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ABSTRACT

Investigations into on-line triangulation, robot vision, image sequence analysis, and autonomous vehicle navigation
have established the merits of sequential estimation methods in aerial and non-topographic photogrammetry utilising
both film-based cameras and digital sensors. These merits generally focus on enhancement of the speed and
efficiency of the triangulation procedure through the incorporation of quality control and observational error detection
into the measurement procedure. The on-line quality control of industrial measurement with vision systems utilising a
single sensor such as a CCD camera is a natural extension for sequential techniques. This paper examines how the
sequential estimation process may be incorporated into single-sensor vision metrology for typical industrial
photogrammetric inspection. Issues investigated in the context of the industrial application include the sequential
nature of data collection and adjustment, the influence of normal equation structure on system response, generation of
approximate values, additional parameters for systematic error compensation, blunder detection procedures, and

datum establishment.

With regard to datum establishment, a factorisation method for recursively updating the

equation system obtained in a free-net adjustment by inner constraints is suggested.

1.0 INTRODUCTION

Multi-camera, stereo configurations have, up to now,
been the focus of the bulk of the research effort in close-
range vision metrology (VM). The recent commercial
availability of large-area, high-resolution CCD cameras,
coupled with the proven advantages of a single metric
camera for high accuracy measurement, has heightened
the potential for the single-sensor VM system in industrial
inspection. The performance of industrial measurement
tasks such as localised inspection, re-work, and fit
checking is additionally enhanced through the use of VM
systems containing an on-line link between the camera
and an external computer. While real-time three
dimensional measurements are not achievable with the
single camera system, the near real-time image
measurement capabilities associated with digital
imagery, in combination with sequential estimation
techniques such as on-line triangulation (OLT) can
provide rapid data turnaround.

The acceptance of CCD cameras for industrial
photogrammetry continues at a pace which is
constrained primarily by questions of accuracy related to
the typically reduced format and resolution of CCD
sensors as compared to medium and large format film-
based metric cameras. Studies presented in Fraser &
Shortis (1995) and Maas & Kersten (1994) have
indicated that CCD and still video cameras such as the
Kedak DCS200 (and DCS420) can vyield acceptable
accuracies for many industrial measurement tasks. One
consequence of the lower resolution afforded by CCD
sensors is that significantly more images may be
necessary to achieve a precision comparable to a
network obtained with a metric film camera. The

potential of the VM system eases previous limitations in
the number of images that may be readily processed and
allows their incorporation into the network with minimal
time expenditure. After an optimal convergent camera
station network is in place, the use of multiple exposures
is the principal means of improving object space
precision. Here, OLT can serve as a mechanism for
recursively monitoring object point accuracy. The
photogrammetrist, while still on site, can interactively
strengthen the network geometry until the desired level of
accuracy is obtained. :

OLT methods have typically focused on the detection and
removal of gross errors. By incorporating quality control
and observational error detection into the measurement
process, the speed and efficiency of the overall
triangulation is enhanced. A comprehensive historical
background of sequential estimation as applied to OLT
can be found in Gruen (1985). Several recent studies
apply these methods in non-topographic applications.
These include robot vision (Gruen & Kersten, 1992),
image sequence analysis (Kersten & Baltsavias, 1994),
and autonomous vehicle navigation (Edmundson &
Novak, 1992). The suggested application of sequential
estimation in OLT to industrial quality control (Kersten et
al, 1992) has for the most part remained unexamined.

This paper, which builds upon work reported in
Edmundson & Fraser (1995), explores the utilisation of
sequential estimation for OLT in single-sensor vision
metrology. We begin with a re-examination of the
mathematics behind the general sequential estimation
problem focusing on the computational algorithm, an
orthogonal transformation technique known as Givens
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Transformations (Blais, 1983). Emphasis is placed on
those areas of concern in general OLT relating to close-
range, industrial photogrammetry. These include the
issues of system response time, generation of
approximate values,. the compensation for systematic
errors, blunder detection methodology and datum
establishment. A procedure is suggested for sequentially
updating the system obtained via a free-net adjustment.

2.0 SEQUENTIAL ESTIMATION FOR ON-LINE
TRIANGULATION

The process of modifying least squares computations by
updating either the normal equations matrix or its inverse
has been used in control and signal processing for some
time in the context of linear sequential filtering. Taking
into consideration the sequential nature of the
photogrammetric data collection process, the utilisation
of sequential algorithms for OLT follows naturally.

The appropriate simultaneous solution - for photo-
triangulation is the well known bundie adjustment. All
data must be available prior to the adjustment.
Conversely, the sequential procedure builds the object in
a stepwise fashion, proceeding image by image (or point
by point) and incorporating data into the system as it is
collected.

The primary goal of OLT for aerial triangulation is to
provide a clean data set for a final, rigorous simultaneous
adjustment. This is achieved by accommodating blunder
detection and re-measurement quickly within -the
measurement process. Observations are added to the
system as they become available and deleted or replaced
if found to be unacceptable. Sequential algorithms
enhance this process by updating the system with new
information without starting from scratch with the entire
data set. In the aerial case, blunder detection takes
precedence over the solution vector while in the VM
application, the monitoring of object point precision
throughout the measurement process assumes the
highest priority.

Notable sequential algorithms which have been examined
for OLT include the Kalman filter, which updates the
inverse of the normal equations matrix (Mikhail &
Helmering, 1973), the "Triangular Factor Update"
(Gruen, 1982) which updates the factorised normais
directly, and Givens Transformations which can be used
to update either the factorised normal equation system or
its inverse. With respect to general ieast-squares,
Givens Transformations possess certain advantages
over other orthogonalisation techniques such as the
Householder and Gram-Schmidt methods. (Gentlemen,
1973; George & Heath, 1980). As applied to OLT,
several studies have demonstrated the superiority of the
Givens method over the Kalman filter and "Triangular
Factor Update" algorithms (Wyatt, 1982; Runge, 1987;
Holm, 1989).

Givens Transformations are based on the use of plane
rotations to annihilate matrix elements. This approach,
compatible with the Cholesky method, provides a direct
method for solving linear least-squares problems without

forming the normal equations. Because all updating is
done in the factorised normals, numerical instabilities
associated with forming and solving the normai matrix
are avoided. Only one row of the design matrix is
processed at a time, making it ideal for sequentially
adding or deleting observations in an on-line
environment. If necessary, the solution vector can be
obtained at any stage of the process by back
substitution. The method can easily accomodate
weighted observations and parameters. A version of
Givens Transformations presented in Gentleman (1973)
avoids the computation of square roots, reduces the
number of required multiplications, and facilitates
weighted least-squares. This and similar “fast” recursive
algorithms are gaining favour in the area of parallel
processing due to the absence of the square root
operation (Hsieh et al, 1993). Additionally, the ability to
yield a solution in the absence of a positive definite
system may prove to be advantageous for the update of
systems encountered in the free-net adjustment of close-
range photogrammetric networks. This square root free
version of Givens is stressed in this study.

2.1 Least-Squares with Orthogonal Transformations

First, the use of orthogonal transformations for standard
least-squares estimation with the familiar Gauss-Markov
model is illustrated. Given an n x 1 observation vector /
and an m x n design matrix A such that m > n, the goal is
to determine the n x 1 parameter vector x in such a way
as to minimise the sum of the squares of the elements of
the m x 1 residual vector v which is defined by

v=Ax-1. (1

Initially considering only unweighted observations, the
solution is given by

i=(ATA)"ATI | @

This solution may be obtained with the Cholesky
factorisation A"A = U'U, where U is an upper triangular
matrix, or with the related factorisation A”A = U'DU,
where U is unit upper triangular and D is diagonal. The
only significant difference between the two is that the
former uses square roots and the latter does not.

Applying Cholesky to the normals and to the right hand
side results in the system

U'Ux=b ®
. 7\
With d = (U ) b , the system reduces to

Ux=d 4)
which is solved by back substitution.

If the decomposition A = QR is available, where Qis an m
x n matrix with orthonormal columns and R is an nx n
upper triangular matrix, the normal equations may be
written as
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RTQ"ORx =RTQ"1. (5)

Q is orthogonal hence QTQ = L Because R is

nonsingular if A’Ais, Eq. 5 reduces to
Rz = Q"I (6)

Equations 4 and 6 are then equivalent with U= Rand d =
o'l ‘

R and d are obtained by applying a series of orthogonal
transformations to A and /. Thus the solution to this
system may be determined without forming the normal
equation matrix directly.

Extending the system with an observational weight matrix

P (assuming uncorrelated observations) the least-
squares solution is given by
$=(ATPA)TATPI. )

Because P is diagonal, A can be simply premultiplied by
P* and the QR decomposition then applied to this
modified design matrix.

Now assume a sequential process where Eq. 4
represents the reduced system at stage k - 1. The
addition, deletion, or replacement of observations via
orthogonal transformations is shown below and follows
closely that of Gruen (1985). The addition of one
observation equation to stage & - I, including a set of new
unknown parameters, results in the following form at
stage k

MER

Here, a;, represents the coefficient vector of the added

observation, x’ is the new p x 1 parameter vector, and I,
is the right hand side of the new observation equation.
The total number of system parameters is n. Applying a
series of n orthogonal transformations (in our case
Givens Transformations)

Q=QnQn_1"'Q1a (9)
to Eq. 8 yields
U_Olin=p |Uin
Q0 _0Ollp =| |” (10)
al, N 0}

and for the right hand side,

Q0ilp = ’ (11)
Iy |1

Zeros in Egs. 10 and 11 show that when new parameters
are introduced, the rows and columns of the existing U
matrix and the existing d vector must be extended with
zeros.

Finally, the solution vector for the updated system is
obtained by back substitution into

=d. (12)

2.2 Givens Transformations

To illustrate the use of Givens Transformations for the
addition of one observation into an existing system, an
expanded form of Eq. 8 is shown in Figure 1.

Wy Wy Wy o Uy, 4
Uyy Uy o U, d,
Uy e Uy, d
unn dn
Q
a a, a - 4 l
Figure 1: U matrix augmented by new coefficient

vector

Consider one row vector from the system Ux = 4 and a
coefficient vector from the system Ax =,

0... Oui Uiy o Uy
13
()...Oai @iy **s Ay o ( )

One Givens Transformation replaces these two vectors
with

o ’
0 s Oul ui+1 ese uk ss 0

(14)
0..--00 ai,+1 ces al: cee
where
u, =cu, +sa,
a, =—su, +ca, (15)

ct+st=1

To annihilate a; to zero, the rotation parameters are
computed from the diagonal elements of U and the
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corresponding elements of the coefficient vector as
follows:

U a.
’ 2 2. b oL
u; —w/“i +a ;c=", §=" (16)

Uu. Uu.

H i

Each observation vector is rotated through U, row by row
until each of its elements is transformed to zero. The
additional element Q of the right hand side d vector
maintains the root residual sum of squares and is
updated with Givens Transformations along with U and 4.

The alternative square root free implementation of
Givens Transformations used in this study involves
finding a diagonal matrix D and a unit upper triangular

matrix U such that

L
U=D*U (17

1
A row of the product D2U is rotated with a scaled row of
A (Gentleman, 1973),

0--0d - Jdm, -
O...O.\/_s‘ai ves .\/_S'ak...

where d is the diagonal element of the matrix D and 5 is
the scale factor for the coefficient vector, initially set to
one. After one rotation, the newly transformed rows are

0...0Jd’

(18)

=/
A’ -

0«0 0 - +f8al - (19
where

d’=d+3a}

d3'=dd/d’

c=d/d’

5=08a,/d’

Weighted least-squares is simplified with this method by
initialising the scale factor & to the weight instead of to
one. Introducing an observation several times with
various positive and negative weights is equivalent to
introducing it once with the sum of the weights. Thus an
observation can be removed by reintroducing it with the
negative of its original weight.

3.0 OLT FOR SINGLE-SENSOR VISION METROLOGY
In this section important concerns in OLT with respect to

close-range, convergent photogrammetry are highlighted.
These include system response time, approximate

values, compensation for systematic errors, blunder
detection, and appropriate datum.

3.1 System Response Time

Response time is critical in on-line VM applications and
particularly so in the industrial environment where
inspection costs are directly influenced by the extent of
site disruption. Although significant, improvements in
computer hardware should not curb the search for
efficient algorithmic solutions.  Sequential techniques
such as Givens Transformations improve response time
but efficiency is also affected by the size of the system
which is in turn dependent on the number of active
parameters.

Ignoring self-calibration, phototriangulation involves six
exterior orientation parameters for each photo and three
coordinate parameters for each object point. Consider a
system involving m photos and n object points. In the
standard formulation of the bundle adjustment, object
point parameters are eliminated, leaving a 6m x 6m
system of orientation parameters. In  aerial
photogrammetry, this system is still too large to yield
permissible OLT response times. The normal case
geometry of the aerial network permits the use of sub-
blocks of photos in the on-line procedure. The sub-block
must be of sufficient size to provide reliability and yet be
small enough to yield adequate response times. Gruen
(1981) recommended the use of a 3 x 3 sub-block of
photos with both 60% overlap and sidelap.

The irregularity of convergent, close-range networks does
not offer such a straightforward answer to effectively deal
with system size. While image sensor parameters are
less than point parameters (6m < 3n), the elimination of
point parameters is the optimum solution. The typical
inspection for a single-sensor VM system will likely
involve only 50-100 points. As previously mentioned
however, a sizeable number of exposures may be needed
to achieve a desired level of accuracy. Using a 50 point
inspection as an example, as we collect in excess of 25
exposures, the number of sensor parameters begins to
exceed the number of point parameters. From this point
on, a reversal of the standard bundle in which photo
parameters are eliminated will certainly provide a faster
response. This approach would also be useful for the
standard simultaneous adjustment. The incorporation of
inner constraints for a free-net adjustment and the use of
additional parameters for self-calibration may also be
simplified. The most efficient solution is to incorporate
both elimination techniques into the OLT procedure. ltis
little effort to compare the current number of sensor and
point parameters to determine which to eliminate.

Efficiency is also enhanced through the exploitation of
the sparsity patterns of the reduced normal equation
system. A special matrix storage technique described in
Gruen (1982) for the Triangular Factor Update and also
utiised by Runge (1987) for standard Givens
Transformations is modified here to accommodate the
elimination of image sensor parameters as discussed
above. This technique, when combined with Givens,
facilitates the direct updating of the reduced normal
equations. A representative example for six object points
is shown in Figure 2.
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The lighter shaded portions of the structure correspond to
Uand dof Eq. 4. This structure is expanded by six rows
and columns (dark shaded portions) to provide storage
for the submatrices associated with a particular image.
Assuming a consistent system at any particular stage of
the process, U and d are fully occupied. The introduction
of a new image into the system begins by setting all
matrix elements of the image submatrices to zero. All
observation coefficient vectors for a given image are
rotated through the entire structure via Givens
Transformations. All subsequent images are treated in
the same manner. If observation deletions or re-
measurements are required in a previously introduced
image, its existing associated submatrices must be re-
positioned in the dark shaded areas. The necessary
observation vectors are then rotated through the system
with weighting appropriate for either insertion or deletion.
Back substitution into the U,d system at any time yields
the current solution vector for the object point
parameters.

3.2 Approximate Values

Providing optimum initial parameter values for OLT is a
major concern associated with sequential processing in a
non-linear model such as the collinearity equations. The
costly re-linearization of the system is avoided by using
the same set of initial values throughout the sequential
process. Coarse values may eventually cause drift in the
solution vector sufficient enough to produce a detrimental
effect upon efficient blunder detection and precision
evaluation. The solution is two-fold. The most obvious
answer is to provide good approximate values. This is
not always possible. However, for the assumptions
presented here, namely highly convergent imagery with
measurement restricted to signalised targets, this is
reasonable. Secondly, the performance of a periodic
simultaneous solution provides a "clean" version of the
parameter vector which may be used as the basis for
continuing sequential updating. @ The procedure is
straightforward. A minimum of four convergent images
is needed to obtain a consistent, reliable system. Four
well-distributed rays per object point are necessary for
blunder detection with data snooping. All object points
with four rays which meet a pre-established geometric
criteria are included in a simultaneous adjustment. From

Figure 2: Reduced normal equation matrix structure
for sequential estimation
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this consistent system the sequential procedure begins.
The parameters of newly introduced images are
determined by space resection and the coordinates of
new object points with sufficient observations are
determined by spatial intersection.

3.3 Compensation for Systematic Errors

Extending the mathematical derivation above to
accommodate  additional = parameters for  the
compensation of systematic errors is a simple matter.
For a full bundle adjustment with self-calibration these
may include interior orientation parameters of focal
length and principal point coordinates, plus those of
radial and decentring distortion. Among researchers
reporting experiences in OLT there is a general
agreement as to the importance of additional parameters
in the sequential process. However, to the authors’
knowledge, there are no published findings in which the
effects of additional parameters in OLT are examined.
The capability of recovering these additional parameters
is enhanced in a convergent network and their presence
has a direct influence on object point precision. With the
primary objective of monitoring object point accuracy, the
inclusion of these additional parameters must be
addressed. During OLT, changes in interior orientation
will likely occur which will in turn influence overall
precision. Two approaches should be studied with
respect to their effect on the variance of object
coordinates. The first involves the utilisation of additional
parameters from a prior calibration throughout the
procedure and the second is based on updating the
additional parameters periodically with a simuiltaneous
adjustment and proceeding with a fixed interior
orientation.

3.4 Blunder Detection

Baarda's strict data snooping technique, based upon the
examination of standardised image coordinate residuals,
is one method which has been utilised for blunder
detection in the bundle adjustment procedure. There
have been more efficient modifications to data snooping
such as the "unit observation vector" method (Gruen,
1982), but the technique remains computationally
intensive and has proven to be the most time consuming
aspect of previous implementations. Investigations into
less rigorous, approximate techniques are needed.
Graphical procedures which are simpler and less
expensive to implement, hold great potential for the
detection of gross errors in OLT. Ongoing research will
compare the efficiency and accuracy of both the "unit
observation vector" method and graphical techniques.

3.5 Appropriate Datum

It is necessary to establish an optimal, consistent system
prior to the start of the sequential procedure. In industrial
photogrammetry the preferred means of accomplishing
this is through the implementation of a free-net
adjustment with inner constraints (Fraser, 1982). An
important problem to be considered is that of countering
the datum defect throughout the sequential procedure.
Two basic options are outlined below.
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Employing minimal constraints, the datum defect can be
removed by fixing seven appropriate object point
parameters. The cofactor matrix of the object points is an
inestimable quantity and changes in the minimum datum
alter object coordinate precision (Fraser, 1982). Seven
coordinates from three well-distributed object points must
be fixed. Two in XYZ and a third, non-collinear point
fixed in the coordinate axis most nearly normal to the
plane containing the three points. Choosing those points
to fix may be accomplished in an automated manner.

Clearly, the capability of directly updating the system
produced by the free-network adjustment is desirable.
The potentially detrimental influence from the imposition
of explicit control would be avoided. The inner constraint
method of computing a free network solution is
accomplished by applying a similarity transformation to
the network in question. One means of achieving this is
to border the singular normal equations matrix with a
transformation matrix G subject to the condition that AG
= 0. This is suggested in Fraser (1982) and detailed in
Blaha (1971).

If the “border” is eliminated along with point parameters
in the standard formulation of the bundle adjustment, the
resulting upper triangular matrix can have negative
values on the diagonal. For the reverse procedure in
which photo parameters are eliminated, the border may
be most conveniently applied after the elimination. In
either case the resulting matrix is clearly not positive
definite which precludes the use of Cholesky and
standard Givens Transformations for the simultaneous
and sequential solutions.

Here, the potential advantage of the U'DU factorisation
coupled with the square-root free Givens method
becomes evident. This method can be completed even
in the presence of negative diagonal elements (Martin et
al, 1965). It should be noted that numerical stability can
only be guaranteed in the positive definite case.
Potential instabilities can however be detected and
compensated for.

4.0 CONCLUDING REMARKS

This paper has focused on the application of sequential
estimation techniques in OLT to single-sensor VM
systems. The potential for these systems is largely
dependent upon the refinement of techniques such as
‘sequential estimation, emphasising increasing levels of
automation in data acquisition and analysis. Further
studies into the suitability of algorithms such as Givens
Transformations for various applications of OLT are
required. Important issues in OLT as they relate to
single-sensor VM have been highlighted here and warrant
additional examination. These include system response
time, approximate values, additional parameters,
blunder detection, and appropriate datum. Practical
evaluation of these and other issues is ongoing.
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