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ABSTRACT

This paper presents a concept for the recognition and localization of objects which relies on multi-sensor-fusion and active
exploration. Today research in photogrammetry generally agrees that the use of complementary sensors, e.g. ranging and
imaging cameras, is important for simplifying interpretation related tasks. But no notice has been taken so far on the role of
active exploration. Our work is part of a research program where five institutes of Stuttgart University cooperate to develop
an experimental measuring system for flexible inspection and gauging. The system will be capable of determining auto-
matically the shape, form and class attributes of an industrial object. It then solves in a self-acting manner the measuring
task associated with that object. The paper briefly describes the experimental measuring system and the used sensors. It
then focuses on the object recognition concept. With first results a number of subsequent processing steps of the whole
procedure is illustrated.

1 INTRODUCTION optical measurements often give accuracies which depend
on the specific object. In unfavourable cases, e.g. if an ob-
ject’s surface is soiled, measurement may become impossi-
ble using fixed sensor and lighting positions. But changing
this conditions (e.g. by changing the sensor, lighting or ob-
ject positions) usually requires some skilled person familiar
with that particular measuring system.

For years, the production of many plastic and metal parts,
for example in the automobile industry, has been auto-
mated. While at the same time the complexity of the parts
increases, often the production lots get smaller. This has
led in many areas to a more flexible assembly of the pro-
ducts. Quality assurance in this case is often performed  To overcome these difficulties, two key components of in-
with individually prepared gauges or specialized measur-  spection and measurement systems will be

ing systems, which is a very unflexible solution. Addition-
ally, the need for a 100% quality control has grown in areas
such as automobile production, since more and more com-
plicated parts are assembled by suppliers. 2. active exploration.

1. multi-sensor-fusion and

Optical measurement techniques have several properties

that make them interesting for flexible gauging and inspec-  Multi-sensor fusion gives a system the opportunity to se-
tion tasks: they are able to carry out quickly measurements  lect another measurement technique if the measurement
and are applicable to a wide range of materials including  task can not be performed with the currently used tech-
deformable objects. When used in conjunction with pho-  nique. Thus, sensor-specific flaws can be avoided. More-

togrammetric techniques, optical measurement can yield ~ over, combining sensors witl'_\ different resolutions allpws
very accurate results. for precise measurements with the accuracy of the fine-

resolution sensor whilst the field of view is that of the

Despite those advantages, optical measurement tech- . ..o resolution sensor.

niques are not well accepted in the industry (Griin 1994).

One reason for this is that traditional measurement tech-  Active exploration is the process of choosing sensors and
niques, such as coordinate measuring machines (CMM), sensor positions automatically when capturing the object
are very well established whilst optical systems with com- under consideration. Ideally, this is some hierarchical pro-
parable performance have not been commercially available ~ cess, much like humans proceed when they examine some
until recently. This may change now with new very high object: first an overall view of the object is taken which re-
resolution sensors and projectors. Another drawbackisthat ~ veals some general properties and hints on interesting fea-
optical techniques are often considered to be too compli-  tures of this object. Then those features are inspected in
cated to be operated under factory conditions. Testing of  detail. For a measurement system this means that different
geometric specifications is simply solved by an unskilled  sensors are used for different levels of detail. Active explo-
worker by placing a part on a part-specific gauge. Further, ration also aliows to change sensor and lighting positions
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Figure 1: View of the measuring cell with actor modules (background) and general purpose computing hardware used for

sensor data processing and system control (foreground).

in order to obtain favourable capturing conditions. Thus, in
connection with sensor fusion, active exploration promises
to increase the operability of optical measuring systems un-
der factory conditions.

2 THE EXPERIMENTAL MEASURING
SYSTEM

2.1 The currently used sensors

To investigate concepts on active exploration and multisen-
sor fusion, an experimental measuring system is under de-
velopment (see Fig. 1). The system currently uses

e alaser projector which can be used with the coded
light approach for range image measurement and as
a point triangulation sensor. With the ability to gener-
ate variable light patterns the laser can also be used
for texture projection to support stereo image analy-
sis.

a multi-parameter color CCD-camera which has
the ability to change parameters like focus, focal
length and aperture and several electronic parame-
ters based on the interpretation of the current image.

a stereo camera.

several light source arrays consisting of regularly
spaced individually controllable light spots located at
the edge of the measuring volume.

The sensors are mounted on three actor modules with a
total of 13 axes. The size of the measuring volume is about
1000x 1000x 700 mm®.
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2.2 On the role of recognition and pose estima-
tion

Object recognition and location is an important part of the
overall system concept since it increases the flexibility of
the measuring system. Of course, there are inspection
tasks in which the object is known a priori and there is no
need for recognition or identification of the specific object.
In this case the task is to determine the object’s pose which
allows to avoid object specific conveyors needed to position
the object accurately in the measuring volume. But may be
already in the near future the ability to recognize objects will
be the conspicious feature of such systems. Object recog-
nition aims at finding out the object type among a library
of possible types, but can also be used to identify parts of
objects.

In the next paragraph we discuss how sensor fusion and ac-
tive exploration can be exploited for the purposes of object
recognition and point out our basic recognition concept.

3 OBJECT RECOGNITION

3.1 General aspects of object recognition

Object recognition can be defined as the problem of as-
signing the correct label to an object present in a scene.
For that, an object has to be detected and may be loca-
lized and then identified by comparison with a given model
of the object. In simple cases, global approaches can be
used. Usually, global properties like volume, roundness or
higher order moments are computed, forming a vector of
parameters. Matching objects to models then reduces to a
comparison of parameter vectors, i.e. matching is done in
parameter space. In general, however, global methods are
not considered to be robust enough, particularly in the pres-
ence of occlusion and clutter {(Grimson 1990). Thus, many
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Figure 2: (a) Block diagram of a typical object recognition system for recognizing industrial parts. (b) Standard matching

scheme.

object recognition systems rely on the matching of geomet-
ric primitives such as points, lines and planes. In this case,
matching the object to the model is solved by establishing
a number of feature correspondences which determine the
object and its pose uniquely.

Fig. 2(a) shows the block diagram of a typical system for
recognizing industrial objects (Bhanu & Ho 1987, Flynn &
Jain 1991). For matching, sensor data and model data are
ultimately. mapped into a common domain. The type of
this domain can be chosen either sensor-specific or model-
specific or somewhere in between. The sensor-specific
representation reduces the complexity of the right branch in
Fig. 2(a) and increases the amount of preprocessing nec-
essary in the left branch. One extreme example would be
to sample the “important” views of the object (either by ac-
quiring sensor data or by rendering). However, besides the
fact that the “important” views are usually very large in num-
ber and are — especially for curved objects — not easy to
compute (Eggert, Bowyer & Dyer 1992}, the matching mod-
ule has to deal with the sensor-specific representation and
thus each new sensor requires to develop a new maich-
ing module. On the other hand, choosing the domain very
model-specific leads to the well-known problems of extract-
ing a useful symbolic description from the data. E.g., it is
so far not possible to use a CAD representation directly for
matching, because automatic extraction of the high-level
CAD objects from sensor data is not feasible.

Since it is desired to obtain object models automaticaily
and many industrial parts today are manufactured using
CAD/CAM technology, several investigations have used
CAD descriptions as a basis for the object models (Bolles,
Horaud & Hannah 1983, Hansen & Henderson 1989, Flynn
& Jain 1991). Typically, CAD data is attributed with lo-
cal feature data, binary feature relations and global feature
lists. Examples for adding local features are the computa-
tion of line length (based on the starting and ending points
given in the CAD data) or of the parameters of a plane in
which a circle {(given by CAD data) lies. Binary relations
between geometric primitives include the relative orienta-
tion of primitives or the distance between two primitives.
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Global feature lists consist e.g. of all planes with common
surface normals or of all circles whose radii lie in a given
range. All those approaches so far concentrated on geo-
metric properties, as they are based on CAD data, which
does not contain other properties.

Now we consider the box labeled “Matching” in Fig. 2(a). A
typical block diagram of its contents is depicted in Fig. 2(b).
Matching usually operates in search space, which contains
all possible combinations of model features and scene fea-
tures. Since an exhaustive search of this space is not fea-
sible in all but the most simple cases, several methods are
proposed to cut down search complexity. One standard
method is to prune the search tree by using unary and bi-
nary constraints (Grimson 1990). E.g. a object circle is only
matched to a circle present in the scene if it has approxi-
mately the same radius. This prunes complete branches of
the search tree. Another approach is to limit the depth of
the tree by using a combination of search space and pose
space techniques. It is called alignment or hypothesize and
test method. The idea is to match just enough features
to hypothesize the transformation needed to map the ob-
ject model into the scene. Since this is a 3D-3D transfor-
mation, very few feature correspondences (e.g. three point
pairs) are needed. Then, in a second step, this hypothesis
must be verified or refuted, which is usually done by predict-
ing and verifying the location of additional object features
in the scene. As shown in Fig. 2(b), this process can be
viewed as being circular, since after the hypothesis verifica-
tion step, either the hypothesis is refuted and the matching
of features restarts, or additional evidence must be gath-
ered, in which case feature matching proceeds and leads
to a refined hypothesis.

3.2 The proposed recognition concept using
multi-sensor fusion and active exploration

Our object recognition scheme using active exploration re-
lies on the possibility of the measuring system to capture
new sensor data whenever we want. Therefore, we pro-
pose to extend the circular matching process (Fig. 2(b)) as
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Figure 3: Object recognition approach using sensor fusion and active exploration.

shown in Fig. 3. The main idea behind this concept is that
the complexity within the recognition process must be kept
small. We start recognition with a small number of captured
sensor data. In this case the search space is small but it is
to be expected, of course, that matching will not come up
with the recognized object. The hypothesis generation and
verification scheme is now used to call for new sensor data.
Next goal-driven new measurements are carried out which
over several refinement steps may lead to a recognition in
steps: at the beginning the object class is identified and at
the end of the analysis the unknown object is recognized.

In the circular process (Fig. 3) the fusion of multi-sensor
data is the other important characteristic. Clearly, the use
of information from different sensors can be used to im-
prove the quality of the segmentation result. E.g. range
images contain information about the 3D shape of the im-
aged object more explicitly than intensity images. There-
fore, segmentation of range images in physically meaning-
ful parts is often much easier than the segmentation of in-
tensity images. However, considering the spectrum of avail-
able sensors and the variable lighting, non-geometric prop-
erties can be captured as well. Surface roughness can be
obtained either by high resolution distance imagery or by
the use of high resolution intensity images (in connection
with dedicated lighting). Surface color is captured by the
color CCD camera. Using different light incidence angles,
a general surface classification can be obtained from image
sequences.

Having this data there are two tasks to be done: it must be
incorporated into the segmentation and into the modelling
of the object. Concerning the modelling we chose the ISO
10303 standard (STEP, (ISO 1994)), and particularly the
application protoco! “Core Data for Automotive Mechanical
Design Processes” (10303-214) as a basis for deriving ob-
ject models. This protocol allows surface properties like
surface coating or surface roughness to be specified.
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A prerequisite for the segmentation is that all sensor data
is transformed to a common representation. In our case,
all data is projected onto the reconstructed object surface,
forming several layers of information. This requires the re-
gistration of the data. Often this step is done using the
orientation of the sensor given by the measuring system,
which makes a very precise and thus expensive position-
ing necessary. Another possibility is to use given sensor
orientations just as an approximation and to fit the data ac-
cording to positions of points which can be identified auto-
matically in both datasets. We demonstrate this approach
in the next paragraph.

4 FIRST RESULTS

To investigate our object recognition and location concept,
we have carried out some experiments. Fig. 4(a) shows
an industrial object as seen from one camera of the stereo
camera. The object is made of free-form shaped sheet
metal.. At the dark areas in Fig. 4(a), the metal has been
cut out by a laser cutter. The images have a resolution of
512x 512 pixels. ~

By image matching, the relatively coarse height model
shown in Fig. 4(b) is obtained. As expected, this coarse
model cannot deal properly with the breaklines of the cut-
out regions of the object. Nevertheless, since the cut-out
regions show up very well in the intensity imagery, we can
extract them using standard image processing. As shown
in Fig. 4(c), however, this usually yields some spurious data
as well. Thus, to improve our results, we use the larger of
the detected features to form areas of interest which are
then captured using the range sensor.

Fig. 4(d) shows a range image of the lower left part of the
object. The image consists of 256x256 3D data points.
Clearly, besides capturing the breaklines very well, the data
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Figure 4: (a) original image of the object. (b) coarse resolution height model obtained by image matching. (c) result of
intensity image feature extraction, transformed into 3D space. (d) range data set. (e) result of fitting range data set to the
height model in (b). (f) overlay of features extracted from intensity and range images.

is also suited to assess the surface roughness. Since  image matching to register both datasets and obtain the re-
we have for both the photogrammetric and the range data  sult depicted in Fig. 4(e).

height model synchronous intensity information, we used
In a further step, we extracted features from the range
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Figure 5: Four different objects with extracted breaklines.

dataset and mapped them to 3D using the registration
found in the previous step. As can be seen from the overlay
in Fig. 4(f), combining the intensity image extraction and the
range sensor extraction gives the breaklines, as desired.

Fig. 5 shows the result of this extraction for four different
objects. It can be seen that the upper right object can be
distinguished immediately from the others. Thus, we have
performed one cycle in our object recognition system of
Fig. 8. To distinguish the remaining parts, e.g. the shape
can be used. From Fig. 5 we see that the upper two parts
are shaped cylindrically, while the lower two parts contain
a large plain region. Capturing these differences can be
done e.g. by using a camera in connection with dedicated
light incidence angles.

5 OUTLOOK

We have proposed a new object recognition concept that
incorporates multi-sensor fusion and active exploration into
the recognition process. From multi-sensor fusion, we ex-
pect to obtain a significant quality improvement of the seg-
mentation result. Active exploration is a key feature to avoid
the problem of combinatorial explosion of the interpretation
tree. We have shown some first examples which illustrate
our proposed concept.
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