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ABSTRACT

In this paper models for extracting lines and edges, i.e. linear features, from digital images are presented. The models are
based on a common mathematical approach. In this connection importance is attached to the automation of the recognition
of lines and edges. A threshold that is required by the models is estimated by a robust method, i.e. a method that is not
sensitive to outliers and that requires no assumption about the statistical distribution of the data. Nodes, i.e. junctions or
crossings, and ends of the linear features are recognized and analysed to improve the results there and to find continuations
of objects. If we extract both, lines and edges, we are able to find pairs of edges that bound one line object. This yields a
complete description of a line and a segmentation of the lines in the image.

An example using satellite image data of SPOT shows that the spectral signatures are suitable for an object-related
classification, and that it is possible to distinguish different objects, e.g. rivers and autobahns, and to extract them by
knowledge-based techniques.

KURZFASSUNG

In diesem Beitrag werden Modelle fiir die Extraktion von Kanten und Linien, also finienhafter Merkmale, aus digitalen Bildern
vorgestellt, die auf einem gemeinsamen mathematischen Ansatz beruhen. Dabei steht die Automatisierung der Erkennung
von Kanten und Linien im Vordergrund. So wird ein Schwellwert, den die Modelle bendtigen, mit Hilfe eines robusten,
d.h. gegeniiber AusreiBern unempfindlichen Verfahrens, anhand der Bilddaten geschatzt, ohne daB irgendwelche Annahmen
iber die statistische Verteilung der Daten erforderlich sind. Knoten, also Verzweigungen oder Kreuzungen, und Enden der
linienhaften Merkmale werden erkannt und analysiert, um an diesen Stellen die Ergebnisse zu verbessern und Fortsetzungen
von Objekten zu erkennen. Werden sowoh! Kanten als auch Linien extrahiert, ist es moglich, Kantenpaare zuzuordnen, die ein
Linienobjekt begrenzen, was zur vollstindigen Beschreibung einer Linie und zu einer Segmentierung der Linien im Bild fiihrt.
Ein Beispiel mit Satellitenbilddaten von SPOT zeigt, daB spektrale Signaturen fiir eine objektbezogene Klassifizierung geeignet
sind und so Objektarten, z.B. Fliisse und Autobahnen, unterschieden und wissensbasiert extrahiert werden kdnnen.

1. INTRODUCTION the operator when selecting a starting point. Other methods
for finding lines in digital images are related to digital filter-
1.1 Background ing because they scan the whole image deciding for each pixel
Our approach for extracting linear features from digital im-  whether it is a line pixel or not (Busch 1994). A combination
ages is based on the conceptual distinction of lines and edges. ~ Of both approaches for line detection by using line following
These basic terms are best explained by an example. For for improving the results of the second method is promising.
instance, we realize objects like roads and rivers in satellite
imagery as lines, which are bounded by two edges. Since lines
are formed by two edges, they are more complex objects than
edges. To both, lines and edges, we refer as linear features
or linear objects.

The goal of this work is the derivation of a common frame-
work for line and edge extraction. A common mode! for both
linear features is advantageous since it leads to consistent re-
sults and allows linking of lines and edges that correspond to
one object. It is possible to process some tasks, e.g. threshold
Owing to their different complexity line and edge detection  estimation, for both features in the same way.

have developed separately. A large variety of edge detectors,

mostly based on linear filtering techniques, is known from If we stick to the subdivision of computer vision in three levels,
image processing. They range from classical methods like namely image processing (low-level vision), pattern recogni-
Roberts, Sobel, or Prewitt gradient filters (see e.g. Haralick  tion (mid-level vision), and image understanding (high-level
and Shapiro 1992/93, vol.1, p.337) to sophisticated meth-  vision), the main part of this paper belongs to the mid-level
ods like Canny (1986) and Deriche (1990) edge detectors. of computer vision. The approach is suitable for delivering
However, line detection is usually done by line following (e.g. salient objects, eliminating spurious details, and for comput-
Griin 1994). The disadvantage of these techniques is that ing useful attributes of the objects. For all features and at-
they are often semi-automatic since a starting point for the tributes statistical measures of quality or uncertainty can be
algorithm is given by an operator. On the other hand it is  derived from the image data. They are important for a valu-
favourable that interpretation of an object is directly done by able and complete data flow to the next level of computer
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vision, i.e. image understanding. A major aspect of this pa-
per is the automation of linear feature extraction. We attach
importance to the fact that control parameters of the algo-
rithm are to a great extent independent of the image data,
i.e. they are standardized like, e.g. a significance level.

1.2 Underlying models

We use generic models for lines and edges which have a com-
mon mathematical background. The edge model is a third
order polynomial function that is fitted to the grey levels in
an image window. It is known as facet model (Haralick et
al. 1983, Haralick 1984). The polynomial represents the grey
levels as a function of the row and column coordinates in an
image window and takes the form

g(x,y) = ko
+ kiz+koy
+  ks2® + kazy + ksy®
+ ke’ + kea’y 4+ ksxy® + koy® . (1)

The coefficients k; are determined by a least squares fit of the
polynomial in the image window. From this we have derived
our line model which is a second order polynomial function
(Busch 1993, 1994)

9(z,y) = ko
+ kiz+ kay
+  kax® + kazy + ksy® . (2)

The polynomial model offers great flexibility because it can
easily be used with arbitrary window sizes, and because the
grey levels in the image window can be weighted according
to different models, e.g. as in Box or Gaussian filters. Simple
classical gradient filters, like Sobel or Prewitt, are included as
special cases. Additionally, the redundancy of the polynomials
least squares fitting in an image window allows control and
self-diagnosis of the algorithm by means of statistical testing.

The decision whether a pixel is an-edge pixel or a line pixel
is made from the first and second order derivatives of the
polynomial functions and their principal directions. For ex-
tracting edges we calculate the intersecting polynomial of (1)
which falls in the direction of the gradient vector. The centre
pixel of the image window is classified as an edge pixel if the
maximal absolute value of the polynomial’s first derivative
is located inside the pixel and differs significantly from zero.
Line pixels are recognized using the intersecting parabola of
(2) which falls in the direction of maximal curvature. A pixel
is a line pixel if there is a zero crossing of the parabola’s
first derivative, i.e. if the extremum of the parabola falls in-
side the pixel and if the parabola’s curvature is sufficiently
large. By this procedure we obtain line and edge positions
with sub-pixel resolution.

2. DISCRIMINATING NOISE AND REAL DETAILS

The models introduced in Section 1.2 require a decision about
the significance of the absolute value of the polynomial’s first
or second derivative since we want to know whether it is
different from zero in order to discriminate real details from
effects that are due to noise. We can do this by hypothesis
testing which is done individually for every image window, by
a single threshold that is applied to the whole image, or by a
combination of both methods.

2.1 Hypothesis testing

A classical method for checking significance is hypothesis
testing. Since it is based on the assumption of normally
distributed observations it may lead to unsatisfactory results
when applied to image data where this condition is often vi-
olated (Busch 1994). Whenever hypothesis testing is applied
to images it must be checked whether it is sufficient to as-
sume that the data are normally — or whatever else might
be prerequisite — distributed.

2.2 Robust estimation

We want to estimate a threshold that allows to separate arte-
facts and spurious details in the image from salient lines and
edges. Thus, what we need is related to a noise estimate,
but it is different from thresholding techniques for binarizing
images (Sahoo et al. 1988).

The basic idea of the method is to produce an image with
a lot of noisy linear features and to estimate the threshold
from the noise then. In the first step we apply the method
of Section 1.2 using zero as threshold. Hence, the decision
about the line or edge attribute is made using only the loca-
tion of the extremum of the polynomial’s derivative ignoring
the derivative's amount. To estimate a threshold from the
mass of pseudo features produced by this, we start with the
consideration that linear features in digital images are formed
by long chains of pixels. Thus, single, i.e. isolated pixels
classified as lines or edges are due to noise mostly and are
suitable items for deriving a noise estimate. So we collect
the derivatives of all single edge or line pixels and take their
median as a robust estimate for the typical derivative of a
noisy linear feature. As we are using isolated feature pixels
our approach is different to the one of Venkatesh and Rosin
(1995) who consider edge continuity and edge curves to de-
termine a threshold. To eliminate most of the single pixels we
must use a threshold which is larger than the median, since
the median eliminates half of the noise. We see this from its
definition:
M
Median M : / p(cs) des = 0.5 (3)
— 00

Here c, denotes the parameter which is the basis of the deci-
sion. This is the maximal absolute value of the polynomial's
first derivative in case of edge pixels and the curvature of the
parabola in case of line pixels. The index s reminds of the

fact that the probability density function p represents single
linear feature pixels.

By generalizing (3) we find thresholds corresponding to con-
venient significance levels

PQO
Poo : / p(cs) des = 0.90

I
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Figure 1: Typical distribution of the gradient/curvature of
single linear feature pixels. It has been obtained by dividing
the range of the parameter into 100 intervals of equal width
and by counting the number of occurences in each interval.
Additionally, the median and the thresholds corresponding to
the significance levels 90%, 95%, and 99% are shown.

Figure 1 shows an example of the discrete distribution of the
derivative of single pixels that are classified as linear features.
Typically, some thousand singie pixels are found when apply-
ing the method to images of 1000 x 1000 pixels. So we have
a sample that is large enough to obtain a statistically well-
founded estimate for the threshoid. Generally, the thresholds
(4) range between the second and sixth multiple of the me-
dian. The advantage of this estimation is that we do not need
any assumption about the underlying distributions, neither for
the distribution of the observation, i.e. the grey values, nor
for the distribution of the isolated feature pixels. Because the
thresholds (4) were developed from the median (3) they have
properties in common with the median. Especially, the esti-
mated thresholds are not sensitive to a certain percentage of
outliers, i.e. they are robust. This estimation technique has
proven to be very powerful with a variety of digital images of
any resolution (satellite, aerial, close range, and microscopic
images) which have been tested by the author.

2.3 Less sensitive hypothesis testing

The methods presented in Sections 2.1 and 2.2 have different
properties. While hypothesis testing is based on a local de-
cision that is made individually for every image window, the
robust estimation leads to one global threshold for all pixels.
Tests with lots of different images have shown that hypoth-
esis testing tends to give some more details than the robust
estimate, but also more noise. The robust estimate delivers
all details that rise above the estimated noise level.

It is possible to combine both methods by using a threshold
that excludes small values from hypothesis testing and that
rejects them anyway. This may be interpreted as a less sen-
sitive hypothesis test (Koch 1985, Koch 1990, p.88). The
threshold must be distinctly smaller than those given in (4).
We recommend to use values smaller than the median. Al-
though the threshold can be measured as a fraction of the
median, it is an additional control parameter of the algorithm
that complicates automatic processing.
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3. FROM PIXELS TO OBJECTS

The results of the methods presented in Section 2 are given
as an iconic representation, i.e. they are images again. Ad-
ditionally, we have line or edge positions with sub-pixel reso-
lution. To improve the results further steps of processing are
necessary. In detail these are a skeletonization process and
the detection of end and node pixels (Schickler 1992, Busch
1994).

Since the extracted lines and edges are sometimes wider than
one pixel we thin them by a skeletonization process that leads
to linear features of a width of one pixel. We use a skele-
tonization method designed specially for linear features. It
is based on the line and edge model, makes use of their di-
rection and works carefully to preserve the topology of the
line or edge network. Behind this is the concept of evading
decisions that are made better at a later stage of computer
vision.

All pixels belonging to linear features are classified as ends,
nodes, i.e. sites where linear features join or cross, or simple
members of a line or an edge. A grouping process links line or
edge pixels to objects which connect node and/or end pixels.
Closed chains of pixels without any end or node pixel are
recognized, too. By this we have a vector representation of
the linear features.

3.1 Analysis of nodes and ends

We want to take a closer look at nodes and ends now since
they are known to be the crucial point of linear feature extrac-
tion. So the models of Section 1.2 may fail at nodes because
the structure there does not correspond to the line or edge
model. This leads to gaps in the linear features that have to
be closed. Besides these spurious gaps and ends we have real
ends of the linear features visible in the image which typically
occur if objects overlap each other. Thus, we have to analyse
nodes and ends to enhance the extraction process there.

When examining nodes and ends we are looking for end pix-
els and other nodes nearby. The prospect is to find items for
closing gaps and to unite linear features. The number and
the length of the converging linear features are helpful crite-
ria for measuring the significance and importance of a node.
Nodes are classified as crossings, i.e. four linear features are
meeting, and branches or junctions, i.e. three linear features
converge. The topology of the node and the direction of the
meeting of linear features allow to find features which are each
other’s continuation. If there is an even number of incoming
linear features, we have unique correspondence of opposite
features. Additional information comes from the direction
of the linear features. Sometimes there may be also pseudo-
nodes, i.e. nodes where two linear features meet. They occur
because the careful skeletonization algorithm avoids thinning
if the structure is ambiguous. We analyse the pseudonodes
to eliminate them by joining the incoming linear objects or
to classify them as corners which are recognized using the
direction of the linear features.

3.2 Combining lines and edges

If we extract both, lines and edges, we are able to find pairs
of edges that correspond to a line object, i.e. bound one
line. This is much easier than trying to find parallel edges
without knowing the line object. Besides the geometric ac-
curacy of the line position benefits from this, since — due
to the symmetric parabolic model (2) — the line position is
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Figure 2: Detail of a KWR 1000 scene showing two roads
with extracted lines and edges, 235 x 213 pixels, ground
resolution ~ 2m.

Figure 3: Resulting segmentation

affected by different grey levels on the left and right side of
the line. So we can use the edge positions instead which are
more exact. Criteria for evaluating correspondence are the
neighbourhood, the constancy of the line width, and the di-
rection of the linear features. After that we have a geometric
description of the line including its width. We use this for
the segmentation of the lines in an image, too. An example
based on data of the Russian KWR 1000 sensor is shown in
Figure 2 and Figure 3.

4. ROAD, RAILWAY, OR RIVER?

The method described so far is part of low and mid-level
computer vision since no knowledge about the real objects
depicted in the image has been incorporated. So it may be
used to find lines and edges in arbitrary digital images of any
resolution.

We want to apply the method to satellite images to extract
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objects that are relevant to cartography, e.g. roads and rivers.
Although we know that there are limits due to the spatial
resolution of operational sensors like SPOT and TM, so that
only major roads and autobahns can be detected (McKeown
1994), we think that our example is instructive and shows
the capability of the methods. Extracting lines from a SPOT
or TM satellite imagery results in lots of objects that are not
interpreted, i.e. all that we know about them is that they fit
to our line model of Section 1.2. Besides the objects we are
interested in, there is a large variety of other ones, like open
strips in a wood, long and narrow fields, or long buildings.

In our example we want to use two kinds of knowledge for dis-
criminating objects: knowledge about the width of the objects
and knowledge about their spectral characteristics. Since the
result of the line extraction depends on the size of the image
window used for the least squares fit of the polynomial (2),
we are able to select lines of different width. So it is not pos-
sible to detect lines of large width with a small window, while
a large window is not sensitive to narrow lines due to smooth-
ing. For using spectral characteristics we take advantage of
the fact that the extracted lines are skeletonized as mentioned
in Section 3. Hence, we have a representation of their middle
axis containing only few mixed pixels which constitute the
crucial point in multispectral classification. Therefore, the
detected lines are a good starting point for an object-related
multispectral classification. In our example the knowledge
comes from training areas that have been marked interac-
tively by an operator and that consist of detected line pixels
only. But it is possible to represent the knowlegde about the
spectral characteristics of roads and rivers in a knowledge
base. Additionally, unsupervised classifiers (e.g. Schulz and
Wende 1994) allow further improvement and automization.

The example is based on SPOT XS data (Figure 4). For
extracting the river Main that is flowing from the upper left
corner to the right side of the image we have applied the line
extraction technique described in Section 1.2 to band 1. We
have used a window size of 15 x 15 which is suitable for the
width of the river that varies from 6 to 11 pixels. The signif-
icance level for the robust estimation method of Section 2.2
has been set to 10%. Figure 5 shows the resuft. The small
part of the river Rhine in the lower left corner of the image
has not been detected because of if its width of more than
25 pixels. This demonstrates that the line model (2) allows
to dinstinguish lines of different width. For all pixels depicted
in Figure 5 we have gathered the spectral information from
the three bands so that multispectral classification has been
applied to these pixels only. The result of the classification
(Figure 7, bold line) illustrates that it has been possible to
select the river from the other linear features.

To find roads we have analysed the SPOT XS image (Fig-
ure 4) setting the window size and the significance level to
5 x 5 and 10%, respectively. The three bands have been
processed independently. Figure 6 combines the results by a
logical "OR" operator and shows all pixels that have been
recognized as line pixels in any of the three bands. This pro-
cedure is different to the one used for the river because the
width of the roads is close to the spatial resolution of the
SPOT XS sensor. Thus, we have needed information from
the three bands, whereas in case of the river it has been suf-
ficient to analyse one band. In Figure 7 we see the result of
the classification together with the extracted river. It demon-
strates that it has been possible to recognize the autobahns

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B3. Vienna 1996



Figure 4: Part of a SPOT XS scene, ground resolution 20m Figure 6: Lines extracted from the SPOT XS data (Fig. 4)
x 20m, 1200 x 1300 pixels, composite of the three bands. using a window size of 5 x 5 pixels.

Figure 5: Lines extracted from band 1 of the SPOT XS data Figure 7: Result of selecting water pixels from all line pixels

(Fig. 4) using a window size of 15 x 15 pixels. of Fig. 5 and road pixels from all line pixels of Fig. 6 by
multispectral classification. The result has been vectorized
using the sub-pixel positions of the lines and the methods
mentioned in Section 3. The bold line represents the river.
All other lines are roads.
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almost completely. Additionally, there are small fragments of
roads inside cities.

The use of multispectral images is not suitable for distinguish-
ing all kinds of lines in an image, e.g. it will be impossible to
recognize railways from SPOT or TM data in this way. It is
necessary to make use of the knowledge that we find in exist-
ing maps or Geographic Information Systems and to combine
it with the image using matching techniques.

5. CONCLUSIONS AND OQUTLOOK

The results of this paper show that the presented models
allow to automatically extract lines and edges from digital
images. The extraction of lines as well as edges leads to the
segmentation of the lines in the image. Even in cases where
the width of lines is close to the limit of the resolution of
the image, it was possible to find lines. Due to the spatial
resolution of the operational remote sensing sensors SPOT
and TM feature extraction from these images typically leads
to a lot of spurious details. We face this fact by two different
means. One is the robust estimation of a threshold that
enables us to select features rising above the noise level. The
other is the use of spectral characteristics of linear features
which showed that it is possible to distinguish roads and rivers
among a large variety of other lines, which is demonstrated
by the example.

Further work on the presented methods aims at incorporating
more knowledge. For instance, the use of knowledge about
autobahn junctions or knowledge about the radii of curves of
railways and roads is promising. Sophisticated line trackers
(Griin and Li 1994) will improve gap closing and make the
detection and analysis of nodes more robust. This enhance-
ment of the results especially at intersections or junctions is
important since they are the frame for matching the extracted
objects with the objects in an existing Geographic Information
System.

In this paper the methods have been applied to satellite im-
ages only. But it is possible to make use of them for road
extraction from aerial images (Li et al. 1992, Ruskoné et al.
1994a, 1994b), too. The link to those methods is an image
pyramid which starts at coarse resolution improving the re-
sults in subsequent steps by making use of the approximations
achieved earlier.
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