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ABSTRACT

A new adaptive method is introduced to reconstruct missing or corrupted lines in multi-spectral image data. The reconstruction
uses available information from the failed pixel surrounding due to spectral and spatial correlation of multi-spectral data.
Missing lines are assumed to be modelled with a multi-dimensional regression model but this model cannot be identified, so a
special approximation is introduced. The reconstruction is based on two mutually competing adaptive approximations of the
regression model from which the locally optimal predictor is selected. A directional forgetting concept is introduced to support

parameter adaptation.

1 INTRODUCTION

There are several ways of reconstructing corrupted or missing
image data. The simplest method is to replace the missing
detector scan line by the scan line of the detector immediately
above or bellow it (we will refer to this method further as A).
This scheme can cause [Bernstein, 1984] very observable dis-
tortions in the final image products, especially images of high
contrast features. As a variant of mentioned method it has
been suggested to linearly interpolate between the lines above
and below the corrupted detector line - method B, or between
six neighbouring pixels - method C. This does not solve the
problem. Even interpolation with higher order curves, such
as quadratic fit, is of no help see [Bernstein, 1984]. Three
more sophisticated template-like methods were suggested in
[Bernstein, 1984]: Template Replacement - D, Template Re-
placement with Error Adjustment - E and Quadratic Verti-
cal Fit with Template Data - F. The Template Replacement
method directly substitutes a corrupted detector line with a
detector line from a similar (well correlated) band, after scal-
ing its output intensity so that its range is similar to the
other lines of the failed line spectral band. The coefficients
of the quadratic are determined by a least squares fit to the
actual data in a five - pixel vertical slice centered around each
bad detector pixel. The value used for the bad (center) pixel
in the slice is calculated as in a D algorithm. Test results
in [Bernstein, 1984] show in low contrast regions slightly off
colour stripe after applications of algorithms D and E. The
problem of algorithm F is that it produces a lower contrast
value than expected in light contrast areas.

These template-like methods cannot be used for reconstruc-
tion of multi-spectral pixels with several spectral components
missing, while the A B,C methods can be used also in these
cases.

We have proposed the regression method [Haindl, 1992] ,
which clearly outperforms the above - mentioned recon-

struction methods. The regression method was improved in
[Haindl, 1996] to select a locally optimal predictor from two
mutually competing symmetrical adaptive predictors for each
pixel to be reconstructed - G. In this paper we present further
improvements of our reconstruction method. The regression
model is generalised to reconstruct a multi-spectral line with
all spectral components missing - H. Finally a modification
of the method based on directional forgetting idea - method
I, which improves parameter estimation is presented.

Note that all the above mentioned methods, as well as our
method, do not use any data from bad pixels, i.e. there is
no difference between reconstruction of corrupted or missing
data using these methods.

The present paper is organized as follows. In Section 2, a
proposed method general concept under a Bayesian frame-
work is introduced. Section 3 completes the algorithm with
a locally optimal model selection rule design. Section 4 deals
with a multi-spectral line reconstruction and Section 5 intro-
duces the concept of directional forgetting. Section 6 discuss
numerical realization problems while Section 7 contains an
application to radio-spectrograph observations of the solar
radio emissions (mono-spectral case) and remote sensing im-
agery data.

2 MONO-SPECTRAL LINE REGRESSION MODEL

Our method uses high spectral bands correlation and spa-
tial correlation between neighbours of unusable pixels. We
assume the mono-spectral line to be modelled as:

Yi=) Y+ E (1)

1€l

with a multi-index { = (m,n,d) ; Y;is a reconstructed
mono-spectral pixel value, m is the row number, n the
column number, d(d > 1) denotes the number of spectral
bands and also the spectral band with line to be reconstructed
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(the arrangement of spectral bands can be chosen at will),
a; are unknown model parameters, F; is the white noise
component. I; is some neighbour index shift set excluding
unknown data (0, 7,0), (m* —m’,5,0) € I;, where m® is
an approximation line (see (18)) and m’ is a reconstructed
line, respectively.

Note that although the model reconstructs a mono-spectral
corrupted line, the model can use information from all other
spectral bands of an image (d > 1) as well. For mono-spectral
images (e.g. radiospectrograph data) d = 1.

Let us denote another multi-index ¢ = (m, n,d) and choose
a direction of movement on the image plane to track the bad
linet—1=(m,n—1,d),t—2=(m,n—2,d),... E;isthe
white noise component with zero mean and constant but un-
known dispersion 2. We assume that the probability density
of F¢ has a normal distribution independent of previous data
and is the same for every time t. Let us formally assume the
knowledge of the bad data, then the task consists in finding
the conditional prediction density p(Yt]Y(”“l)) given the
known process history (2) and taking its conditional mean
estimation ¥ for the reconstructed data.

YO = Vi, Yo, .., V4, 20, Zeny ., 21} (2)

where Z is defined by (7). We have chosen the conditional
mean estimator for data reconstruction, because of its opti-
mal properties [Broemeling, 1985]:

Vi = E[v[y" )] (3)

Let us rewrite the regressive model (1) into a matrix form:

Yi=PTZ, + B, . (4)

where

pT = [a1,...,ap]

(5)

is the 1 x f# unknown parameter vector.

B = cardl; (6)

We denote the 3 x 1 data vector

Zy (7)

Data arrangement in (7) corresponds to the arrangement of
parameters in (5).

Yiei:Vie )" .

Assuming normality of the white noise component E;, condi-
tional independence between pixels and an a priori probability
density for the unknown model parameters chosen in the form
(this normal form of a priori probability results in analytically
manageable form of a posteriori probability density)

p(P, Q7 YD) = (2m) 5 o

exp{k%mm( )Tvo( )}} (®)

where Vo is a positive definite (8+41)*(3+1) matrix and

-1
P

-1
P

(9)

810

we have shown [Haindl, 1992] that the conditional mean value
is:

Ye=PL,Z; .
The following notation is used in (8) and (10} :

(10)

Pt—l = sztl_l)‘/zy(t—l) ] (11)

Vici=Vici + Vo,

v:(

(12)

?’y(t—l) ‘?2(:4)

13
sz(t—l) I/z(t—l) ( )

)

t—1

Vyeny = Y _ %Y, (14)
k=1
t—1

Vey(i—1) = Z Y, (15)
k=1
t—1

Vit—1) = ZZkaT . (16)
k=1

It is easy to check [Haindl, 1992] also the validity of recursive

ar).

V—l

z(t—1

Zu(Ye - Pl 20"

Po=Py+(1+2]

-1

Vz(t—l)

207
(17)

To evaluate predictor (10) we need to compute the parameter
estimator (11) or (17}, but we do not know the past necessary
data Y;, because they are those to be reconstructed. On
the other hand the data from Z: in (10) are known: we
can select a contextual support of the model in such a way
to exclude unknown data. This problem is solved using the
approximation based on spatial correlation between close lines

V., =Pl 7, , (18)

where P;_; is the corresponding parameter estimator (11),
(17) for the nearest known line (including known contextual
neighbours (7)) to our reconstructed one in the spectral band
d . Note the different Z (7) in (18) and (15), (16), (17).
This approximation assumes similar directional correlations on
both lines, but not necessarily a mutual correlation of these
lines themselves.

3 OPTIMAL MODEL SELECTION

Let us assume two regression models (4) My and M» with
the same number of unknown parameters (81 = B> = 3)
and mutually symmetrical neighbour index shift sets I, ¢, I, ;
with the missing line being their symmetry axis. According
to the Bayesian theory, the optimal decision rule for mini-
mizing the average probability of decision error chooses the
maximum a posteriori probability model, i.e. a model whose
conditional probability given the past data is the highest one.
The presented algorithm can be therefore completed as in

(19):
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it p(Mi|YC=D) > p(M, YY)
otherwise

¥ = Plt 121t
Pzz 1Z2t

(19)
where Z;; are data vectors corresponding to I; ;. Following
the Bayesian framework used in our paper and choosing uni-
form a priori model in the absence of contrary information,
p(M; YDy ~ p(YE=DIM;), the simultaneous conditional
probability density can be evaluated from

p(YEV M) =

//p(Y(t_1)|P,Q_1)p(P,Q‘1|M¢)deQ_1 . (20)

Under the already assumed conditional pixel independence,
the analytical solution has the form

_ 1 2= n-p2
p(jLLIY(t 1)) =k |Vz‘,z(t—1)‘ 2 Ai,t—l 2 ) (21)

where k is a common constant. To evaluate p(M,; |y,
we have to use a similar approximation (18) as for the pre-
dictor (10). All statistics related to a model A7 (15), (16),
(17), (21) are computed from data on one side of the recon-
structed line while symmetrical statistics of the model M,
are computed from the opposite side.

The solution of (21) uses the following notations:
Y= =7(0)+t-1, (22)

Ave1 = Vy(e1) — ‘/;j;(t~1)v;zlrl—l)V;9(t—1) : (23)

The determinant |V,)| as well as \; can be evaluated recur-
sively see [Haindl, 1992]:

Vel = Vaeen)| (1 + ZEVE_y 20) (24)

At = Ae—1 + (Y, — PL 1Zt)
(Ve = PLiZ)"(1+ 2, Veen 20 (25)

In the case when some data necessary for the approximation
are missing the corresponding model probability is set to zero

p(MY ) =0 . (26)

If the reconstructed line is located in a boundary image area
then the reconstruction algorithm uses only one model (one
of the model probabilities is permanently zero).

4 MULTI-SPECTRAL LINE REGRESSION MODEL

Let as assume that all spectral components of the multi-
spectral line are missing. Such a multi-spectral line can be
modelled using a multi-dimensional regression model:

Yi= YAV, + E (27)
€1y
where = (m,n);
pixel value, A;
matrices, E;

Yiis v x 1 reconstructed multi-spectral
are unknown v x v model parameters
is the white noise vector.

Parameter vector PT (5) become now the v x fv matrix:

PT =[A1,..., Az (28)
and
B* = vcardl, = vf (29)

Zy (7)is the 8* data vector, Vi become a positive definite
(B"+v) x (B +v) matrix and ~¥(0) > §* —2 . Equations
(7)-(26) remain unchanged and can be used for the multi-
dimensional prediction and optimal multi-dimensional model
selection (19),(21) as well.

If Ai = diaglai,i,...,au:] Vi then the multi-dimensional
model reconstruction is identical with separately applied
single-dimensional model reconstruction G on every spectral
line component.

5 DIRECTIONAL FORGETTING

The reconstruction model in sections 2 and 3 was devel-
oped under the assumption that model parameters are strictly
location-invariant. This assumption is not realistic for most
real image reconstruction problems. The Bayesian solution of
the case of location-variant parameters is given by equation

p(Pt-{'l’Qt‘—:llY(t))://p(Pt-HyQ;:11Ptynt_lyy(t))

p(P, Q7 Y )a P . (30)

Unfortunately the required conditional distribution for this re-
cursion p(Pi41,§ ,_HIPt,Q“ YV is seldom known. Usual
solution of this problem is the constant exponential forget-
ting. It increases the uncertainty of the old parameter esti-
mate by a constant factor equal for all data. This results in
modification of equations (17),(24),(25) see [Haindl, 1996]
for details.

The exponential forgetting permanently loses old informa-
tion even if there is lack of a new one (parameters re-
main unchanged in some directions). Some ideas to over-
come this insufficiency were suggested in [Hagglund, 1983],
[Kuthavy, 1993]. We propose another solution based on di-
rectional forgetting coefficients to control individually every
data item [V.—; : i € I,]T forgetting depending on the
corresponding directional derivation change, i.e.

§Y;
_ min{] ], |22

© max{] &%), 1““ Zoap

If there is no change in the direction i then a; =1 (no
data forgetting), otherwise «; < 1 and the increase of
old information uncertainty is proportional to the directional
change of the derivation.

(31)

Let us denote the matrix of directional forgetting parameters

(¢ 5] e 0
o 0 .
a:<09 ozz>: - ' (32)
0 cee gLy
where
ay = diaglon, ..., 0]
and

o = diaglougr, ..., dugpr] .
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The model equations (17),(24),(25) become (33)-(35), re-
spectively.

Vi

Ve Ze(Ye — oy PL 20)T)

Pt ZQ;I[Pt._l(Xy-‘l*(l—{-thT )Zt)-—l

(33)

v+ 8%
Vol = (Y @ Waeeen |1+ ZIVL 2 (34)
J=v

At = a'y/\L_uvy + (}ft —_ ayf’:z:_lz’g)

(Yt - a@/Pt{IZL)T(l + thVz?tl—l)ZNt)’l (35)

Zy=al7, (36)

The filtering matrices ay, o, are diagonal so the increase of
computational complexity for the algorithm | is very moder-
ate.

6 NUMERICAL REALIZATION

The predictors in (19) can be evaluated using updating of
matrices V; . (12) and their following inversion. Another
possibility is the direct updating of B, (17), (33). To ensure
the numerical stability of the solution, it is advantageous to
calculate P, (17), (33) using a square-root filter, which
guarantees the positivity of matrix (12). The filter updates

directly the Cholesky square root of matrices V;tl .

Alternatively it is possible to use the UDU filter (a factoriza-
tion into two triangular and one diagonal matrices) for this
purpose. Note that the same square-root filters can be used
also for the updating of statistics of the directional forgetting
algorithm version. They only difference is in input filter val-
ues. Initialization of recursive (17), (24) and (25) must keep
the condition of positive definiteness of matrices V;o (8).
We implemented in our algorithm the uniform a priori start :

Vip=1. (37)

This solution not only conforms with the initial lack of in-
formation at the start of algorithm, but also simplifies the
calculation of the integral (20). Another possibility could be
for example a local condition start, which ensures a quicker
adaptation .

7 RESULTS

In this section we present simulation results of the pro-
posed reconstruction method and compare them with meth-
ods briefly surveyed in the introductory section. The per-
formance of the methods is compared on artificially created
bad lines (removed from the unspoiled parts of the images
so that the original data are known) using the criterion of
mean absolute difference between original and replaced pixel

values
v n
1 3
MAD = — T
ny ZZD"(J) Yinl (38)
J=1 =1
where v =1 for the mono-spectral model.
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monospectral multispectral
method | radar { SPOT | TM SPOT

MAD | MAD | MAD | MAD
A 701 2.8 24 1.25
B 412 1.3 20 0.7
C 394 1.8 19 0.9
D - - 23 2.6
E - - 21 1.1
F - - 19 1.5
G 135 1.23 16 0.7
| 132 1.1 14 0.5
I 130 0.72 10.1 0.34

Table 1: Single spectral band reconstruction.

Pixels corresponding to the I, ; are denoted * and the
reconstructed pixel o , respectively.

The first example is the defective radiospectrograph image
shown in Fig.1 from the Ondfejov Observatory 1000 - 2000
MHz radiospectrograph observation of the solar radio emis-
sion. The frequency band is divided into 256 channels (the
frequency resolution of about 4 MHz) and the grey level range
of pixels is 0-2800.

The optimal reconstruction models M; for the radiospectro-
graph were found to be:

M, M,

*

The second tested image Fig.2 was the agricultural type of
the Thematic Mapper seven spectral band sub-scene from
North Moravia. The failed line was located in the TM1 band
and the selected models are:

*

M, Mo

*
*

o]

The last two examples are SPOT multi-spectral image Fig.3
(agricultural scene from Moravia, failed fine located in the
green visible band)

*

My M

0 x * * % 0 *

and SPOT panchromatic image (agricultural scene from
vicinity of La Rochelle, both models are  * * o % =«

)

Table 1 contains monospectral line reconstruction resuits.
Method I (regression method with the directional forgetting)
demonstrates improvement in comparison with the regres-
sion method using a constant exponential " forgetting factor”
a = 0.99. These results show the superiority of our method
over the classical ones. The last table row demonstrates iso-
late pixels reconstruction. In this case there is no need for
approximation, because the predictor is used with complete
knowledge of all past data.

The radar example demonstrates properly found better es-
timation data side (approximation line for model parame-
ters estimation) in the case of one superior side, on the
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multispectral
method ™ SPOT

MAD | MAD
A 53 2.75
B 49 1.5
C 48 1.9
G 37 0.9
H 33 0.7
H 26 0.4

Table 2: Multispectral line reconstruction.

remaining examples the optimal side is oscillating so single
model method cannot reach performance of the double-model
method G even if repeated on both corresponding sides.

Table 2 shows multi-spectral line reconstruction results. The
regression model is again superior over the classical methods
applied separately on every missing spectral component line.
The multi-dimensional model has #* times more parameters
than the single-dimensional model and so it is more sensitive
to overparametrization resulting in degraded model perfor-
mance. Equation (20) is again used for the optimal model
structure selection, but in this case 7 # 05 so ki # ke
in (21).

8 CONCLUSION

The results of our test are encouraging. The proposed
methods were always the best ones in all our experiments.
The advantage of the regression-type method increases with
an increasing number of correlated spectral bands but even
on monospectral images (the radiospectrograph and SPOT
panchromatic examples) it is also the best one.

Applying the presented reconstruction method in the radio-
spectrograph image reconstruction problem, we obtained im-
ages without missing lines or pixels. These reconstructed
radiospectrograms were successfully used for the evaluation
of the observation of fast drift bursts during the solar activ-
ity. While the former practice was to discard such unusable
radiospectrograms with the unfortunate consequence of dis-
ruption of observation series.

We have not seen any other scheme for correcting image
defects ( off colour stripe, colour gaps, horseshoe effect ) ap-
plying the regression method. The advantage of the present
method | over our previously published regression method
G [Haindl, 1992] with constant exponential forgetting lies
in more precise parameter estimation and consequently the
model prediction - reconstruction quality improvement.

Our method can also be used if more than one of the
monospectral line components is missing. In this case the
reconstruction is done with the multi-dimensional model (H)
with dimensionality v equal to the number of missing spec-

tral line components. Alternatively, the single-dimensional
mode! can be 2

ad renecatedly to all miscsing monosnectral
ei cah be a !

pplied repeatedly to all missing monospectral
lines. Single-dimensional model results are worse than the
multi-dimensional model ones but the model structure opti-
mization is easier. It is also possible to combine the multi-

dimensional model with the directional forgetting concept.

The algorithm can be used to remove scratches as well if it
is applied sequentially on linear parts of a scratch.
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Finally if the method is used for isolated image pixels recon-
struction then the predictor and similarly the model probabil-
ity expression do not need any data approximation and the
regression method performs better than for line reconstruc-
tion and much better than any of the classical methods.

The proposed method is fully adaptive, numerically robust
and still with moderate computation complexity so it can be
used in an on-line image acquisition system.
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Fig.3 The SPOT multispectral image
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