimisation equation to (10) in [Liu et al., 1990],
but it was found through observation of problem ge-
ometry rather than analytically as shown above.

6 Rotation solution

The elements of an orthonormal rotation matrix R
are non-linear functions of the unknown Euler angles
of rotation w, ¢, k. This makes equation (10) highly
non-linear in terms of the three unknowns and thus a
closed-form solution for them is improbable. Various
approaches to minimisation are outlined in [Shevlin,
1996]. The one presented here uses the guaternion
g parameterisation of rotation [Horn, 1987]. Equa-
tion (10) can be rewritten,

n n

> (g gei@)’ =) (gei,gi9)”.

i=1 i=1

(11)

Let N; = GZT C; where G; and C; are orthogonal ma-
trices formed from vectors g; and c¢; (see [Horn, 1987]).
Let N = Y7 | N;. Writing the quaternion q as a vec-
tor q = (g0 q1 92 92 ¢3] T and denoting quaternion mul-
tiplication as a matrix by vector product gives the fol-
lowing matrix expression equivalent to equation (11),

(q" Nq)2.

This could be minimised by finding solving the

quadratic form F(q) for the four quaternion variables

(subject to the unit quaternion constraint ¢f + ¢? +
2 4,2 2

g +49i+g93=1),

(12)

(13)

Instead of attempting to solve a quadratic in four vari-
ables subject to a constraint, it was decided to form
an overdetermined system of simultaneous non-linear
equations F;(q) : q' Niq = 0 (for each observation
i=1,...,n). Each of the F;(q) can be linearised in
the neighbourhood of a known q using the first two

F(q): '"Nq=0.
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terms of a Taylor’s series expansion,

OF;
Fi(q+ Aq) = Fi(q) + “gflﬁ% +
0Fi(q) 0Fi(q) dFi(q)
M Agy + Ags + A 14
o M0t g, Aet 5 A (14)

The Newton-Raphson method can be used to solve it-
eratively for corrections Aq which minimise the least-
squared error.

An important advantage of using the quaternion pa-
rameterisation in the solution of the problem (as op-
posed to Euler angles and hence rotation matrices as
used in [Liu et al., 1990]) is the ease with which suc-
cessful initial values for the iterative solution can be
found. The following set of coefficients provide a reg-
ular tesselation of the unit quaternion hemisphere and
it can be shown that convergence to the four possible
solutions is guarenteed,

051 [057 1057 [05
05| o5 |05 |05
05105 |*]|-05]|-05]
05] |-05] [05] [-05
r057 [057 057 [05
—05| |-05| |-05| |-05
05105 | |-05|"|-05 (15)
05 |-05] |o5] [-05

The negation of the elements of this set provide
diametrically-opposed points on the other hemisphere
and so could also be used as starting values. The
solutions found through this linearisation may then
be used as start points in a non-linear optimisation
search to minimise equation (12). A very accurate
and efficient means to perform such a search on the
unit quaternion sphere is the spherical optimisation
search outlined in [Kanatani, 1993, p. 123].

7 Translation solution

Once orientation has been found the least-squared er-
ror solution for position p can be found in closed-form
using the pseudo-inverse method. The position of the
i image-forming ray is specified with the scene con-
trol point s; in the Plicker line 1; = n;+e€s; Xxn,;. Since
each image-forming ray passes through the focal point
p,

(16)

P Xn; =8 Xn,.

An overdetermined system of linear equations in terms
of the unknown p can be formed,

pXn; =s§; Xnp
P Xny =83 XNy

(17)
P Xy =85 XNy

Rewriting this using a skew-symmetric matrix product
instead of the cross product on the left-hand side and
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evaluating the product of known vectors on the right-
hand side as v; gives,

ISIIP =V
Nop =
. (18)
an =Vn
Rewriting as a matrix equation gives,
N; vy
Nz Vo —
. lp= or Np =v. (19)
Nn Vn

Hence the solution for p is as follows where Nt denotes
the pseudo-inverse of N,

p = Niv. (20)

8 Conclusion

A new simplification of the free-moving scanner resec-
tion problem has been formulated and accurate solu-
tions presented. The new approach makes use of angu-
lar and linear velocity data typically recorded during
the imaging period (c.f. the SPOT satellite attitude
and orbit control system [Spo, 1991]) to simplify the
scanner resection problem to the simpler case of the
frame camera. A robust solution to frame camera re-
section is required since ground control point vectors
are translated closer together in order to achieve the
simplification. The frame camera problem has been
separated into two — one for the determination of
rotation, and one for position. This facilitates the ac-
curate determination of unknowns despite the poorly-
distributed ground control.

References

1991 (June). SPOT Reference Manual. 01.2 edn.
CNES and SPOT Image, Centre Spatial de
Toulouse, France.

Brand, L. 1947. Vector and Tensor Analysis. John
Wiley and Sons.

Ghosh, Sanjib K. 1988. Analytical Photogrammetry.
Second edn. Pergamon Press.

Haralick, Robert M., Joo, Hyonam, Lee, Chung-
Nan, Zhuang, Xinhua, Vaidya, Vinay G., & Kim,
Man Bae. 1989. Pose Estimation from Corre-
sponding Point Data. JEEE Transactions on Sys-
tems, Man, and Cybernetics, 19(6), 1426-1446.

Horn, B.K.P. 1987. Closed-form solution of absolute
orientation using unit quaternions. Journal of the
Optical Society of America, 4(4), 629-642.

Kanatani, Kenichi. 1993. Geometric Computation for
Machine Vision. Oxford University Press.

802

Liu, Yuncai, Huang, Thomas S., & Faugeras,
Olivier D. 1990. Determination of Camera Lo-
cation from 2-D to 3-D Line and Point Corre-

spendences. I[EFEE PAMI, 12(1), 28-37.

Shevlin, Fergal. 1994 (September). Kinematic Mod-
elling of Scanner Trajectories. In: International
Conference on Image and Signal Processing for
Remote Sensing. SPIE, EOS, Rome, Italy.

Shevlin, Fergal. 1995 (September). Splined Trajectory
Models for Geometric Rectification and Fusion.
In: International Conference on Image and Sig-
nal Processing for Remote Sensing. EOS, SPIE.

Shevlin, Fergal. 1996. Geometric Reclification of
Scanned Imagery. Ph.D. thesis, Trinity College
Dublin.

Tsai, Roger Y. 1987. A Versatile Camera Calibration
Technique for High-Accuracy 3-D Machine Vision
Metrology Using Off-the-Shelf TV Cameras and
Lenses. IFEE Journal of Robotics and Automa-
tion, RA-3(4), 323-344.

Tsai, Roger Y. 1989. Synopsis of Recent Progress
on Camera Calibration for 3D Machine Vision.
Pages 147-159 of: Khatib, Oussama, Craig,
John J., & Lozano-Pérez, Thomads (eds), The
Robotics Review, vol. 1. MIT Press.

Wolf, Paul R. 1983. Elements of photogrammetry. Sec--
ond edn. McGraw-Hill.

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B3. Vienna 1996



	S42BW-110021108220

