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ABSTRACT

The detection of erroneous observations is a challenging
skill that requires the dedicated energies of photogram-
metrists and surveyors on a day-to-day basis. This paper
focuses on a robust estimator for its erroneous observation
detection because robust estimators often perform satisfac-
torily in the face of observations with blunders. Many cur-
rent blunder detection methods are based on least squares
which is not a robust estimator. The robust estimator ex-
amined is L3 norm minimization and some of its unique
properties related to network adjustment are presented.
The L; norm residual sampling distribution is described
both theoretically and empirically to illustrate the foun-
dation for statistical inference of erroneous observations.
Network reliability issues are presented in light of unique
properties surrounding the L; norm. This analysis has ap-
plication to many estimation problems such as those from
geodesy, photogrammetry, and, in particular, close-range
photogrammetry.

1 INTRODUCTION

An important asset to any photogrammetric or survey en-
gineer is the ability to accurately detect erroneous observa-
tions based on accepted statistical premises. Traditionally
erroneous observations have been identified by examining
least squares (L2 norm) residuals (Baarda, 1968), (Pope,
1976), (Kavouras, 1982) and others. Least squares estima-
tion maintains many useful properties when the error vec-
tor €, is normally distributed with zero mean, € ~ N(0, o?).
However, in cases where erroneous observations exist and
the relatively stringent normality assumptions surround-
ing the Lz norm are violated, a robust estimator such as
the L; norm may be better suited to deal with these depar-
tures from normality. In addition to effectively managing
the departures from normality, the [; norm may serve as
an additional means of ruling whether borderline observa-
tions should be removed from a network adjustment. Used
in this capacity, the L1 norm is especially appealing to an
engineer given the nonscientific method of selecting the sig-
nificance level for statistical inference. The strengths and
weaknesses of L) norm blunder detection are illustrated
using Monte Carlo simulation.

2 OBSERVATION WEIGHTS

Accurate observation weights are necessary in surveying
and photogrammetric applications, particularly when the
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observations come from different sources. For L, estima-
tion the definition of the weight itself does not change, but
we incorporate the weights differently in the computations.
The function to be minimized under the Li criterion is,

(1)

where t is comprised of the diagonal elements of T,

tTlvl — minimum

1/0’1 0
1/0’2

0 1/on

and v is the vector of residuals. In the actual computations
we implement the weighting by premultiplying the matrix
equations by T, i.e.,

BA ~f (2)

becomes

TBA ~ Tf. 3)

3 THEORETICAL SAMPLING DIS-
TRIBUTION OF L; RESIDUALS

3.1 Mathematical Model

The theoretical sampling distribution of L; norm residuals
forms the foundation for statistical inference concerning
erroneous observations and it is based on @ priori knowl-
edge of network geometry, observation variances, and the
method of estimation. In the case of L1 norm estimation,
many new challenges arise for the engineer who has relied
exclusively on the L norm for his erroneous observation
detection because of the differing mathematical models as-
sociated with the L; and L, norm estimators. In terms
of residuals and residual sampling distributions, the two
most significant differences between the L; and Ly esti-
mators are,

1. The L, norm residuals can be expressed in terms of
all the observations, whereas the L; norm residuals
are expressed in terms of subsets of observations.

o

For the L, norm, linear combinations of Gaussian
random variables give rise to Gaussian combinations
(Menke, 1989), whereas for the L; norm, the results
are not strictly linear combinations.
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For now attention is directed to item 1 above and parti-
tioning the L, mathematical model,

v BA_f
n,l + n,uu,l ~ n,l =
vy By fy (4)
u, 1 w,u A _ w, 1
V2 Bz u,l - fz
T, 1 T, U ro 1

where
n is the number of observations
u is the number of unknown parameters
r =n - u = the number of redundant observations
v is the vector of estimated residuals
B is the coefficient matrix of the unknown parameters
A is the vector of estimated L; norm parameters
fis the vector of condition equations

Given a subset of observations which satisfies the [
norm criterion, the L; norm parameter estimates follow
as,

-1
A=B;"f; (5)
Consequently, the L; norm residuals can be computed as,
-1 .
vo =Tfy — B2B1 i (6)
vy =f; - ByB7f; =0 (7)

3.2 Modification of Simplex Algorithm

Since the L; residuals are computed from two distinct sub-
sets of observations, attention is directed to one of several
processes used to create the two subsets, namely the sim-
plex algorithm. By examining the simplex algorithm one
can examine the partitioning process which leads to the
probability distribution associated with the L; norm resid-
uals.

Taylor and Basset have defined the sampling distribu-
tion of the L1 estimator A based on a modification of the
simplex algorithm (see Taylor in Zarembka, 1974), (Bas-
sett, 1973). One major contribution resulting from their
studies was identifying the role of the coefficient matrix
By in the sampling distribution of the L; norm parame-
ters. As Taylor points out, a small change to the condi-
tion equation vector f leads to a change in the matrix By.
Therefore, this random behavior exhibited by By intro-
duces a new level of complexity in the theoretical sampling
distribution of the residuals. Recall that the L, residual
sampling distribution is based on a single coefficient ma-
trix B. In the Ly case, the behavior of By must be un-
derstood prior to arriving at the sampling distributions of
the L, parameters and residuals.

Once By is understood, then Basset demonstrates that
the probability density function of the L; estimator A has
a closed form (Pg. 133). However it is not useful in terms
of practical application since a “small” network with n =
20 observations and u = 5 unknown parameters requires
more than 750 million steps to obtain the theoretical sam-
pling distribution of the L; estimator.
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3.3 Sampling Distribution of L; Residuals

The L; residual sampling distribution exhibits a symmet-
ric and continuous sampling distribution, however this dis-
tribution differs from distributions commonly used in pho-
togrammetric applications because of the spike located in
the center of the distribution. This distribution is con-
structed by taking a linear combination of the dependent
variables f and A,

TN

t has a normal distribution

' (8)

fa

By
By

vy (spike)
vo (bell)

E

where

A has a nonnormal distribution

B is a matrix of constants

4 EMPIRICAL SAMPLING DISTRI-
BUTION OF L; RESIDUALS

4.1 Monte Carlo Simulation

In contrast to the theoretical sampling distribution of I,
residuals, the empirical distribution is conceptually easy
to construct and it supplies the engineer with a clear
picture of residual behavior under L; norm estimation.
The empirical sampling distribution described herein is
exclusively constructed by Monte Carlo simulations. In
this approach, normally distributed random perturbations
are added to synthetic observations and L; norm resid-
uals are computed. This process of perturbing observa-
tions and computing residuals is performed many thou-
sands of times to ultimately construct sampling distribu-
tions which yield valuable insight into residual behavior.
Normally distributed perturbations have been chosen be-
cause surveying and photogrammetric equipment produce
errors which resemble normal distributions. As an illus-
tration, the Monte Carlo method was carried out on the
trilateration network in Figure 1 where the perturbation
magnitude for all observations was o = 0.220 m.

After 100,000 Monte Carlo simulations, the residual
sampling distribution is illustrated with histograms in Fig-
ure 2. The solid vertical line (“spike” ) in the center
of the sampling distribution indicates the occurrence of
zero residuals from the vq vector in Equation 4. Fur-
ther study is needed to determine the relationship between
spike height and network geometry.

4.2 Nonnormality of Ly Residuals

The normality of the residual sampling distribution under
Ly estimation plays an important role in determining how
tests are performed on erroneous observations. If the er-
rors are independent and normally distributed, then the
engineer can rely on traditional tests based on common
distributions such as the Standard Normal, Student ¢, and
x? for example. Unfortunately, the L; norm residual sam-
pling distribution is not normal, as illustrated in Figure 3.
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Figure 1: Trilateration Network Diagram
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Normality was tested by fitting a Gaussian function to
the Monte Carlo based sampling distribution and examin-
ing the fit. In this case, the empirical sampling distribution
has fatter tails and a higher peak than the Gaussian dis-
tribution. The Gaussian curve is denoted by solid line in
Figure 3. In addition to the high peak and fatter tails, the
spike (which has been removed from Figure 3) also deviates
sharply from the normality assumption. These departures
from normality prevent the engineer from making statis-
tical inference based on the common distributions men-
tioned previously. Instead, accurate statistical inference
can be achieved using the Monte Carlo based sampling dis-
tributions described earlier in this section. This statistical
inference may include critical value computation which is
discussed in section 6. It should be emphasized that such
an approach yields critical values which are problem de-
pendent and even data dependent.

5 Preanalysis of Networks

5.1 Reliability

Preanalysis of networks is an important design tool used to
evaluate network precision and sensitivity prior to execut-
ing fieldwork. Baarda has derived several reliability mea-
sures based on normally distributed random errors for the
L norm mathematical model (Baarda, 1968). Although
counterparts to many of these L; reliability measures may
exist under Li, these derivations have not been completed
at the time of this writing. In lien of such derivations,
the Monte Carlo method is used to evaluate network re-
liability. First, network internal reliability is examined
to determine if a blunder can be detected under any cir-
cumstances, and secondly, network external reliability is
examined to visualize the effects of a nonunique estimator
on parameter estimates.

5.2 Lq Internal Reliability

The underlying concept behind internal reliability is to de-
termine how large an erroneous observation must be before
it will be statistically detected through examination of the
residuals. In this section, this concept is modified such
that interest lies in detecting the erroneous observation
under any conditions at all, statistically or otherwise. To
examine the behavior of the I; norm under this scenario,
the Monte Carlo method is used in conjunction with a
geodetic trilateration network. A single observation is re-
moved from the network to study its impact on blunder
detection.

The initial trilateration network is presented in TIig-
ure 1 and has a total of 15 observations. After 100,000
Monte Carlo simulations, the sampling distribution of each
residual is described by the histograms in Figure 2. No-
tice that the sampling distributions fluctuate in height and
shape. The primary cause of these fluctuations is network
geometry since the a priori o = 0.220 m is identical for all
observations as mentioned previously. The Lz norm resid-
ual sampling distribution also experiences these fluctua-
tions in height as a result of network geometry. However,
when observation 15 is removed from the trilateration net-
work and a new set of Monte Carlo simulations are com-
puted, the residual sampling distribution changes substan-
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Figure 4: Residual Sampling Distribution for Figure 1
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tially as shown in Figure 4. The most significant change
occurred in observation 9 which is illustrated by a “spike-
only” distribution, indicating that residual 9 was equal to
zero for all 100,000 simulations. Consequently, a blunder
in observation 9 will never be found using L; norm estima-
tion given the existing network geometry and the stated 14
observations. To remedy this deficiency, the network could
be redesigned to incorporate new observations and/or new
network stations into the network. Although the L; norm
fails to identify an erroneous observation under this low
redundancy scenario (redundancy = 14 - 9 = 5), the L;
norm holds more promise at blunder detection given ample
redundancy.

5.3 External Reliability

External reliability refers to the effect an erroneous obser-
vation has on the parameter estimates and has been stud-
ied by many authors (Baarda, 1968), (Mackenzie, 1983).
Experimentation with external reliability and the L1 norm
indicates that in some instances an erroneous observation
may have no effect on the [, parameter estimates at all.
This unusual circumstance arises because [, norm min-
imization fails to provide unique parameter estimates in
some cases. As an example, the simple trilateration net-
work in Figure 5 was evaluated to illustrate the region
where the L1 norm has an infinite number of correct solu-
tions. These solutions lie on the plane defined by ABCD in
Figure 6. When examples such as these arise, the network
could be redesigned to incorporate additional observations
and/or stations which will reduce or ecliminate the effects
of the network deficiencies.

6 Statistical Evaluation of Residuals

Removing observations {from a network must be well jus-
tified, especially given the extensive time, cost and labor
involved in acquiring high quality observations. There-
fore the purpose of this section is to determine whether an
observation should be removed from a network based on
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Figure 5: Trilateration Network II
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the empirical sampling distribution presented in Section
4. The statistical test used to identify erroneous observa-
tions is based on Monte Carlo generated distributions for
the null hypothesis.

6.1 Tests on Individual Residuals

In this section statistical inference is based on a technique
of simple exponential curve fitting to the empirical sam-
pling distribution of each residual. Using the area under
the exponential curve, a straightforward computation of
critical values results. The residual sampling distribution
displayed in Figure 3 is symmetric and contains a sharp
change in grade at the apex of the sampling distribution.
Since the sampling distribution is symmetric, the curve
fitting process will take place in the positive quadrant of
the residual sampling distribution. The exponential equa-
tion used to fit the sampling distribution (with the spike
removed) is,

ba$

yi=ae ¢+ 1=12--. (9)

T
where
@, b, c are unknown parameters

y: is the relative frequency in the i*" case

z; is the residual magnitude in the i*® case.

In addition to accounting for the exponentially shaped por-
tion of the sampling distribution, the sampling distribu-
tion must include the zero residuals (spike) in the basic
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set described in Equation 4, therefore an additional term
is added to the curve fitting equation and is presented as,

Prob{—oo < vi < o0} =1

22/ (d61> des M (10)
o t

L =~

. spike
exponential curve 4

where

vy is 1" residual

@, b, ¢ are estimated parameters (via L. norm since er-
roneous observations are not expected)

* residunal.

n is the number of zero occurrences for the it/
t is the total number of Monte Carlo simulations.

Based on Equation 10, a critical value & is computed
for a two-tailed test at a significance level o by solving for
a percentage of the area

Prob{0 < vi < k} = 0.5 — /2

. k(. phat , n
—fo (a.e z)(lx—}—ﬁ

(11)
~ Figure 7: Ly norm critical value, k
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Since a closed form expression for the integral in Equa-
tion 11 does not exist, the area under the exponential curve
is determined using numerical integration. The critical
value, k, can be found by the Newton-Rhapson Method
(Press, 1992).

The test for individual outliers can be summarized as:

Hypothesis Critical Value
Hy:ivg =10 k from Eqn. 11
Ho:vi #0

Decision Rule

If > k conclude H,

Vi

7 Photogrammetric Example

To illustrate L; norm blunder detection in an engineer-
ing application, the blunder detection method described
in this paper and the well known L, norm data snooping
method were applied to the close-range photogrammetric
measurements of the valve pictured in Figure 8.

Figure 8: Close-Range Photogrammetry Example. Photo
Courtesy of Tennessee Valley Authority.

#1

The photogrammetric network included four exposure
stations, three fixed object points and seven unknown ob-
ject points, yielding an overall network redundancy of 35.
Multiple blunder detection was the focus of this example,
therefore two observations were perturbed by 50um (noted
in Table 1) and the remaining observations were randomly
perturbed by o = 5 um. The results of this limited exam-
ple suggest that multiple blunders may be correctly iden-
tified after a single L, norm estimation whereas repeated
estimations may be required to identify multiple blunders
under L, estimation.

Table 1 describes the impact of observations with
blunders on one unknown object point which is observed
from four different exposure stations. It appears that the
L1 residuals are more consistent with the intentional er-
rors, compared to the L, residuals. In addition to the
statistically-based p-values in Table 1, a compelling rea-
son for computing L, residuals is the ease with which large
residuals can be identified based on a visual examination
of residual plots as in Figures 9 and 10.

Table 1: P-values from i and L» norm residuals

Obser- Blunder Lo redun- Ly Lo
vation Magni- dancy p-value | p-value
tude (pm) number

T 0.050 0.36 0.00005 | 0.01097
U1 0.000 0.62 0.32227 | 0.00470
T2 0.000 0.36 0.06923 | 0.00001
Y2 0.000 0.60 0.05638 | 0.01420
T3 0.000 0.59 0.01854 | 0.00001
Ya 0.000 0.47 0.19880 | 0.25638
Tq 0.000 0.61 0.30007 | 0.22081
Y4 0.050 0.51 0.00001 | 0.00001

It is interesting to note that the initial network un-
der study contained three exposure stations which were
plagued by residual sampling distributions containing un-
desirable “spike-only” distributions. Adding a fourth ex-
posure station to the network (and thereby increasing
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Figure 9: L; Norm Residual Plot: Data Contains Two
50pum Blunders
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50pm Blunders
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network redundancy) eliminated the “spike-only” residual
sampling distributions.

8 Conclusions

Based on these preliminary investigations and numerical
examples, it appears that analysis of L; residuals can be
put on a sound statistical footing by Monte Carlo gener-
ation of sampling distributions. This together with the
robust character of L; estimation makes it worthy of con-
sideration for analysis of photogrammetric and geodetic
networks. As pointed out, however, there are some po-
tential pitfalls to avoid in network design when network
redundancy is minimal.
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