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ABSTRACT:

A knowledge based approach for automatic generation of 3D —landscape models from aerial images is presented. The use of models for
visualization tasks results in two requirements: efficient representation and high realism. Efficient representation of 3D —geometry is
achieved by polygon meshes. Realism requires that the models meet the expectations of a human observer, who knows e.g. that roads are
planar and forest edges possess a height step. The presented knowledge based modeler AIDA employs prior knowledge about the appear-
ance of the objects in the scene to derive object specific constraints for surface reconstruction and to complete partially occluded objects.
This requires an image interpretation to assign a semantic to the scene objects. The knowledge is represented explicitly by semantic nets
and rules.

1. INTRODUCTION This yields often models that do not meet the expectations of
a human observer, who knows that the edges of forests exhibit
a height step and roads run continuously. Hence, to improve
the realism of the model the presented system uses prior
knowledge about the landscape for 3D — reconstruction. To
exploit the prototype knowledge about the object classes like
roads, forests and grassland an image interpretation is re-
quired that assigns a meaning to the image regions. Consecu-
tively the object semantic is used to control the 3D —recon-
struction.

For visualization of synthetic scenes 3D-—models are
required from which new simulated views can be computed.
Applications such as flight and driving simulators, movie and
TV production have a high demand for realistic models. Es-
pecially Landscape visualization is becoming an important
tool for earth scientists, environmental researchers and civil
engineers. Quantity, precision and the kind of models ask for
methods that automate the model generation.

The common approach for digital terrain modelling uses ste-
reo matching techniques to recover the height information
from aerial images [Ackermann, 1991]. For efficient visual-
ization the height map is subsampled and approximated by a
polygon mesh in space. The geometric and photometric fine
structure is modelled by projecting the aerial images onto the
polygon surfaces.

To ease the adaptation of the knowledge base for new model-
ling tasks, the knowledge base has to be formulated explicitly.
In general knowledge can be represented by formal logic,
fuzzy logic, frames (Clement, 1993; Foresti , 1993), semantic
nets (Niemann, 1990), production systems, rule based sys-
tems (Matsuyama, 1990; Mc Keown, 1985) and neural nets

However, the reconstruction of a 3D—model from its 2D— (Shapiro, 1992). For description of structural relations se-
projections is an inverse and underconstrained problem, mantic nets are suited. Hence here, inspired by the work of
which causes model errors: Niemann et. al. [1990], semantic nets are employed for

e The modelisincomplete due to occlusions. This applies knowledge representation

often to edges of forests and roads passing through fo-

rests. The following chapter gives an overview of the system archi-
e The sensor resolution limits the level of detail for recon- tecture. The third chapter presents the used methods for ex-

struction. Especially missing height steps in connection plicit knowledge representation. In the consecutive chapter

with shadows appear erroneous. the knowledge base is used for image interpretation. Chapter
» The mesh approximation of the model geometry does five describes how the symbolic scene description is used to

not correspond with the object boundaries resulting in improve the object reconstruction. The paper concludes with

faulty breaklines. a presentation of the results.
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Fig. 1: Architecture of knowledge based modelling system ATDA

2. SYSTEM OVERVIEW

Figure 1 shows the architecture of the knowledge based mod-
eler AIDA. The goal of the modeler is a realistic reconstruc-
tion of the observed scene. Input to the modelling are over-
lapping aerial images and prior knowledge about the objects
present in the scene. Modelling consists of three main mod-
ules.

Image processing: The overlapping aerial images are recti-
fied in a way that the epipolar line coincides with the image
scanline to ease search for homologous points. Consecutively
a height map is computed from the stereoscopic image pair.
Further line shaped features and regions are segmented in
the image.

Symbolic processing: Interpretation uses knowledge about
the expected objects to group the features and assign a scene
specific semantic to them resulting in a symbolic scene de-
scription.

Vector processing: From object semantic geometric
constraints are derived to restrict the free parameters of sur-
face reconstruction. The objects are approximated by a sur-
face mesh with overlaid photo texture.

3. KNOWLEDGE BASE
3.1 Types of Knowledge

The a priori knowledge for 3D reconstruction of landscapes
from aerial images includes knowledge about

e objects,

e context and task,
e sensors, and

e strategies.

Objects possess attributes and relations to other objects. As
attributes geometry (e.g. shape, size, etc.), material (e.g. con-
crete, sand, etc.), and function can be distinguished.

Symbolic Processing:

INTERPRETATION

| Vector Processing:
| RECONSTRUCTION |

Image Processing:

| SEGMENTATION -
HEIGHT ESTIMATION |

OUPUT

Symbolic Scene
Description
Landscape—1

Forest—1 Road-1

- R
3D —Surface Model

Objects appear only in special contexts, i.e. forest edges in the
context of forests. The task specializes the modelling de-
mands. Both, context and task, reduce the problem domain.

Sensors transform objects into another, here pictorial repre-
sentation, using geometric and radiometric transform char-
acteristics. Image processing operators can be regarded as
sensors that transform images to images. Their representa-
tion is not within the scope of this paper. For a representation
of image processing knowledge the reader is referred to the
system CONNY (Liedtke, 1992).

Strategies state how and in which sequence scene analysis has
to proceed. E.g. eminent objects have to be searched for first.

3.2 Knowledge Representation -

3.2.1 Objects: Object representation employs frames which
contain a collection of attributes, relations, and methods (fig.
2). The relation slot establishes the connection to other ob-
jects. The object properties are stored as attribute values.
Further the object has methods, i.e. functions, at its disposal
to compute the attribute values. There may also be a method
available to segment the object in the image data.

Main Road

Relations:
is—a: Road
part—of—inverse: Road Segment

Kttributes:
Width[m]: 10...20
Material: Asphalt

Methods:
Segmentation: RoadExtractionFunction

Fig. 2: Example for a frame
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3.2.2 Object Relations: Knowledge about structures can be
represented efficiently by semantic nets. Semantic nets con-
sist of nodes and edges in—between. Here the nodes of the se-
mantic net represent the scene objects or their sensor specific
realization respectively. The nodes are implemented as
frames. The edges or links of the semantic net form the rela-
tions between the objects. Different relations describe the de-
composition of an object into its parts (part—of), the special-
ization (is—a), and concrete realizations in the image data
(con—of). The relations are exploited for object recognition.

The part—of relation states that the object is composed of
parts. Thus object search can be reduced to a more simple
task, the detection of its components. Objects linked via
cdpart—of appear only in a certain context. Thus these ob-
jects are only searched for when the context, i.e. superior ob-
ject, has been detected. Finally the optpart—of relation
points out objects that might be present.

Objects can often be detected based on their geometric or
photometric appearance, that can directly be segmented in
the image data. This transformation of an abstract concept to
aconcrete realization is represented by the concrete—of link.

The is—a relation describes a specialization of an object. The
specialization inherits automatically all relations and attrib-
utes of its more general concept.

The instance —of relation is used durung interpretation and
connects instances with their prototypes.

3.2.3 Sensors: Sensors like cameras project the 3D objects onto a
two dimensional target. They are sensitive to certain wave-
lengths. The different radiometric and surface properties of the
materials are mirrored by corresponding colours and textures in
the sensor image. E.g. the asphalt of roads appears bright in the
visual spectrum and dark in SAR (synthetic aperture radar)
images. In the semantic net the sensor transformation is modelled
by the con—of relation (fig. 3). Propagate methods restrain the ex-
pected range of attributes top down. Compute methods obtain the
measured value bottom-up from the sensor. To model uncertain-
ties the attributes are described by minimum and maximum val-
ues.

[3D= Geometry
Layer

: vAsphaIt'ED,-v-Stripe !
| L Width [m]; b

Range:5..10  [—~_ 1|
[ Value: 6.8 -\\\ J

-

\ f Compu’té

Fig. 3: Representation of sensor transform characteristics
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3.2.4 Strategy: Strategy knowledge is represented by rules.
These rules exploit the knowledge represented in the seman-
tic net to control interpretation. For the relations exist ac-
cording rules which propagate new information over the links
of the semantic net. A rule is composed of a condition and an
action part. The condition checks for a new interpretation
state of neighboured nodes in the semantic net. If a situation
formulated in the condition is detected, the action is executed
to adapt the interpretation state of the focussed node accord-
ingly. The knowledge, that an object is detected when all its
partsn; E9P are detected, i.e. are complete instances, is repre-
sented by following rule:

CONDITION: If state (node n;) = complete instance
Vn; €9 P ={n;| n; = part—of(ng)}

ACTION: Then state (node ng) = complete instance.

Different strategies are represented by various sets of rules.

3.3 Knowledge for Landscape Modelling

Figure 4 shows a simplified semantic net for landscape mod-
elling. The knowledge base distinguishes three conceptual
layers. The top layer, called scene layer, describes the scene
specific semantic. The middle layer represents the objects
based on their 3D —geometry and material. The bottom layer
is sensor related and describes the sensor specific photomet-
ricand geometric appearance of the objects. If more than one
sensor is present the sensor layer is multiplied accordingly.
Each layer uses a common appropriate vocabulary. E.g. the
attribute size is measured in meter at the 3D —geometry layer
and in pixel at the sensor layer (fig. 3).

In the context of landscape modelling roads, forests, and
grassland shall be distinguished. The forest is composed of a
forest roof and a forest edge which have to be modelled sepa-
rately. For recognition only the forest roof has to be visible in
the image data. Roads appear as homogenous stripes in the
aerial images. The initial concepts "textured 2D —region’ and
’homogenous 2D —stripe’ posses methods for segmentation
of textured regions and homogenous stripes respectively.

4. INTERPRETATION
4.1 Control

The aim of the interpretation is to match the objects of the
analyzed scene with the corresponding nodes of the semantic
prototype net. Image interpretation exploits the knowledge
base to instantiate hypotheses of objects expected in the
scene. According to the state of the object recognition three
different types of instances are distinguished: hypotheses,
partial instances and complete instances. Hypotheses are not
yet verified in the sensor data. Partial instances contain all
concretes and context independent parts. Complete
instances possess all concretes and obligatory parts and con-
text dependent parts.
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Fig. 4: Simplified semantic net representing prototypes of landscape objects

Interpretation proceeds primarily top down. Hypotheses are
propagated from the scene layer to the sensor layer to test
them in the sensor data. The propagated hypothesis at the
sensor layer calls methods for segmentation of textured re-
gions or homogenous stripes respectively. The result of the
verification is returned to the superior concept which consec-
utively generates new hypotheses.

If the verification returns competing instances each possible
interpretation is analyzed separately. For this each possible
interpretation is documented by a search node which con-
tains all concepts with their current interpretation state. Each
time competing interpretations occur the search node splits
into child search nodes. The leaves of the resulting search
tree represent the currently competing interpretations. To fo-
cus interpretation on promising search nodes they are judged
and ranked. The judgement computes the compatibility be-
tween expected concept properties and found concept prop-
erties by comparing the range and value slots of attributes. An
A’Algorithm selects the best judged interpretation for fur-
ther investigation.

4.2 Segmentation

The initial concepts in the sensor layer are instantiated by
segmentation of images. Presently two different initial con-
cepts with segmentation methods are available: the concept
‘textured 2D —region’ and "homogenous 2D —stripe’.
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4.2.1 Segmentation of Homogenous Stripes: The extraction
of homogenous stripes is based on gradient filters for edge
detection with consecutive conditional local ranking to en-
hance weak contours. Thresholding yields a binary image in
which candidates for homogenous stripes show up as long
parallel lines. Figure 5a shows the segmentation result.

4.2.2 Segmentation of Textured Regions: Forests and grassland

of natural terrain are characterized by different textures. The tex-

ture of a class k, e.g. forest, is assumed as generated by a station-

ary ergodic process. The prerequisite of statistical independence

allows to compute the probability P;(ylk) of the texture process

from the luminance histogram of all intensities y in the learn re-

gion.

Generally the probability for occurrence of a luminance value is

not independent from its neighbours. Hence a texture model of

second order statistics is used. Local mutual dependencies can be

modelled by Gibbs random fields. Couples of neighbored pixels,

named cliques, are inspected. Three measures of co—occurrence

are computed for each clique:

— the probability P»(ylk) of common class membership,

— the probability P3(ylk) of a luminance difference within a
region,

— the probability P4(ylk) of a luminance difference between
different regions.

Gibbs random fields describe the joint probability

=2 Velk)
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Fig. 5: Aerial image with overlaid segmentation results for a) roads and b) borders between forests and grassland. ¢) Height map
with elevated forests, showing the 3D —surface mesh of selected objects from a) and b) as overlay.

Segmentation is solved iteratively using maximum—a—post-
eriori estimation (Gimmelfarb, 1991; Tonjes, 1994).

Finally the contours are smoothed using a contour model
based on Gibbs random fields which favours smooth contours
(Mester, 1988). Figure 5b shows the segmentation results for
two classes of textures.

5. RECONSTRUCTION
5.1 Data driven Reconstruction

The initial reconstruction is data driven and employs
photogrammetric stereo vision. The correspondence analysis
uses normalized cross correlation as cost function for match-
ing of homologous points to determine the height dependent
parallax. A Smoothness constraint is exploited by subse-
quently interpolating continuous regions. Finally the parallax
map is transformed to a height map using binocular camera
geometry (Koch, 1995).

5.2 Model driven Reconstruction

The model driven reconstruction exploits prior knowledge
about object geometry to restrict the parameters for recor-
struction. While data driven reconstruction uses uses only a
few and general geometric constraints, interpretation offers
the facility to exploit object specific geometric properties. In-
terpretations yields the segmentation of aerial images in vari-
ous regions, as forests, grassland, and roads. The location of
these regions is stored in image masks. Scene reconstruction
uses these image masks to apply object specific constraints to
the height map obtained by stereoscopic correspondence
analysis. The prior knowledge forces a height step between
forests and grassland or roads. Further the object semantic
controls mesh generation. Roads are approximated by a sepa-
rate mesh to ensure a continuous course. At the edges of fo-
rests a vertical mesh for the height step is inserted (fig. 5c).

The semantics attached to the model parts allow an object
specific post processing. This offers the facility to refine the
objects artificially by adding details which are invisible to the
sensor from computer graphic libraries. E.g. for close views
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synthetic trees with fine transparent leaf structure are placed
in front of forest edges (fig. 6).

Fig. 6: Close up view of forest edge

6. RESULTS

Figure 7 shows the synthesized view of a landscape model re-
constructed from a pair of overlapping aerial images. The
model generation considered object semantics: roads are
represented by a separate surface mesh and exhibit a continu-
ous course. At the edges of forests a height step was inserted.
The model of the Sieber Valley in the Harz (2km x 2km) con-
sists of approximately 13.000 Polygons and a texture map of
2048x2048 pixel. For interactive exploration of the scene in
real time the model can be visualized on a graphic computer.
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Fig. 7: Synthesized view of landscape model with continuous roads and elevated forests

7. CONCLUSION

The presented system exploits prior knowledge about the
scene to improve the realism of the model. The explicit
knowledge representation with semantic nets and rules eases
the adaptation of the knowledge base to new tasks. The ad-
vantage of the system is that the knowledge can constrain the
model parameters and select object specific surface primi-
tives. Occluded object parts and lost details due to image res-
olution are added to obtain a consistent model. Modelling
takes care of what is important for a realistic impression of a
human observer, e.g. planar roads and height steps at forest
edges.

Further work will focus on the development of the control for
interpretation and exploit multiple sensors and especially
prior interpretations of the scene represented in the german
topographic and cartographic information system ATKIS.
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