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ABSTRACT

In this paper, An algorithm called Array Relaxation Multi-point Least Squares Matching (ARMLSM) will be discussed in detail,
and the new formulation of Array Relaxation under the variable constraint weight model is presented. The presented new
ARMLSM can take into account both cases of the first and second order derivative constraint weight models, and the new
ARMLSM can be applied in the both of image space and object space. A hierarchical strategy is used in the ARMLSM in
order to derive the matching approximations. The hierarchical ARMLSM approach limits the searching range for matching
candidates in each image pyramid level and therefore can also improve computing efficiency.

Three test image pairs are used. The matching results of the conventional MLSM, the ARMLSM under the optimal uniform
constraint weight model and the ARMLSM under the variable constraint weight model are compared and analysed. Three
matching efficiencies are found to be near 6, 82 and 81 node points per second on SGI 4D/25, respectively, and the matching
accuracy comparison of the Loess plateau aerial images shows 0.79, 0.75 and 0.37 pixels can be reached by the three MLSM
algorithms, respectively. The ARMLSM under the variable constraint weight model has great potential for practical digital
" photogrammetric systems.

1 INTRODUCTION 60% (corresponding to 6 points per second based on our test).

During the last few decades a vast variety of image matching It is desirable for MLSM that the constraint weights should be

methods have been developed, most of them belong to sin-  small enough if the object surface and image intensity changes
gle point or features/edge matching algorithms, Reconstruct- ~ are severe such as for the ridges, breaklines and valleys, on
ing three-dimensional (3-D) surfaces is an ill-posed problem  the other hand, the constraint weights should be big enough
from the mathematical point of view, recently more and more  if the surface and intensity changes are gentle such as for flat
Global Image Matching (GIM) techniques have been used in ~ ©open areas. In this paper the proposed new ARMLSM (Ar-
3-D reconstruction applications such as regularization the- ray Relaxation MLSM) which was develo;-)ed frc_>m Rauhala's
ory [8, 18], stochastic optimal approach using microcanoni- Global Least Squares Matching (GLSM) ideas is a good ex-
cal annealing [2, 3], neural network stereo matching [21] etc.. ~ ample of such MLSM, it rightly takes into account the object
Various kinds of assumptions and constraints were introduced ~ Surface details and the image intensity changes through the
in these GIM methods in order to get more reliable and ac-  Vvariable constraint weight model. ARMLSM's matching effi-

ceptable solutions than the single point or single feature/edge ~ Siency can reach about 15 times faster than the conventional
matching. MLSM's.

Multi-point Least Squares Matching (MLSM) is one of  In the following, the first two sections give a brief descrip-
GIM techniques which was developed from the single point  tion of the conventional MLSM and Rauhala's optimal weight
Least Squares Matching (LSM) by many researchers: Rosen- model ARMLSM, then the new ARMLSM under the variable
holm [16, 17], Rauhala [10, 13] and Li [6, 7] etc.. Compared  Weight model will be presented, in Section 5, we combine
to other GIM techniques, MLSM is widely used in the pho- multiresolution strategy and the new ARMLSM into our Hi-
togrammetric community, MLSM uses simultaneous compu-  erarchical ARMLSM, and finally, tests and conclusions are
tation of parallaxes in the grid which are connected with bi-  discussed.

linear finite elements describing the parallaxes differences. It

is assumed that the object model is a continuous surface, the 2 CONVENTIONAL MLSM

additional fictitious observations for continuity constraints on
parallaxes are used in MLSM. MLSM is not only applied in
the image space but also in object space [4, 5, 16, 20].

Assuming the parallax of a left epipolar line point g1 (z,y) is
—2°, the observation of the single least squares matching is
) (ignoring the radiometric deformation):

GIM (including MLSM) can provide much more reliable and
accurate matching results than the single point matching
method, for example, MLSM based on image space can reach
0.1 ~ 0.5 pixel accuracy [15] and MLSM based on object
space can reach 0.15 ~ 0.2 pixel [16], 0.25 pixel [19]. How-
ever, no matter what kind of GIM method is used, the low
computational efficiency is the common shortcoming. How  If the x-parallax is interpolated from its four neighbour grid
to improve the computational efficiency is the problem faced nodes through bilinear interpolation, the spacing between
in all GIM methods, Li [6] uses MLSM in a multiresolution,  neighbour nodes is 1 and the distances from the point to
multigrid approach, the average CPU time improvement was node (4,7) are d; and d» (0 < di,d> < 1), then the error

91(z,y) — g2(z + 2% y) = n(z,y) (1)

where g2(z + 2°, y) is the corresponding point of g (z,y) in
right epipolar line, and n(z,y) means the random noise.
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equation is:

gy (1 = di)(1 = da)dzi,; + ghdi (1 — d2)dzi j41+
g5(1 = dy)dadziy1,j + gididadziyy,ji1 — Ag

@)
where Ag = g1 (%, y) — g2(z +2°, y) and g3 is the differential
in z-direction in right epipolar line and dz;; is the correction
of original parallax z°.

v =

Assuming all the matching points are located on a grid sized
by n1 x n2 (ni is rows and ny is columns). The constraint
smoothness between the grid nodes is required in MLSM (first
or second order differentials of parallaxes). The observations,
normals and solution of MLSM can be expressed in the matrix
form:

V=AdX -L,P

(ATPA)dX = ATPL (3)

dX = (ATPA)"'ATPL
where A is the design matrix, dX is the vector of correction
parallaxes (nina x 1) and P is the weight matrix.

Likewise MLSM can be performed in object space using the
similar equations as in image space [4, 5, 20].

The main reason for the very low computing efficiency of the
conventional MLSM is the solution of the large size normals.
For example, the rank of the normals is 10,000 if the matching
grid is 100 by 100, it is hard to be solved for the general
purpose computer. Some techniques are used for improving
the speed of the conventional MLSM such as multiresolution,
multigrid approach [6], the average CPU time improvement
was 60%, corresponding 2 3 node points per second. Besides
it, the Cholesky triangle decomposition technique is used,
and the speed of image matching is about 6 node points per
second (platform SGI 4D/25). In the next sections we will
discuss the array relaxation algorithm which can be applied
for MLSM to considerably improve the matching efficiency.

3 ARMLSM UNDER THE UNIFORM WEIGHT
MODEL

3.1 Introduction of array algebra

Array Algebra was established by Rauhala in 1968, and it has
become the powerful tools to deal with multi-dimensional
data since 1968. The basic theory of array algebra could
be found in [9]. The application of array algebra in image
matching can be traced back to 1977 [10], when Rauhala
combined the array algebra with finite element method, and
applied the array relaxation technique in global image cor-
relation. This thought is actually different in approach but
equally satisfactory in result combining with Helava, Wrobel,
Rosenholm, Ebner, Heipke and Barnard's algorithms of global
image matching. And the capability of array relaxation makes
Rauhala’s method more practicable.

3.2 ARMLSM under the uniform weight model

Assuming z° in equation 1 is the node point parallax and need
not be interpolated from other node points. The linearised
form of equation 1 is as follows:

v=gidr—Ag Ag=g1— g (4)

The expression of the correction of z° parallax after nor-
malling equation 4:

de=Y g:0g/ > g7 (5)

Equation 5 is the simplest case of the single point LSM, where
Z means the sum in a small window around the node point.

If the matching grid is n1 x na, then three matrices dX, A, L
denote the three array of all node points' parallaxes cor-
rections, grey differentials and reflection differences, respec-
tively:

dX1  dXi dX1in,
an dX22 dXan
dX = . . .
anll an12 anlng
i géu 9512 Qéln,
9521 9522 tee géan
A= . . . (6)
L yénll gén12 gérung
[ Agnn  Agiz Agin,
Agzy  Agaz Agan,
L= . . .
L Agnll Agn12 Agnlng
and the array expression of MLSM is:
V=AxdX -L (7)

where *x means elementwise array multiplication.

In equation 7 the relationship between node points has not
been considered yet, so fictitious equations are also needed
here. Assuming z is the true parallaxes, its initial value is
x°, the correction is dz. Firstly the second order differential
constraint is considered:

Tip1,; = 2%ig + Tiyr,j =0 (8)
Tij—1 = 2%ij + Tij41 =0

The array expression of equation 12 is:

Vy = (2L 4+ B)(X° +dX),p ©)
Ve = (X° 4+ dX)(22 + B2),p2

where the matrix ranks of subscript 1 and 2 are n1 and na,
respectively. I is an unit matrix, B is a Toeplitz matrix, and
p1,p2 are the weights in y, = directions.

-1
-1 0

B=2ST)S,8T8=88T =1

$ = {si;} = (=)' sin(isr/(n + 1)/ + 1)/2

A={uil = —2cos(in/(n +1)),4, 5 =1,2,---,n

(10)

The Toeplitz matrix B's feature and orthogonal matrix can
be derived through the finite element transformation [11] (see
equation 10), and an approximation is applied near the edges
of the net grid inside the matrix B. '

The array expression of ARMLSM under the second order
differential constraint is:

V:A*dX—L

Vy = (21 + B1)(X° + dX),ps (11)
V, = (X° +dX)(2L: + B2),p2
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In the same way, the array expression of ARMLSM under the we derived:

first order differential constraint is: D % (51dX ST = S1UxST =
2 = 2 = - 17
V=AxdX-1L SiULST -G » (5:X°SF) - Si[(B~7) wdxo}sF  (7)
Vy =C (Xo + dX))Pl (12) where

Vy = (X°+dX)Cs, p2
gii =p1(2 4+ (M)i)* + p2(2 + (A2)55)" (18)

where dij; =&+ gi
1 -1 ' 1 Assuming hij = 1/d;:

G = ' . G = ol N dXx41 = ST (H * S1UxS7)S2 (19)

. _11 —i 1 Equation 19 is the iterative formula of the uniform weight

(13)  ARMSLM.

when n1,n, are large enough, CFCy ~ 21, + B1,CIC, ~
2I; + B2. The normals of equations 11 or 12 are: 4 NEW ARMLSM

ExdX +pi ST (2L + A1)*S1dX + dX ST (21 +X2)*S2ps it will be very desi.rable that the weight model inside
= Uy — p1ST(2L + A1 )* 81 X0 — X°ST (2L + Ao)* Saps ARMLSM can be adjustable under a various types of ter-

{0 NS {0 ! 3 rain: the weight constraint should be relaxed if ridges, val-
B={es} = {Z(gz),;} U= {ui} = {E(ngg)mL leys, breaklines etc. are met, the weight constraint condi-
tion should be strengthened if in the flat areas. To solve
these problems Rauhala et al [14] used 15 math models of
the continuity constraints to improve the continuity strength

where k = 1 or k = 2 means the first or second order differ-
ential constraint case.

Because the normals of ARMLSM s different from conven-  effected by g;; in equation 22. However, all these models can
tional norma.ls (see e‘_luat"f" 3)'.'" the following section, the only enhance or relax the continuity strength globally due to
array relaxation solution will be introduced. the fact that p; and p, are two constants for all grid points.

ARMLSM solution under the uniform weight model As-  The ARMLSM algorithm described by [12] is called the op-
suming: timal uniform weight model ARMLSM here. We think it has

not provided the capabilities to allow each different weight
E=8+E-8 =) Y eij/(nin2) (15)  to appear in each grid point in order to adjust the continuity
constraint according to the local terrain and intensity details.
To able to do this, a new ARMLSM is presented here which
is called the variable weight model ARMLSM.

4.1 ARMLSM under the variable weight model

putting equation 15 into equation 14 and moving (¢ —€)*dXo
into the right hand side where d X, is the last corrections:

edX +p151r(211 + Al)k51dX +dXS;F(212 + /\2)k52p2 . . .
=U, - piST(21 + M1)*81 X0 — X°ST (21 + X2 )k Saps When the zy—direction weights are two arrays P, and P;
instead of two weight constants p; and p, in equation 14, in

—(E—€)*dXo .
(16) order to derive the new normals, two new arrays Ny and N,
are defined:
ifk = 2:
4p1; + p2;j —2p1j — 2p2j D2
—2p1; — 2p2;  p1j + 4p2; + ps; —2p32j — 2ps; p3j
N, = p2; —2p2j — 2ps;  p2j +4psj + P —2ps;j — 2psj Daj
! Pri=15  =2Pny-1, = 2Pn;,j  Pry-1,5 +4Pny,j
[ 4pi + piz —2pi1 — 2pi2 Ppi2
—2pi1 — 2piz  pi1 +4piz2 + pis —2pi2 — 2pi3 pis
N, = piz —2piz —2pis  piz +4pis + pia  —2pis — 2pis DPis
- p"r"‘?—i _zpirnQ_l - Zp‘,ng pi,ng—l + 4pi,ng
(20)
ifk=1:
pij —D1j pi —Di1
=p1; DPij +Pp2; —Dpzj —=pi1 pi1 +pi2 —pi2
Ny = . . Ny = . .
—Pn;-1,j Pny-1,4 +Pn1,j ~DPi,;ng—1 Ping—1 +Ps’,n2
(21)

where j=1,.-- npandi=1,-..,n;.

the normals are diagonallized by premultiplication with S; Ny and N, are not usual matrices because the elements p;;
and postmultiplication with S7, and considering 7S = I, are dynamically changed during the special definition of two

979
International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B3. Vienna 1996




matrices multiplication in our new ARMLSM. A new multi-
plication symbol is defined in our new ARMLSM: ©, NyO X
means the multiplication of two matrices Ny and X where the
subscript J in array N, is changed according to the current
corresponding column number in matrix X, and X O N; has
the same meaning where subscript i in array N; is changed
according to the current corresponding row number in matrix
X. And the new normals are:

ExdX+N,©dX+dXON, =Ui=N,OX°~X°ON:
(22)

where E and U; are the same as in equation 14.

4.2 ARMLSM solution under the variable weight model

Assuming:
E=e+E-¢ g=)_5 eij/(nin2)
Ny=Pi+ Ny~ P IT:ZZPHJ/("WZ) (23)
Ne =P+ No—PB, Pz=),Y paij/(ninz)

putting equation 23 into equation 22 and moving (e~€)*dXo,
((Ny = Pr) © dXo and dXo Q (Nz — Pz) into the right hand
side where d X is the last time corrections, we derived:

edX +p'TST(2]1 + /\1)k51dX+ dXSzT(Zfz + Az) S2p2 =
Ny.Xo X°QN, - (E—e)*dX°
-(N,, -P)QdX°—dX°© (N. - P)
(24)

The N, and N, are based on the elements values in equa-
tions 20 or 21. The normals are diagonallized by premultipli-
cation with X and postmultiplication with 57, and consid-
ering STS = I, we derived:

D * (S]_dXSg = S1 UkSz =

S1ULST — G (S1.X°ST) — S[(E —%) xdXo)sT )
where
gis = pi(2+ (M)i)" +p2(2+ (A)id)* (o)
dij =€+ gij
Assuming hi; = 1/d;;:
dXy41 = ST (H % 51UxS7 )5Sz (27)

Equation 27 the iterative formula of the variable weight model
ARMSLM. Due to Sy Ux4+157 = H%S1UxST, so HxS1UxST
can be used as S1dX°S7 for the next iteration computation,
need not be computed again.

When the values of all elements in P, or P, are equal (say
equal to p1 or pa, respectively), equation 24 becomes equa-
tion 16. It means the uniform weight model ARMLSM is the
special case of the variable weight model ARMLSM.

4.3 Object space based ARMLSM

If the ARMLSM is performed in object space, the matching
grid will be based on the object space coordinate system in-
stead of the parallaxes grid in image space. Assuming only
one stereo image pair is used, object space based ARMLSM
has all the similar formulas except the parallaxes array X°
and dX need to be replaced by the elevation array Z° and
dZ, and the E and U, are changed into:

B = {ei} = {3_(a)%}

U1 = {u g A

{22"’8}3; 8Zgg(_y2_ g)‘gj, 6z _ 8a1 Oy (28)
9_6.1 3z T oy oz 9z 82 — Oy 07
Ag =g} (z1,y1) — g5 (22, 92)
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4.4 Weight models

The weight model plays an important role in the new
ARMLSM. Ideally the weight model should reflect the affec-
tion both of the terrain feature and image intensity functions,
but the two functions are often inconsistent, it results in the
difficulties of choice of the weight model. The main factor
which effects the single point LSM is the image texture in-
formation [1], so currently our weight model is only relative
with the image intensity. The variance, differential, gradient,
entropy can be considered to determine the weights. The
following is our method of selecting weights:

1. computing the mean differentials (gz,gy) of differen-
tials gzi; and gyi; in the matching window around the
grid node

. finding ming;, min gy, max gz and maxgy

. determining the weights pzi; and pyi; for each grid
node point:

pyij = C2 + (max Gz — haij) s (29)
Paij = O + (maxFy — hyis) morsdiemes

where p1, p2, C1, C2 are experiential constants, we rec-
ommend p; = pz = 100 and C; = C; = 10, they are
adjustable based on the image texture and terrain un-
dulation

4.5 New ARMLSM's computation efficiency

Assuming the matching grid size is n x n, generally the tra-
ditional MLSM needs about (n)® multiplication operations.
According to our new ARMLSM, the multiplication opera-
tions in each iteration are 8n® (actually are 8n® + 3n?, while
S1dX0SF need not be calculated since the second iteration,
so we simplify to 8n® for convenience), again assuming the
total iteration is k, the operations count ratio between our
ARMLSM and the traditional MLSM is:

Ratio = 8k/n® (30)

our experiments show that k usually takes 3 or 4 iterations.

5 PROCEDURE OF ARMLSM

We mentioned previously the new ARMLSM can be applied
in both image space and object space, and employs a hierar-
chical strategy, here are the algorithm procedures:

Image space based ARMLSM

1. generating the image pyramids both for left and right

images, assuming total levels is K, let k = K

resampling the right image using the approximate par-
allaxes (X° = 0 when k = K)

performing the radiometric correction
array relaxing | times based on equations 25 to 27

. correcting prime X°, if the corrections are less a given
limit, goto step 2, otherwise stop at level &

6. transferring the results from level k to level k — 1, let
k=k-1

7. if k = 0, finishing all levels' matching, otherwise goto
step 2
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Figure 1: Loess plateau stereo images (500x500 pixels)

Object space based ARMLSM The object space based
procedure for ARMLSM is exactly the same as that based
on image space except for replacing X (parallaxes) by Z
(heights) in all equations.

6 ARMLSM TESTING RESULTS

Three test image pairs are used: “Loess plateau” aerial im-
ages (see figure 1), “SPOT" images and ISPRS test image pair
“Wall". We are only able to present “Loess plateau” results
here owing to the limitation of space. Three MLSM algo-
rithms are tested: the conventional MLSM algorithm (see sec-
tion 2), ARMLSM under the optimal uniform weight model
(section 3) and ARMLSM under the variable weight model
(see section 4), they are abbreviated by MLSM1, MLSM?2
and MLSM3 herein. The Cholesky triangle decomposition
technique and hierarchy technique are used for improving the
speed of the conventional MLSM solution. The object space
based MLSM is only tested using SPOT images.

The computing speeds of three MLSM can be found in the
table 1.

In order to check the matching accuracy, all the grid points'
parallaxes of the three stereo image pairs are manually mea-
sured carefully in the workstation (for example, 5329 (73x73)
points in “Loess plateau”), DEM points are also measured for
"SPOT" through “VLL" method). These results are treated
as the “true” parallaxes in order to compare with the au-
tomated matching results. the matching accuracy of three
MLSM can be seen from the table 2. In table 2 object space
based (AR)MLSM for SPOT images shows that 0.486, 0.208
and 0.187 pixels accuracy (corresponding to 12.2, 5.2 and 4.7
meters in heights) can be reached using MLSM1, MLSM2 and
MLSM3, respectively.

The “Loess plateau” matching residual errors of three algo-
rithms compared with their true parallaxes can be viewed in
figures 2 where grey scale values indicate the residual levels
(black colour means worst, white colour means very good
matching). ’

The grid spacing in the above tests is 6x6 pixels (SPOT's
grid intervals are 13x13). Theoretically any spacing can be
used. We use 2x2 spacing for “Loess plateau” whose image
size is 500500, a very dense matching grid shown in fig-
ure 3 illustrates a much detailed terrain (233x217=50,561
points), figure 4 is its perspective view. In other words, some
difficult matching areas like ridges, valleys and breaklines can
be improved very much using dense ARMLSM.
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Figure 2: Loess plateau matching residual errors: left upper:
true parallaxes; right upper: MLSM1 residuals; left bottom:
MLSM2 residuals; right bottom: MLSM3 residuals

image & grid size | MLSM1 | MLSM2 | MLSM3
Plateau(73x73) 6 82 81
Wall(39x35) 18 91 85
SPOT(73x73) 6 81 78
{l SPOT(30x30)* 20 20

Table 1: matching speeds of three MLSM (unit: node points
per second), (note.: * means using the object space based
MLSM)

mean error | MLSM1 | MLSM2 | MLSM3
Plateau 0.789 0.751 0.366
Wall 1.742 1.392 0.883
SPOT 0.468 0.239 0.205
SPOT* 0.486 0.208 0.187

Table 2: matching accuracy of three MLSM (unit: pixel),
(note.: * means using the object space based MLSM)

Figure 3: Loess plateau's parallaxes and its grey scale image
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Figure 4: Perspective view of Loess plateau's parallaxes

7 CONCLUSIONS

Array Relaxation for Multiple-point Least Squares Match-
ing (ARMLSM) has the great potential in the practical pho-
togrammetric systems due to its very high computational ef-
ficiency comparing with the traditional MLSM. The new for-
mulation of ARMLSM under the variable weight model pre-
sented by this paper makes it possible to capture the more
detailed terrains through the variable weight models which
are adjustable and followed the expected rule: giving tighter
constraint weights in flat open areas or poor image inten-
sity areas and looser constraint weights in rapid changed or
rich information areas. The preliminary experimental results
prove its ability to produce high-efficiency and high-quality
image matching on the general purpose computer, and the
results also show that very dense elevation models computed
by our ARMLSM provide the subtle terrain details. Since the
variable constraint weights can be applied in our ARMLSM, it
opens a new way for using efficient array algebra technique to
consider the breaklines, occlusions and discontinuity problems
during the matching processing. The strategy of choosing the
constraint weight discussed here is a very simple way, to find
a better solution for constraint weight models becomes our
current focus for the further developing of our ARMLSM.
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