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ABSTRACT

This paper addresses the problem of matching features which have been recorded in two spatially overlapping images at
substantially different scales. This phenomenon may be associated with foreshortening, in which case the scale differences are
feature- and direction-dependent, or simply with the simultaneous processing of images of different scales, in which case the
scale variations are obviously bidirectional and global in nature. We approach this problem by employing principles of scale
space theory, which deals with the formalization and classification of signal contents and trends by examining the behavior of
signals in various resolutions. Coarse resolutions convey only the dominant trends of a signal (corresponding to low-
frequency information), while in finer resolutions information details (high-frequencies) are also included. When matching
features recorded in substantially different scales in digital imagery, we are actually attempting to establish correspondences
among different scale representations of the same object space scene. Typical matching techniques fail or perform poorly in
terms of accuracy in such cases, because they do not consider that beyond geometric, scale differences are also of radiometric
nature. The methodology presented in this paper proceeds by identifying scale differences among conjugate features,
identifying proper image pyramid levels at which matching should be performed, and only then precisely matching conjugate
features. The analysis of the matching results permits the transformation of matching uncertainties through scale space, and
the derivation of realistic accuracy estimates.

case is rather object-oriented and its occurrence is dependent
1. INTRODUCTION on specific image capturing and object shape combinations.
The latter is an issue which is expected to receive much
Matching, the task of identifying similar features in two or higher attention in the near future, as it is inherently
more spatially overlapping images, is a dominant research associated with three-line sensor imagery (e.g. MOMS)
issue in digital image analysis, as it is a fundamental which is becoming more widely available [Schneider &
operation, involved in practically all photogrammetric Hahn, 1992], while research also moves towards the fusion
applications. Despite the great advancements made in digital of aerial and satellite digital imagery for geoinformation
image matching, and the numerous algorithms and strategies extraction [Gruen et al.,, 1995], or the integration of digital
developed employing geometric and radiometric similarity imagery within geographic information systems [Agouris et
criteria to identify conjugate features, there still exist al., 1996], whereby digital imagery of various scales is
problematic cases, where matching fails to produce reliable combined during the performance of complex digital image
results. The lack of sufficient radiometric variations is a analysis processes.
typical example of such a case. These problems are, to a
certain extent, adversely affecting the role of digital image In this paper we examine the problems occurring when
matching for geoinformation generation, thus delaying the attempting to match conjugate features whose images differ

much anticipated full automation of the mapping process. in scale. The presented method employs scale space
concepts for the identification and accommodation of scale
Among the cases where matching performs poorly, differences in matching.

producing unreliable or even no results at all, is the case of

features which have been recorded in two spatially

overlapping images at substantially different scales. This 2. SCALE SPACE THEORY

phenomenon can be associated with isolated features within

a pair of images of otherwise similar scales, or with the The information content of a signal is encoded in its values
processing of images of overall different scales. The first and their variations. These variations occur over a wide
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range of spatial extents, with macro-variations expressing
major signal trends, and micro-variations expressing highly
localized trends, manifesting themselves within spatially
limited areas. The visual perception and distinction of
macro- and micro-variations in images is an intricate human
cognitive process, involving perception, reasoning and
often intuition. As such, this task is fundamentally complex
to be algorithmically duplicated and functionally mimicked
by machine-supported operations.

The concept of examining the behavior of signals in
multiple scales can be traced back to the seventies with
research in hierarchical information structures [e.g.
Tanimoto & Pavlidis, 1975]. However, scale space theory
has been formally introduced and developed in the signal
processing community only during the previous decade, with
the papers of Witkin credited as introducing the concept
[Witkin, 1983; Witkin 1986]. It deals with the
identification and classification of trends encoded in the
values of signals by analyzing the behavior of those signals
in various resolutions. The scale space of an m-dimensional
signal defined in the space spanned by (xl,xz,...xm)is the
(m+1)-dimensional space (x|,x,,..x,,,s)if and only if the
additional parameter s expresses the resolution of the signal.
Digital images are two-dimensional discrete intensity
functions defined in the (x,y) space, and therefore their scale
space is the three-dimensional (x,y,s) space. A discrete
representation of the continuous in s scale space of a signal
f(x,y), comprising a set of n derivative signals
{f(x,y,5,)} representing the original one in various
resolutions (termed scale levels), corresponding to n distinct
values (8g,s),...5,_1) of the scale parameter s, is an n-order
scale space family of the original signal. Figure ! shows a
scale space family and demonstrates how the original signal
is decomposed at coarser scale levels.

W
W

Fig. 1: A scale space family of a signal. The original
signal is at the bottom and resolution decreases upwards.

For different scale parameter values, different scale space
families of an original signal can be generated. This
generation is performed through the numerical manipulation
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of the original signal. The aim of generating scale space
families of signals is to provide representations in which
the information content of a signal changes in a systematic
and therefore exploitable manner. In order for this goal to be
met, scale space generation has to follow certain rules
[Lindeberg, 1990; Lindeberg 1994]:
e  The scale space is generated through the convolution of
the original signal with a single scale-generating
function (or its discrete kernel) k(x,y,s)

flx,y,s,) = k(x,y,5,) % f(x,y) Eq. 1

e  The scale generating function has to be selected in such
manner that, through its application, signal resolution
will change monotonically for respective changes of
the scale parameter s.

Both rules aim at the optimization of the interpetation
potential of the generated scale space: the use of more than
one scale-generating function (e.g. different functions for
different scale parameter ranges) would make practically
impossible the comparison of different scale space versions
of a signal. The non-monotonic change of resolution would
have similar implications.

Scale generating functions have to possess certain

properties, in order to satisfy the above rules [Burt, 1981;

Babaud et al., 1986; Meer et al., 1987], among which the

most important are:

e symmetry, in order for direction independance to be
satisfied,

¢ normalization, for ensuring the (essential in terms of
data handling and processing) compatibility in value
range of the multiresolution versions of a signal,

e unimodality, to avoid semantic distortions due to the
disproportionate participation of distant information
during scale space generation, and

e  separability, for the alleviation of the computational
requirements associated with scale space generation and
manipulation.

Considering two-dimensionality, as is the case for digital
imagery, the separability property of a scale generating
kernel k(x,y) allows its decomposition into two one-
dimensional signals

k(x,) = Ty (0T ey () Eq. 2

and thus permits the use of different scale values in x and y,
effectively allowing us to consider the scale space of images
as a four-dimensional one. Actually, even for m-dimensional
signals we could, in the same manner, consider the scale
space as a 2m-dimensional space. Scale space generation
applied on digital imagery leads to the generation of digital
image pyramids [Burt, 1984; Meer et al., 1987].

Arguably, the most important operation associated with
scale space is to link the information of all scale space
members together. This is achieved through feature tracing,
which can be defined as the problem of identifying global
features out of local signal properties, and of tracing the
position and behavior of these features through various
levels of the signal’s scale space. Features are typically
identified at the coarser signal levels, where overlaying high
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frequency phenomena and their interferences have been
removed. Subsequently, these features are traced back to the
finer levels, where their precise spatial positions are
determined, free of the positional distortions which are
introduced in coarser levels by the convolution with the
scale generating kernels. This analysis of signals allows the
identification and classification of major signal trends, thus
making explicit the information which is inherently
contained in the signal values [Lu & Jain, 1992].

3. SCALE VARIATIONS OF CONJUGATE
FEATURES WITHIN A STEREOPAIR

The scale differences between conjugate features in a pair of

spatially overlapping images can be:

s one-dimensional, associated with the foreshortening
problem, and

e two-dimensional, associated with images which differ
substantially in their orientation parameters.

Problems of the first type are highly localized and object-
dependent. They occur only for certain features within a pair
of images of otherwise similar scales, and will be the main
focus of this paper. The extension of the presented
methodology to two-dimensional is quite simple when
taking into account the separability of two-dimensional
scale generating kernels.

< leRimage

right image.

Fig. 2: Scale differences of conjugate features due to the
foreshortening problem.

Figure 2 shows the foreshortening problem for a pair of
photographs and a feature in the object space (ramp F at the
center) for which the angle between the vertical and the
surface normal is substantially different than 0. As it can
easily be observed, the feature’s inclination causes its image
f; in the left photo to be substantially larger than its image

f+ in the right photo. In this manner, foreshortening causes

the images of certain objects to be recorded at different
scales in two stereomates. The geometric difference is
accompanied by differences in radiometric scales.
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Assuming error-free gray value registration, the recorded
gray values are quantized expressions of the amount of
energy incident to the light sensitive material at the
corresponding sensor location, expressed by image
irradiance [Wrobel, 1991]. According to the cos* law of
irradiance, image irradiance is proportional to a combined
measure of object space surface reflectance characteristics
and illumination conditions [Horn, 1986; Alvertos et al.,
1989].

left image

right image

hr

Fig. 3: Objel differences in conjugate feature registration
in a stereopair.

The gray value recorded in a pixel is essentially expressing
the irradiance of the object area which is the projection of
this pixel in object space, hereinafter referred to as object
equivalent pixel, or in short objel. In other words, the objel
expresses the object space area which is imaged in a single
digital image pixel. While all pixels of a sensor have the
same size, their object equivalents vary according to the
shape variations of the object space, as shown in Fig. 3.

The averaging operation associated with sensor charging
and subsequent gray value assignment can be considered an
operation equivalent to scale space generation. A series of
images of an object space scene from various, constantly
increasing heights, is actually forming a scale space family
of the radiometric content of this scene. Images from higher
exposure stations correspond to larger objel sizes and,
consequently coarser scale levels than images captured from
exposure stations closer to the actual object space.
Conjugate pixel groups are actually scale space
representations of their equivalent object space area, with
image orientation (and by this we refer to both rotations and
exposure station position), object space shapes, and sensor
characteristics being the parameters defining the scale
generation process. In a stereopair, the same sensor is used
and, considering the excellent performance of metric quality
cameras, it can be assumed that the effects of sensor
characteristics during image formation are similar for
conjugate features in stereopairs. The remaining combined
effect of exposure orientation and terrain shape make image
capturing through central projection unique in terms of scale
space generation: scale might actually vary within an image,
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with various features belonging to different levels of the
terrain scale space as it would have been obtained had an
orthogonal projection been used.

4. EFFECTS ON LEAST SQUARES MATCHING

Matching features whose images are distorted due to

foreshortening within a stereopair, using classic least

squares techniques, will lead to failure when scale differences
are sufficiently large [Stefanidis, 1993]. The reasons for this
failure are:

e erroneous pixel correspondences
observation equations) are formed due to the
dissimilarities of the initially selected conjugate
patches, and this problem cannot be corrected during
the iterative solution;

e negligence to directly access the radiometric scale
differences of conjugate patches renders the
mathematical model (which considers solely geometric
relationships) inadequate; and

e violation of the flat terrain assumptions which are
inherent in the geometric model used to relate conjugate
patches (affine transformation).

(and consequently

Failure to bring conjugate features at comparable scales prior
to matching will in essence result into matching by
comparing non-conjugate gray values, and will therefore
produce observations inconsistent with the geometric model
used to relate conjugate image windows. In this case, two
types of errors can occur (in direct analogy to errors in
statistical decision making):

e truly conjugate pairs of features may be rejected by the
matching solution due to the contradictory information
provided by the comparison of non-conjugate gray
values, or

e non-conjugate pairs can be matched by the adjustment
solution due to the contamination of the matching
process by erroneous observation equations.

5. MATCHING THROUGH SCALE SPACES

To overcome the previously described scale-pertinent

problems, we can proceed in the following manner:

1. For every pair of matching candidates, the scale space
behavior of the feature to which these matching
candidates belong is examined, and large scale
variations between them are identified.

2. The scales which are most proper for matching are
determined.

3. Only then is precise matching performed, with the
participation of radiometric scale parameters in a
classic least squares matching manner.

By applying scale space techniques, we can substitute a

stereopair by two image pyramids (a stereopyramid). It has

been shown [Babaud et al., 1986] that the two-dimensional

Gaussian function

x4y
28

g(x,y,s) = ke Eq. 3
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is most appropriate for scale space generation using digital
images.  Typical photogrammetric  multiresolutional
techniques proceed by comparing similar pyramid levels of
two stereomates (e.g. the 512x 512 pixel version of the left
stereomate is compared to the 512x 512 pixel version of the
right stereomate, the 4096 x4096 left to the 4096 x 4096
right etc.). However, as we discussed in the previous two
sections individual elements within these images may
actually belong to dissimilar scale levels. Our first objective
is to identify within the stereopyramid those scale levels of
the two stereomates at which the specific feature currently
processed is represented at comparable scales. In this
manner, it is possible to establish stereo-correspondences
by matching for example a feature at the 512 pyramid level
of the left stereomate to its conjugate at the 1024 pyramid
level of the right stereomate. Thus, matching is performed in

the four-dimensional space (x,¥,5,,5,), with s, and sy

being the scale parameters in the x and y directions
respectively.

Given approximate conjugate positions in a stereopair, we
can examine the scale space differences of the features to
which these points belong. The separability property of the
two-dimensional Gaussian function allows it to be
substituted by the product of two one-dimensional Gaussian
functions

%2 }’2
25, Eq. 4

2s
gx(xvsx) = kle and gy(y)sy) = k2€ Y
and thus permits us to substitute a two-directional search by
two one-dimensional ones, resulting in great computational

gains.

Fig. 4: A profile scale space image (top) and traces of
features in it, detected as edges (bottom).

For searching in scale space, we introduce the concept of
profile scale space images. As the name implies, a profile
scale space image is the scale space representation of an
image profile. It is stored and processed as any digital image
file, but in this case, while one direction (columns)
corresponds to image coordinates along the profile, rows are
discrete representations of the continuous scale space,
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corresponding to discrete values of the scale parameter. The
number of these discrete levels is user-defined, and its
selection depends on the amount of information conveyed
by the profile and the relevant storage and computational
requirements. Figure 4 (top) shows such a profile scale space
image, with the top row containing the original profile gray
values, and rows underneath that containing increasingly
smoother versions of the original signal, corresponding to
gradually larger values of the scale parameter s. Thus, such
an image will have a coordinate system (pssp), with p being

the distance along the profile direction, and s, being the

scale parameter.

The use of digital image files (rather than simple signal
values as is the case in typical scale analysis applications)
to express the scale behavior of signals has great
advantages, as it permits us to employ digital image
analysis algorithms. To identify scale differences among
conjugate features, we can match their corresponding profile
scale space images. Matching proceeds similarly to least
squares matching, but this time a shift in the s direction
denotes a difference in scale among conjugate profiles. A
shift in the profile direction p corresponds to a refinement of
the initially available conjugate locations. By performing
this matching process along the two directions (which for
practical reasons are the base direction and its
perpendicular), we can identify the exact correspondence in
the stereopyramid

(xp,y) & (xn}’rwsrx,sr_v) Eq. 5

for comparing a specific feature.

This procedure can be enhanced when combined with edge
detection. Figure 4 (bottom) shows the edges in a profile
scale space image, which actually show how the various
objects intersected by this profile (variations in top row
gray values) behave in scale space. The extracted feature
outlines describe not only the behavior of a single feature,
but also its interaction with its surroundings. Robust
features are remaining evident throughout the profile’s scale
space, while ephemeral ones disappear fast. The feature to
which the given approximation belongs is the one which
surrounds the available approximation. We can easily
examine whether the given approximations lay on a robust
or ephemeral feature. Points on robust features are better
matching candidates. Furthermore, we can examine whether
the given approximations lie on the same feature by
comparing the major radiometric characteristics (absolute
gray values, gradients) of the features to which the
approximate points belong. This check can help us avoid
gross matching errors which are associated with erroneous
approximations.

Once scale space correspondences are established, assigning
to a feature at a specific scale level in a stereomate its proper
conjugate at the other stereomate’s scale space, we can
proceed with subsequent precise matching. Radiometric
parameters can be introduced in it, to fully express the
remaining radiometric  differences between conjugate
patches. By taking advantage of the diffusion equation of the
Gaussian function, according to which
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Bzg(x,sx)

Ig(x,8,) _
= e

os,

Eq. 6

B | —

the derivative with respect to the scale parameter is
equivalent to the second derivative with respect to the
spatial coordinate, allowing us thus to directly introduce it
in the linearized least squares matching observation
equations (with the second derivatives of gray values as
corresponding  coefficients in the Jacobian matrix)
[Stefanidis, 1993].

6. EXPERIMENTS

The mathematical models and matching procedure presented
in the previous sections were tested in several experiments
using both synthetic and real images. Synthetic data were
generated by creating a DEM with substantial local
inclinations  (ramps, tall buildings etc.), assigning
radiometric values to it and projecting back to fictitious
exposure stations. By varying scale space inclinations,
variations in scale differences among conjugate features were
generated. The criteria by which the performance of the
technique was judged were pull-in range in scale differences
and positional accuracy of the obtained matching results.
For ramp structures (like the one in Fig. 2) it was found that,
even with excellent approximations typical least squares
matching failed when the scale differences exceeded 20-30%.
This range of scales is due to variations in the local
radiometric content. Using the above described method we
managed to match images of the ramp which differed by
arbitrary amounts in scale. The identification of sufficient
initial correspondences between features was the only limit.
This task is indeed becoming less trivial as scale differences
increase. When certain features were significantly different
(in gray values) from their surroundings, we were even able
to identify cases of occlusions and tag them as such. In terms
of positional accuracy, our results were comparable to
typical least squares matching results (on the order of 0.1
pixel). This should be considered quite successful when
considering that these matching accuracies refer to cases
where typical matching methods failed to produce any
results. The reader is referred to [Stefanidis, 1993] for a more
detailed description and evaluation of experiments.

7. COMMENTS

The presented technique addresses the problem of matching
under the presence of extreme scale variations. The technique
proceeds by identifying and taking into account such
variations, and subsequently performing precise matching.
Considering the automation potential of matching, this
technique is viewed functioning as a module within a general
matching strategy, complementing matching results in areas
in which regular matching has failed. Of course it can
function as a stand-alone matching module, but it would be
computationally cumbersome to perform a detailed scale
space analysis for every single patch to be matched. The
developed concept of profile scale space images opens a new
direction for scale space analysis. Not only do these images
offer great visualization potential, allowing an operator to
check the process, but they also have the great advantage of
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being, by design, compatible with digital image processing
and analysis algorithms and software. This makes their
complete integration in an existing general matching
strategy very easy. They can be effectively combined with
edge detection for automated, fast, and reliable scale space
feature tracking, showing great promise for use towards
image understanding.
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