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ABSTRACT:

It is important to consider the role of scale for texture analysis since its multiscale attribute of image tex-
ture. In this paper, a textural detector based on 2D Gabor function and visual textural perception is estab-
lished first, then based on the textural detector and wavelet theory of multiscale decomposition and fractal
geometry, a multiscale texture analysis method is proposed, and technique for multiscale textural feature
fusion is advanced according to the lateral inhibition and end-inhibition in neurodynamics. The mult-
iscale texture analysis technique gives representation between spatial space and Fourier space, and pro-
vide a hierarchical analysis framework for image texture. They can detect different scale texture features,
correspond to the visual texture perception, and have the ability to recognize texture image effectively.

1. INTRODUCTION

Image texture analysis has become fundamental
means in the areas of computer vision and image
analysis. So far many methods have been developed
for the description of textural features (Deren Li
and Jixian Zhang,1993), however, most of them.
extract textural features only in some one scale and
ignore its multiscale attribute of image texture,
general-purpose, universally accepted method is still
unavailable.

Inspired by a multi-channel filtering theory for
processing visual information in the early stages of -
the human visual system, multi-channel filtering ap-
proach to texture analysis is developed, however
following issues are unsolved: (1) mathematical
functional indication and the number of multi-
channel filters; (2) detection of suitable texture fea-
tures and integration among these features in
filtered images; (3) relationship among filtered
images. '

According to our proposed methodology (Jixian
Zhang,1994), image texture is regarded as the
spatial distribution of grey levels of neighboring
pixels, it has hierarchical attribute, multiscale
attribute, shift-invariant attribute and stochastical
and deterministic duality. Image texture analysis
method should existed in a hierarchical framework,
while extraction of image texture feature should
consider its multiscale attribute. In this paper, a
textural detector based on 2D Gabor function and
visual textural perception is established first, then
based on the textural detector and wavelet theory, a
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multiscale texture analysis method is proposed, and
technique for multiscale texture feature fusion is
advanced, finally some experiments are gived.

2. MODEL OF VISUAL TEXTURAL
DETECTOR

According to the preattentive’ theory, visual
discrimination of image texture is achieved by two
steps: (1) detection of local feature difference----
texton (or textel); (2) discrimination based on
statistical feature of detected textons(Julesz 1986).
It is important to find the function of textural
detector for image texture analysis, which should
not only has the ability to detect any kinds of textels
effectively, but also correspond to the visual texture
perception.

Two-dimensional (2D) Gabor representation gives
an attractive framework for a unified theory and
mathematical description of the spatial receptive
fields of visual cortex (Daugman 1988), such filters
simultaneously capture all the fundamental proper-
ties of linear neural receptive fields in the visual
cortex: spatial localization, spatial frequency

- selectivity, and orientation selectivity. Any image

can be expanded by a finite set of 2D elementary
Gabor functions and the expansion coefficients {am}

provide a compact representation of the image.
Experiments by Fogel and Sagi (1989) showed that,
by using 2D Gabor filters, results to discriminate
textural elements used in Krose’s psychophysical
data are in high correlation with the results for the
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human visual system by Krose, the discriminability
orders are almost the same. Therefore we can
conclude that 2D Gabor filters can be regarded as
texture discriminator. 2D Gabor function is desirable
representation of textural detector, it not only
satisfies the requirement of visual texture percep-
tion, gives good statistical description of textons,
but also provides a reasonable explanation of
texture descrimination in theory and experiment
from the viewpoint of psychophysics and physiology.
Now we give following theorem:

Theorem: Visual detection or catch  of textural
primitive distribution in retinal image can be
described or represented by oriented 2D Gabor
function G(x,y) (1), we known the oriented 2D
Gabor function as textural detector

Glx.y) = g(x',y ) exp[ 27 (u,x +v,)] (M
where
(x",") = (xcos @ + ysin p,—xsin g+ ycos @), (2)

(32) +v (3)
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The selection of parameters in textural detector (1)
is in accordance with following formula (Jixian
Zhang ,1994; Fogel and Sagi, 1989):

B=logz[(1+0.1874/of0)/(1——0.1874/ofo)] (4)

where B is the spatial frequency: bandwidth (octaves),
o is the standard deviation corresponding to the
gaussian envelope, and f, is the optimal spatial
" frequency.

As textural detector, the Gabor implementation
effectively unifies the solution of the conflicting:
problems of determining local textural structures
(features, texture boundaries) and identifying the
spatial extents of textures contributing significant
spectral information, e.g., the densities of oriented
and/or elongated textons.

3. TEXTURAL DETECTOR BASED
MULTISCALE TEXTURE ANALYSIS

Figure 1 shows the flow chart of the multiscale tex-
ture analysis method proposed in this paper. Because
of the outstanding ability to represent signal, ap-
proach to wavelet multiscale decomposition is inte-
grated in our method, and window size is corre-
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Figure 1. Flow Chart of the Multiscale Texture
Analysis Method

3.1 Selection for Multiscale Decomposable
Function

In order to capture textural feature effectively, se-
lected wavelet function for multiscale decomposition
should be compatible with the textural detector. A
2D Gabor function satisfies the condition of wavelet
and is therefore an admissible wavelet (Mallat,1989).
In the view of our point, the wavelet decomposable
function may be considered as the textural detector
of the form

G(x,y) = g(x,y)sin2 7 (xcos 8- ysiné) + @) (5)
or

G(x,y) = g,(x,y)sin(2 7f (xcos 6— ysin ) + @) (6)
where

st el 1525 o (222 o

is the Gaussian envelope, g,(x,y) is the first
deviation of g(x,y), ¢=0,7/2.

To simplify our description, we now consider such a
multiscale decomposition where the basic wavelet

w(x,y,0) is the same as (5)

spondly changed according to the size of analysis x7 +y*
scale and texture attribute. v/(x:y,g)=exp(~§7+j2/f(xcos 6— ysin6)) (%)
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The corresponding family of wavelet function is

v.(x=x.y-2,.60) = aw{uy—lej ©)
o a

For practical application, (9) is discretized as

wa/(x—my—n)e):a’lu{""’”,y“"ﬁ) (10)

where aeR,0¢€[0,7],mn,jeZ

3.2 Multiscale Decomposition of Texture Image

Let a=2’, multiscale decomposition in @ direction
through wavelet transform is then defined by

W, f (x50 = [[ f(x.0) v, (x —x,, ~ y,, O)dxdy (11)

Here the Mallat’s multiresolution decomposition al-
gorithm (Mallat 1989) is employed for our purpose
of multiscale decomposition.

3.3 Multiscale Textural Primitive Planes

After multiscale "decomposition, we define the
decomposable value, amplitude, phase angle and
standard deviation etc. as textural primitives, which
consist of the basis for computing textural features.

3.4 Nonlinearity

Each texture primitive plane is subjected to a
nonlinear transformation, we use the following
bounded nonlinearity

2.0t

1=
1+e**

(12)

where «a is a constant. Nonlinear transformation is
computed in a window a,(x,y).

3.5 Computing Textural Features

After mnonlinear transformation of the textural
primitive planes, we computer standard deviations
from the decomposable value, amplitude, or average
absolute deviations from the standard deviation,
phase angle in overlapping window nxn through
edge-preserving and noise-smoothing procedure

(Jixian Zhang, 1994; Jixian Zhang and Deren
Li ,1995) as textural features. We can also compute
local fractal dimension, textural density as texture
measures.

4. FRACTAL FEATURE IN MULTISCALE
' TEXTURE ANALYSIS

Fractal dimension is a powerful feature of texture
for the description of its coarseness and complexity
which may integrate some measures described by
other methods. Textural image can be regarded as a
process of {ractional Brownian motion (fBm), fBm
is described by the scalar parameter H, which is
related to fractal dimension D=3-H.

In 1-dimensional space, Flandrin (Flandrin, 1992)
showed that for any j, the wavelet coefficients of
fBm give rise to time sequences which are self-
similar and stationary under orthonormal wavelet
decomposition.

Snsd ot 0.2 e 2H
E[ ()W, (m)}:—z—{—jimrv[r— (n—m)|4 dr]} (13)
where
W, (n)=Q2) "W, (n),r,(7) = 4,1,7) (14)
A D) =2 [ (D at - Dt (15)

W,(n) are the wavelet coefficients for scale 2/, y(7)
is the basic wavelet.

According to above theorem, fractal feature in our
multiscale texture analysis is computed through
following two methods.

4.1 General Fractal dimension
We compute general fractal dimension as the result

of all used scales, let n=m, from (10) we get follow-
ing equation:

Var(i,(n) = S, (Y2 ¥ = €2y (16)
where ’
Var(W,(n)) = EOW, (W, (), V,(H)=—["r,(ID)|{"dr
It follows that
tog, (Var(, (n))) = QH +1); + constant (17)
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Therefore, the fBm index H (and hence D) can be
easily obtained from the slope of this variance
plotted as a function of scale in a log-log plot.

4.2 Local Fractal Dimension

Local fractal dimension is considered as a function
of scales, from (16), we obtain local fractal dimen-
sion as

D(2') =log, (Var{,.(n))) - 1og, (Var(#, () (18)

5. MULTISCALE TEXTURE FEATURE FUSION

Fusion of multiscale texture features is following
feature extraction and is- according to the lateral
inhibition and end-inhibition in neurodynamics. Both
competitive fusion and cooperative fusion are
developed.

5.1 Local Competitive Interactions

Competitive interactions help in noise suppression
and reducing the effects of illumination (Grossberg,
1987; Manjunath, 1993). These steps can be modeled
by mnon-linear lateral inhibition between features.
Two types of  such interactions are identified:
competition between spatial neighbors
+ with each orientation, and competition between dif-
ferent orientations at each spatial position.

5.1.1 Competition Between Spatial Neighbors with
Each Orientation: A cell of prescribed orientation
excites like-oriented cells corresponding to its
location and inhibits like-oriented cells correspond-
ing to nearby locations at the next processing stage
(Grossberg, 1987).

Let Y(s,6) be the output of a cell at position s = (x, y)
in a given scale with a preferred orientation @,
I(s,6) be the excitatory input to that cell from the
previous processing stage (texture measures in mult-
iscale analysis), N, be the local spatial neighborhood

of s. These interactions are modeled by non-linear
lateral inhibition between features as

5.1.2 Competition between different orientations
at Each spatial position: This competition defines a
push-pull opponent process. If a given orientation @
at position s = (X, y) is excited, then other orienta-

tion @@= @) is inhibited (especially in perpendicu-

lar orientation) and vice versa.

Still, let Y(s,6) be the output of a cell in this step,
the output from previous competition Y(s,6) be the

input I(s,8) to that cell. The competitive dynamics is
represented by

AX(s,H):—as,aX(s,H)+I(s,€)—gngMY(s,H) (21)

Y(Sﬂ)ég{X(Sﬂ)] (22)

5.2 Competition Between Scale Interactions

Scale interactions are used for the representation of
end-inhibition property exists among hypercomplex
cells in the visual cortex of mammals. These cells
respond to small lines and edges in their receptive
field, and their response decreases as the length of
lines or edges increases (hence these are often re-
ferred to as end detectors) (Manjunath, 1993). These
cells appear to play an important role in localizing
line-ends and texture boundaries.

If Q(s,0) denotes the response of such a cell at

position s = (X, y) receiving inputs from two chan-
nels 1 and j (& >a’) with preferred orientation @,
then '

0,(s,0) = gl 1 (s,6) - a1 (5,60)) (23)

5.3 Cooperative Fusion

This final stage involves grouping similar orienta-
tions. The cooperative fusion process receives
inputs from the competitive stage and from end-de-
tectors described in local competitive interactions
and interactions. If Z(s,6) represents the

output of this process, then

scale

_ o ' g ))ds' 24
MX(s, 0= ~a, X (5,0 + 1(5,0)~ £b,¥(5,6) gy HeO=dldl-s 00 o) 2
d(s=(x).6) =
Y(s,0) = g[ X (s,0)] (20)
exp(—-(ZoJ)-l)[ﬂf(xcos 0+ ysin 6) +(—xsin O+ ycos 9)2} (25)
where (a, b) are positive weights, g(x) is a non-
d(s,0) represents the receptive field of Z(s,0),0 is
linear function such as g(x) = 1( () the preferred orientation , ¢ is the corresponding
1+ exp(—/fr orthogonal direction, and A is the aspect ratio of
the Gaussian.
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6. EXPERIMENTS AND ANALYSIS

The performance of the proposed multiscale analysis
method is illustrated on following eight textures
from Brodatz (Brodatz, 1966) texture album: grass
lawn, raffia weave, beach sand, woolen, pigskin,
leather, water, wood grain. The scan resolution is
85 um, entire image size is 256x512 pixels, size of
every image block is 128x128 pixels. The following
principles are used in our experiments: 1). we chose
formula (6) in direction 0°,45°,90° as our basic
wavelets for the multiscale decomposition, their pa-
rameters of bandwidth B=1.5 octave, f, = 1.75,
a=2'(jeZ), 2). we define the initial overlapping
window size as 5x5 for our decomposition in scale
2°; 3). the decomposed value and amplitude in scale
2/ are used as the textural primitives, then the
standard deviations (SDVs) after their nonlinearity
are computed as textural features, the SDVs are
computed in overlapping window 15x15 by our edge-
preserving and noise-smoothing procedure.

After the processing of above-mentioned steps, a
spatial  restrain-based  probabilistic relaxation
technique (Jixian Zhang, 1994) is developed for
the segmentation and recognition of these textural
images. The results of classified accuracy in scale 2'
is shown in table 2. In order to compare with other
method, laws' texture energy method and cooc-
currance matrix method are used for the segmenta-
tion of our experimental textural images, and their
results are also shown in table 2. In laws' energy .
method, the ESLS, E5S5, RSRS5, L5SS5 filters are
employed, while in the cooccurrance method,
measures of the energy, correlation, local homogene-
ity, inertia are used as textural features. It is easy to
see from table 2 that more than 20 percentage
recognition accuracy is improved using our multi-
scale method.

Experiments are also fulfilled in some real aeriopho-
tographs and again the performance of our multi-
scale approach is showed.

Mulitiscale| Laws |Cooccurrance

method | energy matrix

grass lawn 71.5 27.6 34.4
raffia weave 86.9 67.5 47.7
beach sand 741 26.5 17.7
woolen - 92.7 83.5 87.6
pigskin 90.1 50.1 48.3
leather 92.1 92.2 58.4
water 95.2 92.3 64.5
wood grain 91.4 77.1 63.2
average 86.8 64.6 52.7

Table 2 Classified Accuracy in our Experimental
Images (%)

7. CONCLUSIONS

Because of its multiscale attribute of image texture,
it is important to consider the role of scale for
texture analysis. In this paper, we have developed a
common hierarchical framework which provides a
multiscale approach to image texture based on the
visual texture perception and wavelet theory of
multiscale decomposition. Our proposed method can
give representation between spatial space and
Fourier space, detect different scale texture features,
and correspond to the visual texture perception. Ex-
periments showed the ability to recognize texture
image effectively.
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