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ABSTRACT:

In this paper, after an introduction to the basic ideas and notations of metric topology, a integrated theory of spatial relations (such
as metric, order and topology) between sets is developed in which the relations are defined in terms of the intersections of the
boundaries, interiors and exteriors of two dynamically generated sets based on the Hausdorff metric. Then some extended models
are presented mainly for quantitatively deriving spatial relations between partially separated objects and objects in constrained
spaces. Finally, examples for integrally reasoning different kind of spatial relations are given and some potential applications of

presented theories in GIS area are also suggested.

1. INTRODUCTION

Conditions among spatial data are commonly expressed in
terms of spatial prepositions or spatial relations. The spatial
relations are often classified into metric (distances and
directions), order (partial or total order) and fopology three
groups. Over the passed few years, the investigation of formal
and sound methods of describing spatial relations have received
unprecedented attention in the GIS area. Much progress has
been made, particularly in the area of formalizing topological
relations based on the mathematically well-defined 4/9-
intersection model [Egenhofer and Franzosa, 1991, 1994;
Egenhofer and Herring, 1991; Mark and Egenhofer, 1995]. In
the meantime, many investigations also have been made for
quantitatively deriving metric relations [Frank 1992; Peuquet
and Zhang, 1987; Chen et al., 1995], and partial or total order
relations [Kainz et al., 1993]. However, unlike the studies of
topological relations, formalizations of metric and order
relations are gencrally based on a diversity of models. How to
integrally derive different kinds of spatial relations between
sets (non-point-like) based on an mathematically well-defined
unified algebra framework is still an open problem up to now.
This lack of an integrated comprehensive theory of spatial
relations has been a major impediment for solving many
sophisticated problems in GIS, such as formally deriving
complex spatial relations among spatial objects with multiple
representations or uncertainties, integrally reasoning -metric,
order and topological spatial relations, and generation of the
related standards for transferring spatial relations.

This paper focuses on the development of the unified algebra
framework and associated models for deriving different kinds of
spatial relations between sets. At first, after an introduction to
the basic ideas and notations of metric topology, a integrated
theory of spatial relations between sets is developed in which
the relations are defined in terms of the intersections of the
boundaries, interiors and exteriors of two dynamically
generated sets based on the Hausdorff metric. Then some
extended models are presented mainly for quantitatively
determining spatial relations between partially separated
objects and objects in constrained spaces. Finally, examples for
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integrally reasoning different kind of spatial relations are given
and some potential applications of presented theory in GIS area
are also suggested.

The remainder of this paper is structured as follows: Chapter 2
firstly reviews some related fundamental definitions. In chapter
3 a integrated theory of spatial relations is developed based on
the metric topology theory and the dynamic 9-intersections.
Chapter 4 contains some extensions of the presented theories
and models. Practical algorithms and examples for integrally
reasoning different kind of spatial relations are given in chapter
5. In the last chapter conclusions and outlook for further
research are given.

2. THE FUNDAMENTAL DEFINITIONS
2.1. Partially Ordered Sets and Lattices

(a). Partially ordered sets: Let P be a set, a partial order on P is
a binary relation< on P such that, for every x, y, zeP:
(). x<x (reflexive); (2). if x<y and y<x, then x=y
then

(fransitive). A set with a reflexive, antisymmetric and transitive
relation (order relation) < is called a partially ordered set (or
poset).

(antisymmetric); (3). if x<y and y<z, x<z

(b). Upper and lower bounds: Let P be a poset and S < P. An
element x €P is an upper bound of Sif s<x forall seS.A
lower bound is defined by duality. The set of all upper bounds
of S'is denoted by S” and the set of all lower bounds is denoted
by S..If S has a least element, it is called the least upper

bound of S. By duality, if S, has a largest element, it is called

the greatest lower bound of S. A least upper bound or a greatest
lower bound is always unique.

(c)._Lattices: A lattice L is a poset in which every pair of
elements has a least upper bound and a greatest lower bound. A
lattice is called complete when a greatest lower bound and a
least upper bound exist for every subset of the poset. It can be
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proven that every finite lattice is complete [Kainz et al., 1993].
2.2. Mathematical Morphology

Mathematical morphology (MM) is an approach to the analysis
of structures based on set theoretic concepts. Let X be a given
object set, B be a set of structure element, the two fundamental
morphological operations on X are defined as follows:

Dilation: X®B=U,_, X, (1]

beB

X0B=N,,X, (2]

Erosion:

where X, is defined as the translation of X by vector b,
ie., X, ={x+blx € X} . From equations [1] and [2], we know

that dilation is an expansion of the set and erosion is a
shrinking of the set. The detail definitions of other
morphological operators and their properties can be found in
[Serra, 1982].

2.3. Metric Spaces

A metric space is a pair consisting of a set £ and a mapping

(p,,p,) > d(p,,p,) of E x E into R, ,having the properties: (1).

p=p, = d(pp,)=0;(2).d(pp,) =d(pysp,) (symmetry);
(3).d(p,,p,)sd(p,,p,)+d(p,,p,) (triangle inequality). The
function d is called a metric and d(p,, p,) is called the distance
between the points p,and p,. Distance between points
p(X,:%,,...%,) in R” is described in terms of the Minkowski

d, -metric:
d(pp) =0 %, =%, )" (3]
=1

Conventional Euclidean distance is defined by the d, -metric.
Similarly, the Manhattan distance defined by the d, -metric,
and the maximum distance defined by the d_ -metric. Some

examples of different distances are shown in Fig.1.
2.4. Topological Spaces

A topological space is a pair consisting of a set E and a
collection ~# of subsets of E called the open sets, satisfying the
three following properties: (1). every union (finite or otherwise)
of open sets is open; (2). every finite intersection of open sets is
open; (3). the set £ and the empty set M are open.

One of the most important properties which a topological space
can satisfy is that of compactness. A topological space E is said
to be compact if it is separated and if from every open covering
of £ one can select a finite subcovering of E. Some other related
definitions of topological concepts, such as interior, closure and
boundary can be found in [Egenhofer and Franzosa, 1991].

2.5. The Hausdor{f Metric

(a). Metric topology: A metric d on a set £ includes a topology
on E, called metric topology defined by d. This topology is such
that U c £ is an open set if, for each p, €U ,thereisan ¢ >0

such that the d-ball of radius e around p, is contained U . A
d-ball is the set of points whose distance from p, in the metric
d is less thane, ie. {p, €E|d(p,,p,) <e}. Notice that the
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Fig.1. Three methods of measuring distance in the plane and the
corresponding unit sets

Fig.2. (a). the Hausdorff distance £, ; (b).the distance properties.

metric topological spaces are Hausdoff and separable.

(b). The Hausdorff metric: Hausdorff's metric is defined on the
space X where each point is a non empty compact set of R* . If

K, and X, denote two non empty compact set in R* (or
equivalently two points in X), and B (&) is the closed ball with
a radius ¢ , then the quantity:

p(K,K,)=mf{e:K € K, ® B(¢),K, € K, ® B(¢)} [4]

defines a metric p on X, known as the Hausdorff metric. From
equation [4], p is the radius of the smallest closed ball B such
that both KX, is contained in the set K, ® B(¢) generated by
dilation and X, is contained in the dilated set K, @ B(g). It
can be proven that the Hausdorff distance p(K,K,) satisfies

all the properties of distance functions [Serra, 1982]. Fig.2
illustrates the notation and properties of Hausdorff distances.

In particular case, when K, and K, are reduced to two points,
the Hausdorff distance p(K|,K,) coincides with the Euclidean

distance.

3. SPATIAL RELATIONS BETWEEN SETS
3.1. Topological Relations between Sets

Topological relations are spatial relations that are preserved
under such as rotation, scaling, and rubber sheeting. The model
for binary topological relations is based on the usual concepts of
point-set topology with open and closed sets [Egenhofer et al.,
1994). The binary topological relations between two objects,
K, and K,,in IR’ is based upon the intersection of K,’s

interior ( K7 ), boundary (2K, ),and exterior (K ) with K,’s
interior (X7 ), boundary (K, ), and exterior (K, ). A 3x3
matrix 3, , called the 9-intersection as follows:
KNnK, K nNdK, K nK,
F=|KnK, KndK, KnK [5]
K nK;, K ndk, K Nk,
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Fig.3. The eight topological relations between two regions in IR*.
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Fig.4. The dynamic topological relations derived by the dynamic
9-intersections.

Topological invariance, applicable to the 9-intersection, are the
content (i.e. emptiness or non-emptiness) of a set, the
dimension, and the number of separations [Egenhofer and
Franzosa, 1994]. The contents invariant is the most general
criterion as other invariant can be considered refinements of
non-empty intersections, and is only invariant discussed in this
paper. By considering the values empty (0) and non-empty (1),
one can distinguish between 2° =512 binary topological
relations in which only a small subset can be realized when the
objects of concern are embedded in 7r* . Egenhofer and Herring
(1991) showed that, for two regions with connected boundaries
embedded in/r*, the 9-intersection distinguishes just 8
different relations, i.e. disjoint, contains, inside, equal meet,
covers, coveredBy, and overlap [sce Fig.3]. However, when we
apply the 9-intersection model to describing topological
relations between other types of spatial objects, such as point-
objects and line-objects, as well as binary topological relations
combining different types of spatial objects such as a line and a
region, a point and a line, or a point and a region, the situation
will be more complicated. According to the results of Mark et.
al. (1995), for two simple lines 33 different spatial relations are
possible, and for a line and a region, 19 are possible. For the
detail descriptions of topological relations, please find in
[Egenhofer and Franzosa, 1991, 1994; Mark et. al., 1995].

3.2. Metric Relations between Sets
3.2.1. Dynamic 9-intersection

According to the topological properties of morphological
dilation [Serra, 1982], if the set K, and the structure element

set B(e,) are both closed sets, then the dilated set K, ®B(s,) is

also the closed set. Based on this result, we extent the general
9-intersection to the dynamic intersections as follows:

[[K®B(e)I'NK;  [K®B(e,)'NeK, [K®B()"NK;
T (8)= AK®B()INK;  AK®B(e)INEK, AKDB()NK;
[K,®B(e)] NK?

[K®B(e)] NK, [K®B(e) NK;

[6]
K AK.®B(s)) K NIK,®B(z)] K'r{K,®B(e))

Stony(£,)= EK ALK, ®B(e, ) OK,NALK,®B(e,)] oK, K,®B()|”
K, AK,®B(e,)l° K, NIK,®B(z,)] KI_P{KzéBB(e/)]["/]
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where the K, and K, are given two closed sets, the K ®B(s,)
means relevant morphological dilation by the closed ball B with
radiuse,, and the 3(9, »(€) means dynamic 9-intersection with
parameter ¢, fromK, to K. Based on equations [6] and [7], we

can derive dynamic topological relations by using the different
parameter ¢, [see Fig.4].

In particular case, whene=0, the structure element B(e,) is

reduced to the original point {o}, according to the algebraic
properties of morphological dilation [Serra, 1982], we have

K ®B(e)=K @ {0} =K, , then the dynamic Y-intersections
35 ,(8) defined in equations [6] and [7] coincide with the

general 9-intersection 3, in equation [4].

3.2.2. Distance relations between sets

Distance relations are spatial relations that are defined under
different distance functions, such as the 4, ,d, and 4 -metrics

between spatial points, as well as the Hausdorff distance p

between spatial objects. Since spatial points are the special
spatial objects with simple structures, in general cases only the
Hausdorff distance p is discussed in this paper.

According to the derived dynamic: topological relations by the
dynamic 9-intersections of equations [6] and [7] with different
parameter &,, such as dynamic equal, dynamic covers (or
dynamic corveredBy) and dynamic contains (or dynamic inside),
we can simply get the Hausdorff distance p(X . K,) between
two closed sets K, and K, by calculating the minimum and
maximum dilated distances based on equation [4]:

p(K, K, )=max{min(,), min(¢)}; when

100770007 [L11]f011] [oo1] [oor|[111][1=1
T4 (8)=0101,010],1001}/001}, (011}, | 111{|101||*11};
" 001 |ooL[lool] |00l |o001|{0o0L[|001[} [8]

001
000](000| 1010|/110|[1*0
100}/010[,|010|{100(/*10|
TILfIIL| |11 T11}j111

s erotol010] (100
3%, ()={010} 010}, 100 |
@O g0 |00t [ |11t

equal contains comvers

where "* " means either empty (0) or non-empty (1). The
binary distance relations derived by equation [8] are suitable for
different types of spatial objects, such as point-objects, line-
objects and region-objects, as well as combining different types
of spatial objects such as a line and a region, a point and a line,
or a point and a region. Some examples are shown in Fig.5.

3.2.3. Directional relations between sets

The Hausdorff metric between sets is effected by the choice of
that metric functions. Directional relations between sets can be
defined by the Hausdorff meiric of angular bearings. The
computation of direction from one spatial object to another is
identical to that for metric function except that the angular
bearing is computed for each ordered pair in the Cartesian
product. The angular bearing is measured in the sense of
navigation bearings (i.e. increasing clockwise from north).

For calculation of the directional relation (X,K}) between two

non empty compact setsk andK,inR*, we select the
angular bearing set R(w,) as instead of closed ball B(g,) , then
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we can define the Hausdorff directions and the dynamic 9-
intersections for directional relations as follows: :
p(K,K))=infla: K c K, ®R(a £ 7),K, < K| @R(a)}} 9]
(K, K)=o(K,K)tn
(K @R« )’ NK; [K®R(e)'NEK, [K®R(a)]' K,
Reoy (@) AKDR@)NK; AKSR(a)NEK, K OR()NK,;
[K,®R(e ) NK] [K®R(w)] K, [K®R(a)] AK;
(10]
Ky K, @R(a )l KinAK,®R(«))) K{{K,@R(a,)]
R, (@)= KK, OR(@ )" 8K, NAK,®R(a,))] oK K,®R(a,)]
K NK,®R(a))” Ky nAK,®R(a)] KP{K,®SR(a,)]
[11]
where the K®R(«,) means relevant dilation by the closed
angular bearing R with angle o, , and the SRZ.J)(oc,) means the

dynamic -intersection for directional relations with parameter
a from K, to K,. Based on equations [10] and [11], we also can

derive dynamic topological relations by using the different
parameter «, .

Similarly, according to the derived dynamic topological
relations by the dynamic 9-intersections of equations [10] and
[11] with different parameter «,, we also can simply get the

Hausdorff direction @(K,,K,) (or (K, K) Ybetween two closed

sets K, and K, by calculating the minimum and maximum
dilated angles based on equation [9]:

@(K},K; )=max{min(«,), min(a +7)}
(K, K )=p(K, K, yEm

1001[0007 [111][0117 Joo1] [oo1][1117[1*1
R (@)= 010 | 010 |1 0011 001}, | OTT|,| 111 |{ 101 || *11;
" 001 /] 0o1] [ool[{oo1]| {001 {o01|] 001|001

1001[0007] [1007[000][0007 [010][1107[1%0
Ry (@,)=010 1 0101,|100 || 100 || 0101, {010 {{ 100 || *10}
’ oot J{oot [trr]{rrt {1ttt et {1t

}; when

[12]

equal contains convers

where "* " means either empty (0) or non-empty (1). The
binary directional relations derived by [12] are also suitable for
different types of spatial objects and their combining types.
Some examples are shown in Fig.5.

3.3. Order Relations between Sets

Formal methods for the description of order spatial relations
can be based on mathematical theories of partially-ordered sets
and lattices. The use of greatest lower bounds and least upper
bounds for describing order spatial relations shows that we
need a lattice in order to find an answer in all possible cases.
Since not every partially-ordered set is a lattice, it is, however,
always possible to add elements to a partially-ordered set to
create a lattice. The process of normal completion specifies how
to find the smallest numbers of elements necessary to add to a
partially-ordered set to create a lattice, i.e. to build the
minimal containing lattice of a partially-ordered set. The
general descriptions of order relations can be found in Kainz et.
al. [1993]. In this paper, we emphasize to study the problems of
the detail classifications of order relations and their integration
with other kind of spatial relations.

Based on metric and topological relations, order spatial relation

Fig.5. To obtain the Hausdorff distance and directions between two
planar sets 4 and B.

can be classified to the three kinds, i.e. distance orders (such as
the areas of regions or the lengths of lines), directional orders
(such one spatial object at left/right or in front/behind to
another one), and topological orders (such as one spatial object
is inside another or its inverse operations whether a spatial
object contains another one). Let N be the greatest lower bound
and U be the least upper bound of the completion lattices, Fig.6
shows some examples of lattice resulting from the normal
completion of order spatial relations measured by distances,
directions and topological covers.

4. MODEL EXTENSIONS
4.1. Metric Relations between Subsets
According to the fuzzy set theory [Zadeh, 1965], the concept of

distances or directions between subsets are fuzzy, since the
spatial objects may contain many subsets, the distances or

(a). distance orders

rbrl 12

(b). directional orders

Fig.6. The classification of order spatial relations.
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directions between these subsets are difficult to be represented
Just by a single value. If we define the fuzzy membership values
as the covering percentages of generated region areas (or point
numbers and line lengths) by the dynamic intersection of sets in
R?, we can find that the Hausdorff metric is Jjust the special
case with the fuzzy membership value equal to one. Based on
the changes of the covering areas of regions ((or point numbers
and line lengths) from an empty set to a complete set, we can
estimate the fuzzy membership values from zero to one, then we
can quantitatively derive the metric relations between subsets.

For reasons of simplicity the distances and directions between
closed sub-regions discussed in this paper only, related models
for estimation of fuzzy membership functions are defined as
follows:

K@BMINK, H+ ALK N K, BB}

o (Al
: ACK ) A(K,)

13
AUKOROINK, H+ ALK A K,OR(O)]} Wl

A(K )+ A(K,)

QA(G):

where A{*} means covered area sizes by dynamic intersections
with the parameters A and6 for distances and directions
separately, the functions 0<® (1)<l and 02Q (8)<1 with
the parameters 0<A<p(K,K,) and 0<6<¢(K,.K,)*r are
called the size distribution functions [Chen, 1991; Serra, 1982].

An examples of distance relations between two spatial regions
is shown in Fig.7.

4.2. Distance Relations between Sets in Constrained Spaces

In a space, there are often some obstacles such as rivers
between objects. In this case, we cannot take a straight path if
the path crosses the rivers; we should take the shortest path that
does not cross the river except at bridges. The shortest path
between a location p; and a point p, in a space E with a
constrained set C is defined by the shortest path among all
possible continuous paths connecting p; and p, that does not
intersect the obstacle set C. In mathematics, this shortest path is
called the "geodesic line" and its length denoted by the geodesic
distance d_(p,,p,) . If the obstacle set C cuts apart two points

p, and p, to two separated sets, there is no continuous path
linking p, and p,, in this case we define d_(p,.p,)=+® . As

the descriptions in [Lantuejoul and Maisonneuve, 1984], the
geodesic distance d (p,,p,) satisfies all the properties of

distance functions, so the space E defined with a geodesic
distance d_is also a metric space. Similarly, the shortest

distance between sets K, and K, in a given space X with a

constrained set C also can be defined by the geodesic Hausdorff
distance based on the geodesic morphological operations [Chen,
1991; Lantuejoul and Maisonneuve, 1984].

The geodesic Hausdorff distance between sets is defined on the
space X and the constrained space C where each point is a non
empty compact set of R".If K, and X, denote two non empty
compact set in R" (or equivalently two points in %), then the
quantity:

P (K K )=inf{e:K,c®Di(K,), K,cDi(K,)} [14]
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Fig.7. The distance relations between subsets and their size
distribution functions.
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Fig.8. The geodesic Hausdorff distances between sets constrained
by set C.

defines a metric p, on X, known as the geodesic Hausdorff
metric. From equation [14], D;. is the geodesic dilation denoted
by D(K)={2eC Bo(2) K =N} , Bo(2.6)={zeKH, (2,p)<e} is
the geodesic ball with a center z and aradius ¢ , and p_ is the
radius of the smallest geodesic ball B, such that both K, is
contained in the dilated set D (K,) and KX, is contained in the
dilated set D (K)) .

In particular case when K; and K, are reduced to two points,
the geodesic Hausdorff distance p.(K,,K,) coincides with the

point geodesic distance. Similarly, we also can define the
dynamic 9-intersection for the spatial relation of geodesic
distance and fuzzy geodesic distances between partial separated
subsets. The detail description of these formulas is omitted in
this paper. An example is shown in Fig.8 for illustrating the
notation of the geodesic and fuzzy geodesic Hausdorff distance
between two compact sets.

5. ALGORITHMS AND EXAMPLES
5.1. Algorithms

To determine the Hausdorff distances or directions between
spatial objects in layer-based vector or raster GIS environments,
the main problem is how to realize the operations of
morphological dilation and logical intersection. The dilation by
the structure elements of disks or angular bearings can be
treated as general and oriented buffer operations separately, and
logical intersections can be implemented by overlay operations
in GIS environments. Since both buffering and overlay are basic
data analyzing functions included in many commercial GIS
software, the implementation of the Hausdorff distances or
directions changes to a very easy problem. In a raster GIS
environment, the main problem is how to considerate the
different distance functions when we generate buffer zones. For
square grid raster data, generally used distance functions can be
separated as 4-connection, 8-connection and quasi-Euclidean
distances in 2-D digital spaces. The detail descriptions of
algorithms for determining the Hausdorff distances can be
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found in [Chen et. al, 1995].

5.2.  Integrated Reasoning of Spatial Relations

By using the models of spatial relations between sets presented
as above, we can integrally derive the compositions among
different kinds of spatial relations. It is possible to assess
whether it is a consistent query to ask for “all objects X, that are
farther then 100 meters between K, suchthat X, contains X,
and the distance between K, and X, is less than 100 meters”,

we can integrally reason out the compositions between distance
and topological relations. by the following steps:

® since p(K,,K,) 2100 (m), K, ® B(p,,)) covers K, ;
e since K, containsK,, K @ B(p, 1) contains K ;

¢ sothat K, ® B(p, ) covers (or contains), K, and
P(K,K,)< p(K|.K,) [see Fig.9].

. KieBes)

Fig.9. Integrated reasoning the spatial relations of metric and topology.

6. CONCLUSIONS AND OUTLOOKS

As the natural extension of the general 9-intersection which is
used for formally deriving topological relations only, the
dynamic 9-intersection based on metric topology supplied a
general framework for studying different kinds of spatial
relations between sets. The presented integrated theory of
spatial relations between scts makes a new way for formally
deriving complex spatial relations among spatial objects with
uncertainties [Chen et. al., 1996], integrally reasoning metric,
order and topological spatial relations, and generation of the
related standards for transferring spatial relations [Mark et.
al.,1995]. Even though the presented approach is only focus on
the applications in GIS field, the related results for deriving
spatial relations between sets can be also used for many other
fields, such as CAD, computer vision, pattern recognition, robot
space searching and so on. However, only the theoretical
models and algorithms have be presented in this paper, a wide
field of practical application for data management and spatial
data analysis in 2-D and 3-D GIS environments has not been
touched. Therefore, the reported results must be verified and
extended in order to be wused in different practical
environments.

Two main directions for further research shall be pointed here,
one is the applications of the presented theoretical models and
algorithms in 2-D and 3-D GIS environments for developing the
new tools of spatial query and analysis; another one is the
extensions of presented theories and models for formally
deriving complex spatial relations among spatial objects with
multiple representations.
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