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This paper outlines the straightforward derivation of several simple mathematical models describing the relationship between
some given 3D geometric primitives in the world co-ordinate system and the 2D primitives forming the projected views of

those 3D objects.

As a starting point, the co-planarity condition is adapted to relate the parameters of a line in the world co-ordinate system, to
the parameters of the corresponding 2D line in an image. An extension of the same co-planarity condition is then employed,
to link the parameters describing a cylinder to the parameters of the two lines defining the occluding edges in an image of that
cylinder. Basic geometry and simple vector algebra are then used to complete the model for the cylinder, with the third set of
equations linking the parameters of a cylinder to the ellipses forming the images of it’s end-caps.

These mathematical models have been partially integrated into an existing system designed for the remote measurement of
industrial plant. Their potential, to increase the ease with which CAD models of existing plant may be either generated or

updated, will be demonstrated.

1. INTRODUCTION

Due to increasingly stringent safety regulations imposed by
the relevant governing authorities, and a desire to replace or
alter existing equipment, as-built CAD models of industrial
plants are necessarily becoming more sought after by those
companies operating industrial sites.

In some instances CAD models may already exist from the
planning stages, but may not reflect a true picture of the site,
since necessary and unforeseen changes had to be made
during the plant construction. For older sites red lined
design drawings may be the only record of the plant layout.

Conventional or digital terrestrial photogrammetry provides
a relatively efficient means to generate or update CAD
models, see (Chapman et al., 1992). By providing a record
of the plant in question the images may then be used
immediately or archived for future use. At any point in time
they may be used to determine a few critical dimensions, to
model a small local section of the site, or to create a model of
the entire site.

An industrial plant is often a highly complex environment
consisting of great quantities of equipment separated by
narrow corridors for access. Such an environment requires
the stationing of cameras at frequent intervals with a
separation of the order of several metres, in both the
horizontal and vertical sense. At each location a panorama
of images will have to be captured. This scenario is essential
in order to provide full coverage of the plants equipment and
enable that equipment to be modelled to the required
accuracy.

With the large numbers of images relating to each site, both
the localisation of camera positions and subsequent plant
modelling can become very labour intensive. Any
automation of this process necessarily provides an increase
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in productivity. It will be shown how an existing CAD
model may be used to effect some level of automation. In
addition, images within such an archive may often be found
which are crucial to linking together the three dimensional
grid of camera locations, but which see few points which
could be used as part of a conventional bundle adjustment.
This paper will indicate how the use of edges and cylinders
may help overcome these problems.

The equipment comprising the majority of many industrial
plants may be modelled by a number of basic geometric
primitives (cylinders, spherical dishes, boxes, tori). The
standard collinearity equations can be used to determine
points on the surface or edges of objects viewed in any two
or more images, after which primitive fitting routines may
be used to determine the descriptive parameters of the viewed
object.

An alternative approach is to by-pass the collinearity
equations, and to use equations relating the descriptive
parameters of the objects in the world co-ordinate system,
and the parameters describing the actual or occluding edges
in the image of that object. A considerable amount of work
has already be done in this area for lines, for example
(Schwermann, 1994; Tetsa & Patias, 1994; Tommaselli &
Tozzi, 1992), and for some other geometric objects, (Li &
Zhou, 1994). Some alternative mathematical models
describing these relationships for a 3D line and a cylinder in
the world co-ordinate system are given in this paper. These
models are relatively simple, two based largely upon the co-
planarity condition, and do not involve the introduction of
any unwanted parameters. They could be used during the
localisation stage, to help determine the camera locations
and an initial set of primitives for the CAD model. Their use
during the subsequent modelling stage using the localised
camera positions is demonstrated.
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2. 3D LINE PROJECTION

In a typical industrial scene straight lines may be found as
the edges of boxes or as part of markings or signs on the
equipment. As mentioned in the introduction the use of lines
in photogrammetry is nothing new. A few simple
derivations are made here for the projection of a line in
object space. These are based upon the equation of the plane
passing through both the optical centre of the camera and the
3D line in object space, transformed into the camera co-
ordinate system. This will be seen to be nothing more than
the familiar co-planarity condition. The intersection of this
plane with the focal plane of the camera yields the equation
of the 2D projected line image in terms of the orientation
parameters of the camera and the parameters of the 3D line,
without the introduction of any nuisance parameters.

Two alternative arrangements of this equation can also be
seen to be useful in different scenarios.

2.1 Projected Line

Consider a line in object space. This line will define a plane
which passes through the optical centre of the camera. If we
then rotate this plane into the co-ordinate system defined by
the camera (camera space), the observed line in the image
must also lie in this plane.

Let the relationship between the camera co-ordinate system
and the world (object) co-ordinate system be defined by the
collinearity equations thus (this convention will be retained
throughout the paper),

(x-x,)=AR(X-X,) M

where

X=(X Y Z)° -pointin object space

X,=(X, Y, Z,)’ -cameraoptical centre
x=(x y z)
Xo = (xo Yo 0)2
A -scale parameter
R -rotation matrix

- point in camera space
- camera optical centre

Let the line in object space be defined by the equation,
X=a+ ’Yl (2
where
a -point on the line

1 -line vector
y -scale parameter

Now the normal to the plane in object space defined by this
line, and the optical centre of the camera is given by

n=1®(a-X,) ®)

We can rotate this to give the form of the same vector in
camera space

Rn=R[I®(a -X,)] 4

Therefore the equation of the plane in camera space is given
by

(x-x,)¢[RI®(a-X,)]| =0 5)

The line determined by the intersection of this plane, (3),
with the image plane is found simply by letting

z=f (6)

where f is the focal distance of the camera.

Thereby yielding an equation of the form
Ax+By+C=0 N

2.2 Observations to a Line

It is also possible to derive a relationship between the actual
points observed along the line in the image, and the line in
object space.

Again consider the co-planarity requirement on the optical
centre of the camera, the line in object space and any of the
points along the observed line in the image. We can use the
equivalent of the co-planarity condition (the triple scalar
product) to derive the following relationship between them,

[R(x=x,)|s[1®(a~X,)|=0 o (8)

The direct relationship between equations (5) and (8) is
obvious. The former relating to camera space, the latter to
object space.

2.3 Planes Passing Through a Line

An alternative approach to that described above, is to
determine the normal to the plane, in object space, which
passes through the line and the optical centre of the camera.
The conditions that this plane passes through the line in
object space can be shown to be,

nel=0 . ®)

ne(a-X;)=0 (10)

where vector, Rn, is the normal to the plane fitted through
the optical centre of the camera and the observed points
along the line in camera space, and all other variables are as
defined in §2.1.
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Again the relationship between equations (8) and (10) is
obvious. If one considers the identities of the triple scalar
product, we see that,

n=[R"(x-x,)|®1 (11)

Note that equation (10) relates the distance from our point on
the line to a plane, and equation (9) constrains us to a
particular plane.

3. CYLINDER PROJECTION

Cylinders in the form of pipes and vessels are abundant in
the typical industrial plant, and dominate the CAD models of
that plant. The equations of the two tangent planes to the
cylinder constrained to pass through the optical centre of the
camera will be derived. As with the straight line the
intersection of these two planes with the focal plane of the
camera yields the 2D line equations of the two occluding
edges of the observed cylinder.

As before, a similar approach yields the equation linking the
planes tangent to a cylinder, to the parameters of that
cylinder.

The picture may be completed by considering the equation of
the cone whose base is the edge of the circular end-cap of a
cylinder in object space, and whose apex is the optical centre
of the camera. Once again the intersection of this cone with
the focal plane of the camera yields the equation of the
ellipse representing the observed image of the circular end-
cap.

3.1 Projected Occluding Edges of a Cylinder

In §2 we used the triple scalar product to establish the co-
planarity of our 3D line and our image line. Since the triple
scalar product may also used to determine the distance
between two lines, it can be used in an identical manner to
that in §2 to give an equation for the tangent planes to a
cylinder.

Let us define our cylinder as follows,

a= (ax a, az)T - point on the cylinder axis (12)
I=(1 m n)" -cylinder axis vector (13)
r -cylinder radius (14)

The distance between a line tangent to the cylinder, and the
cylinder axis will be, r. Therefore we can write,

(x=xo)[R[1®(a- X, )] = #rx—x,| (15)

The term on the right hand side is scaled since, x-x,, is not a
unit vector.

We can remove the ambiguity of the sign on the right hand
side of equation (15), by squaring both sides. Therefore,

{(X‘XO)’[R[I‘X’(a'XO)]]}Z = {rlx - X0|}2 (16)

Unfortunately the individual equations of the two planes are
not readily extracted from equation (16). As an alternative
we can derive the unit normal vectors to the two tangent
planes as follows.

Let point, P, be that point closest to X, which lies on the
line defined by the axis of the cylinder.

Then we have,

P=a+[(X,~a)el]i (17)

Figure 1 Normal Vectors to a Cylinder

Now by definition, the vector, (X, - P), is perpendicular to
the surface of the cylinder. If we consider Figure 1, it can be
seen that

t=Rl-(-)—(3-_—l-)-)- (18)
IXO'PI

where, R,, is a rotation matrix providing a rotation by angle,
+8, about axis, 1, see (Bowyer & Woodwark, 1993;
Thompson, 1969).

Upon substitution for the terms of the rotation matrix, R, we
find,

t= [[M]m]sm(e){-(-x"——lj—)] cos(6) (19)

X, - P| X, —P|

and therefore upon substitution for the trigonometric
functions (refer to Figure 1) we get the equations for the two
tangent normal vectors,

. (X, - P)r£[(X, ~a)®1]||X, P - 0

X, - P’
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These vectors may then be rotated into the camera co-
ordinate system, and the equations for the planes in camera
space will be given by,

(x—x,)e(Rt)=0 2D

with notation as in §2.1.

The intersection of these two planes with the focal plane,
give us the equations of the two lines forming the occluding
edges of the cylinder in the image, in the form of equation

.
3.2 Tangent Observations to a Cylinder

By direct analogy with the equations derived in §2 for a 3D
line, we obtain the following equation for the observations,
in an image, of points along the occluding edge of a
cylinder,

{[RT(x~x0)JO[l®(a~XO)]}2 = {rl}i&—xol}2 (22)

3.3 Tangent Planes to a Cylinder:

Again by direct analogy, we can derive the equations for
planes to be tangent to a cylinder,

nel=0 (23)

{nea+d)’ =r? (24)

The relationship between equations (24) and (22) is not so
obvious in this case, but vector, n, is still given by equation
(11), and we note that,

n‘XO =—-d (25)

3.4 Projected Cylinder End-Caps

To determine the equations of the ellipses forming the
projection of a cylinder’s end-caps into an image, we follow
a similar procedure to that in the previous sections.
However, in this instance, we determine the equation of the
cone whose base is the end-cap of the cylinder, and whose
apex is the optical centre of the camera.

Let us retain the definition of a cylinder given in §3.1, but

further define the point, P, to be the centre of one of the
cylinder’s end-caps. Thus,

P=(P, P, P,) (26)

We can therefore define the circular edge of the end-cap to be
the intersection of the following two surfaces, a plane and a
sphere,

(X-P)el=0 @7

(X-P)e(X-P)-1*=0 (28)

The cone we are seeking to define is that surface generated by
the straight line passing through the point, X,, which
intersects the curve defined by equations (27) and (28). Let us
define this straight line as follows,

X=X,+ot (29)
where,
t=(t u V)T

Substitute for, X, from equation (29) into both equations
(27) and (28), and then eliminate, o, between them. Upon
gathering terms we reach the following equation,

(tot)(X,~P)el]
“2[te(X, ~P)](X, - P)el(te1) (30)
H(X, ~P)o(X, = P)-r*|tel)’ =0

Now, equation (30) is a homogeneous equation which the
direction-cosines, t, must satisfy for the line to pass through
the optical centre of the camera and the edge of the circular
end-cap. From (Bell, 1950) we can therefore state that the
equation of the cone we are seeking is given by the same
homogeneous equation as below,

[(X-X,) o (X-X,)[(X, ~P)e1]
2[(X X ).(XO_P)][(XO‘P).I][(X——XO)OI] (31)
(X, = P)e (X, ~P)-r[(X-X,)e1] =0

To derive the equation of the ellipse forming the projected
view of the cylinder end-cap, is now numerically a
straightforward two stage process. To start we transform this
cone into our camera space, and then we determine the
intersection of this transformed cone with the focal plane of
the camera. The algebra of this process is not detailed in this
paper, but results in an equation of the form,

Ax? +By® +2Hxy +2Gx +2Fy +C = 0 (32)

4. APPLICATION EXAMPLES

The equations derived in the previous sections have all been
developed for inclusion in software incorporated into a
digital photogrammetric measurement system (HAZMAP),
see (Chapman et al.,, 1992), with the aim of increasing the
automation of the CAD modelling process. The work to date
has concentrated upon the modelling of pipework and
cylindrical vessels, using the equations derived.
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The first step in this process was to increase the
functionality of a primitive fitting program (geofit), to fit
not just 2D and 3D geometric primitives to swarms of
points, but cylinders to a selection of tangent planes. Data
is supplied to this routine from HAZMAP, where operator
directed edge detection filters are applied to the digital
images in order to derive points along the occluding edges of
a cylinder.

These points are passed to geofit in two stages: the first
determines the equations of the tangent planes -Figure 2
shows some results with the light crosses being image
points which have been rejected as outliers; the second
determines the best fit cylinder to the observed tangent
planes. The resultant cylinder is then injected into the
HAZMAP images, where it may be manually extended to fit
the observed pipe and exported to the CAD model.

The modelling process has now been further automated by
using the cylinder projection equations. This is done to
either update the parameters of a cylinder from an existing
CAD model, or to generate a new cylinder having first
roughly positioned an injected solid using several
convergent HAZMAP images. The parameters of this
cylinder are used, together with the spatial relationships held
in the HAZMAP database, to select a group of images in
which the pipe in question is likely to appear. The equations
of the occluding edges of the cylinder, as viewed in each of
these images (Figure 3), is then determined. These equations
are used to direct the edge detection routines, and the results
are processed as before, to generate the parameters of the
cylinder for export to the CAD model.

Figure 2. Result of edge detection to locate
the occluding edges of a pipe.

Figure 3. Cylinder projected into nine images of a pipe, five of which are used to update the pipe location.
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5. CONCLUSIONS

A derivation of a number of mathematical models has been
outlined that will provide useful tools for the modelling of
industrial plant. The models defined are not encumbered by
the introduction of large numbers of nuisance parameters.
The basis of these models, on the coincidence of planes, and
cones, in both object and camera space has the second
advantage of by-passing the unknown scale parameter, A, of
the collinearity equations, (1).

A typical industrial plant can largely be modelled by using a
small number of geometric primitives. The cluttered nature
of many industrial sites complicates the generation of
detailed CAD models, requires the use of many images, and
can therefore prove to be very time consuming. As shown,
through the use of mathematical models relating actual
objects to the images of them, we can increase the
productivity in modelling them. Indeed it can become a
semi-automatic process.

The HAZMAP system has already begun to address the
automation of the modelling process, building upon the
information stored in it's image database and using software
based on the equations described. The use of objects and
their occluding edges as photogrammetric data would appear
to provide great potential. Work is currently underway to
extend a similarity transformation program to deal with the
parameters of objects, as well as point co-ordinates. A
bundle adjustment program, able to deal with both points,
and the selection of geometric primitives encountered in a
CAD model, is also being contemplated. The two programs
could then be used as part of the interior, relative, and
absolute orientation processes.

There is currently much talk about "range cameras" replacing
close range photogrammetric approaches once their accuracy
has been improved. Although photogrammetry will always
require two or more images for precise modelling work, the
direct extraction of object parameters without recourse to
point observations will certainly increase the utility of such
systems. LA

REFERENCES

Bell, R.J.T., 1950. An Elementary Treatise on Co-ordinate
Geometry of Three Dimensions, 3rd Edition. Macmillan &
Co., London, pp. 88-95.

Bowyer, A., & Woodwark, J., 1993. Introduction to
Computing with Geometry. Information Geometers,
Winchester, pp. 113-123.

Chapman, D.P., Deacon, A.T.D., and Hamid, A., 1992. CAD
modelling of Radioactive Plant: the Role of Digital
Photogrammetry in Hazardous Nuclear Environments. In:
International Archives of Photogrammetry and Remote
Sensing, Washington D.C., U.S.A., Vol. XXIX, Part 5, pp.
741-753.

Li, D., & Zhou, G., 1994. CAD-based Line Photogrammetry
for Automatic Measurement and Reconstruction for Industrial
Objects. In: International Archives of Photogrammetry and
Remote Sensing, Melbourne, Australia, Vol. XXX, Part 5,
pp. 231-240.

Petsa, E., & Patias, P., 1994. Formulation and Assessment
of Straight Line Based Algorithms for Digital
Photogrammetry. In: International Archives of

Photogrammetry and Remote Sensing, Melbourne, Australia,
Vol. XXX, Part 5, pp. 310-317.

Schwermann, R., 1994. Automatic Image Orientation and
Object Reconstruction using Straight Lines in Close Range
Photogrammetry. In: International Archives of
Photogrammetry and Remote Sensing, Melbourne, Australia,
Vol. XXX, Part 5, pp. 349-356.

Tommaselli, AM.G., & Tozzi, C.L., 1992. A filtering-
based approach to Eye-in-Hand Robot Vision. In:
International Archives of Photogrammetry and Remote
Sensing, Washington D.C., U.S.A., Vol. XXIX, Part 5, pp.
182-189.

Thompson, E.H., 1969. An Introduction to the Algebra of
Matrices with some Applications. Adam Hilger, London,
pp. 149-153.

289

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B5. Vienna 1996




