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ABSTRACT:

The design of close range photogrammetric networks can be a difficult task requiring a good understanding of the factors
which influence network design and accuracy. The configuration of the network geometry is a critical factor in determining
the accuracy which can be achieved for a survey. Expert photogrammetrists draw heavily upon heuristic knowledge and
experience throughout this design process. The expert knowledge required has been identified as one of the limiting factors
in the application of close range photogrammetric techniques (Mason, 1994). Expert systems offer a means of automating
the network design process. Mason (1994) proposed a conceptual framework for network design using an expert system.
One of the factors identified in this framework was the need to segment and group the target points into surfaces for which
generic camera configurations are known.

This paper builds on work presented by Mason (1994) and Mason and Kepuska (1991), in particular the investigation of
whether proximity and uniformity are appropriate criteria for the generalisation of target fields into combinations of
planes, cylinders, spheres and cones. Several surface features are reviewed as appropriate indicators of uniformity. The
maximum and minimum curvatures and a function of the surface normal coefficients have been selected as the most
appropriate uniformity indicators for this evaluation of the uniformity and proximity model. Several different
computational procedures which employ uniformity measures to group and/or classify points are reviewed. The paper
details the further development of one of these procedures for the generalisation of target fields using uniformity and

proximity.

1. NETWORK DESIGN.
1.1 Network Design For Complicated Objects.

The problems to be addressed in the design of
photogrammetric surveys were identified by Grafarend (1974)
as being four levels of design. This classification of design
problems was also adopted by Fraser (1984) and is as follows:
Zero-Order Design (ZOD) : the datum problem.
First-Order Design (FOD) : the configuration problem.
Second-Order Design (SOD) : the weight problem.
Third-Order Design (TOD) : the densification problem.
The nature of the object, physical constraints of the workspace
and the limitations of available equipment are critical to the
FOD problem and thus the accuracy that can be achieved from
the network. The research presented in this paper relates to the
automation of the FOD process.

The ten constraints and considerations associated with FOD
were dealt with by Mason (1994). These same constraints and
considerations were presented by Fraser (1984, 1989),
however in these earlier articles they were grouped and treated
differently. The ten constraints all limit the placement of
sensors (cameras) within the workspace. Several of these
network design constraints may conflict (Fraser 1992), and the
best compromise is sought when designing an imaging
network.

When designing imaging networks for simple objects a formal
design process may not be necessary. It is often possible for
the photogrammetrist to design an ideal imaging network
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simply by viewing the object and its survey site. Design by
inspection however, requires significant skill and knowledge.

For complicated objects, the network design by simulation
process allows for the theoretical precision of object point co-
ordinates to be quantified prior to the actual measurement
taking place and is' virtually mandatory for complex objects
(Fraser and Mallison 1992). The simulation process assists the
designer in dealing with the many interrelated and competing
design considerations of an imaging network required for the
survey of a complex object. A limitation of this design by
simulation process is that expertise is generally needed to
efficiently handle challenging cases (Mason 1994). The
requirement for expertise has meant close range analytical
photogrammetry has rarely been applied other than by
experienced photogrammetrists (Mason 1994).

1.2 Expert Systems For Network Design.

Expert systems are computer systems designed to simulate the
problem-solving behaviour of a human whe is an expert in a
narrow domain (Denning 1986). The design of strong imaging
networks (FOD) meets the prerequisites of a task suitable for
expert system development (Mason 1994). Expert systems
would play an important role in the development of automated
network design systems (Mason 1994). The advantage of such
an automated system would be to reduce the need for expertise
in close range analytical photogrammetric network design,
apart from the survey of particularly complicated objects.

International Archives of Photogrammetry and Remote Sensing. Vol. XXXI, Part B5. Vienna 1996



In studying the network design stratejies of experts, it was
identified that they employ heuristic knowledge and appear to
use generic networks to overcome the complexity of the sensor
station placement task (Mason,1994). /1 generic network is a
known camera configuration providing t e best possible survey
of all points on a particular surface.

The expert system presented by Mason (1994) is based upon
the decomposition of target fields into a number of point
groups that relate to the underlying surfaces of the target fields.
The target fields are decomposed into combinations of surfaces
for which generic camera configurations are known. These
generic networks are then combined into a single, strong
network for the whole object, giving consideration to the
nature of the object, and ensuring the restrictions of the site are
accommodated.

The decomposition of target fields into point groups that are
representative of the surfaces of the object is the main
cognitive operation on which the conceptual model for imaging
geometry configuration is based (Mason 1994). Mason was
able to suggest a partial model for the grouping of points into
the simplest of surfaces for which a generic camera
configuration is known: the plane. Points to be grouped as a
plane must satisfy two criteria (i) proximity - they must be
spatial neighbours; and (ii) uniformity - they must share a
similar surface normal (Mason 1994).  These criteria are
appropriate for grouping points into planar regions, however
objects to be surveyed are rarely that simple. Thus, a more
general conceptual model for the grouping of points needs to
be developed (Mason 1994). The work presented in this paper
is part of an investigation to determine the suitability of
proximity and uniformity as criteria for grouping points in
target fields which lie on surfaces other than planes.

2. UNIFORMITY AND PROXIMITY.

Flynn and Jain (1988) claimed that spheres, cylinders and
planes reasonably approximate 85% of manufactured objects.
These three surfaces, along with cones, were chosen as the
primitive surfaces into which target fields are to be
decomposed. The cone was included to increase the range of
objects that can be effectively generalised, or alternatively the
quality of the generalisations. All four of these surfaces belong
to the larger family of quadric surfaces and all can be
represented by the expression:

FX Y, Z)=arX? + a, Y2 + a:7% + agXY + asXZ + agYZ
+ a7X+ axY+ agz + ap = 0
X, Y, Z ~ object co-ordinates.

2.1 Uniformity Indicators.

2.1.1 Indicators Reviewed: The uniformity indicators used
for the grouping of points must be applicable to the task of
generalising close range photogrammetric target fields. The
direction of the surface normal at a point has a bearing on the
location of the cameras used to image that point. These surface
normal directions indicate the uniformity of a target field.
Similar surface normal directions suugest points lie on a near
planar surface. Uniformly changing surface normal directions
suggest points lie on the same curved surface. The distance
between neighbouring points on a surface patch could also
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indicate the uniformity of points. This indicator is, however, of
little value in relation to the intended application. Changes in
the spacing between neighbouring points may bear no relation
to the orientation of the patch on which they are located. The
direction of the surface normal is therefore a potentially useful
quantity for the evaluation of target point uniformity.

A review of uniformity indicators used by researchers in the
field of computer vision and machine intelligence for the
decomposition of complex objects into homogeneous regions
identified a number of potentially useful uniformity indicators.

Krishnapuram and Munshi (1991) trialed a number of
uniformity indicators in their evaluation of image
segmentation techniques. They segmented images using single
uniformity indicators and different combinations of two
indicators (one related to the surface normal and one related to
either the curvature at, or the location of, each point). The five
uniformity indicators were:

Orientation angle of surface normal.

Tilt angle of the surface normal.

Gaussian curvature at a point.

Mean curvature at a point.

Euclidean distance of points from an origin.
Krishnapuram and Munshi (1991) concluded that the
combination of mean curvature at a point and the orientation
angle of the surface normal enabled them to effectively
segment images of both planar and curved objects.

Hoffman and Jain (1987) used three uniformity indicators to
decompose range images in their three dimensional object
recognition system. The uniformity indicators in the minimum
justifiable set that could be effectively utilised in their
application (Hoffman and Jain 1987) are as follows:
Image co-ordinates (r, ¢) of points,
Range / depth from sensor (F(r,c) = z) of points,
Coefficients of estimated unit surface normal,
vector (Ai+ Bj+ Ck) at points.
The use of these three uniformity indicators requires the
analysis of six parameters, three for the co-ordinates of each
point, and one parameter for each of the three coefficients of
the estimated unit surface normal.

The coefficients of a biquadratic facet model :

Zw=Bo+ Biu+ Byv+ By’ + Byuv+ Bs v,
evaluated for a surface patch about each point were used by
Jolion et. al. (1991) as a uniformity indicator in the evaluation
of an image segmentation algorithm. As with the umiformity
indicators used by Hoffinan and Jain (1987), the use of the
coefficients of the biquadratic facet model requires the
analysis of six parameters.

Flynn and Jain (1988) developed a classification algorithm for
the description of segmented range images, using the
uniformity indicators of minimum curvature and maximum
curvature to discriminate between a sub-set of the quadric
surfaces. The minimum and maximum curvatures are
evaluated at points known to lie on non-planar surfaces, in
order to classify them as lying on spherical, cylindrical, or
conical surface patches. Flynn and Jain made use of the
known distinctive combinations of these curvature measures in
a hierarchical classification process to discriminate between
each surface in the sub-set of quadric surfaces.
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Surface curvature measures were also used by Besl and Jain
(1988) to provide an initial coarse segmentation of range
images, to be refined in an iterative region growing process. In
this case the values of mean curvature and Gaussian curvature
are not used directly, instead a function of the thresholded (-1,
0, +1) values is used to label the surface about a point as being
one of eight possible types. Thus, the image is segmented into
patches of points with the same or similar surface
characteristics, which are then refined.

The algorithms presented by Fan et. al. (1987), Roth and
Levine (1993) and Chen (1989) for segmentation and
classification of three dimensional objects do not make use of
uniformity indicators computed directly from the surface about
a point. Instead, they used the residuals of the fit of pre-
defined surfaces to indicate the uniformity of points within a
patch. These residuals are dependent upon the type of surface
being fitted, and the number and distribution of points used in
the fitting. Unlike the uniformity indicators used by other
researchers, the residuals of a surface fit are not computed in
isolation at each point, and are not solely dependent on the
surface defined by the points in the target field alone.

2.1.2 Indicators Selected : Of those uniformity indicators
reviewed the maximum and minimum surface curvatures and a
function of the surface normal coefficients were found to be
the most appropriate indicators of point uniformity for the
generalisation of target fields. Using indicators related to
surface normal and surface curvature simultaneously will
enable the decomposition of both planar and curved objects
(Krishnapuram and Munshi 1991). The minimum and
maximum curvatures were selected over the other measures of
curvature, as these two measures have distinctive
combinations for points on the quadric surfaces highlighted by
the hierarchical classification process presented by Flynn and
Jain (1988).
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Figure 1. Distinctive combinations of Max. and Min.
curvatures for the sub-set of quadric surfaces.

A function of the surface normal has been selected rather than
the surface normal itself, as this reduces the number of
parameters to be considered at each point. The function of the
surface normal coefficients to be used is the orientation
(direction) of the surface normal in the object system XY
plane. The susface normal at a point is directly related to the
direction from which it is to be imaged in network. Using the
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maximum and minimum curvatures and a function of the
surface normal reduces the consideration of uniformity to
three parameters at each point as opposed to five if the two
curvatures and the coefficients of the surface normal are
considered. The excessive number of data clements to be
considered at each point is also the justification for rejecting
the use of point co-ordinates and coefficients of biquadratic
surface approximations as uniformity measures. The use of
surface normals and point co-ordinates as uniformity
indicators would require the consideration of six data elements
for each point, as would the use of the biquadratic surface
approximation.

The selected umiformity indicators do not contain any
information about the location of points. Thus, if points are
grouped based solely on their uniformity indicators, points on
disjoint surfaces of the same type will be grouped together.
The use of location information (e.g co-ordinates) would
ensure that this grouping of points on disjoint surface did not
occur, i.e. points would have to be uniform in location. If the
issue of disjoint surfaces is not dealt with directly during the
grouping of points, then point proximity will have to be
established for each group of points created. The requirement
for post-processing of point groups is not in conflict with the
partial model developed by Mason (1994), which suggested
the use of both uniformity and proximity.

2.2 Point Grouping With Uniformity And Proximity.

The algorithms reviewed can be considered as one of three
types or a combination of two of these three. Segmentation
algorithms partition the data set into non-intersecting regions
such that each region is homogeneous and the union of no two
adjacent regions is homogeneous. Segmentation algorithms do
not provide any indication as to the nature of the underlying
surface of the point groups. Classification algorithms
determine surface parameters or descriptions for the point
groups that convey important information about these groups
ie. location and orientation (Flynn and Jain 1988). Neither
segmentation nor classification algorithms solve the point
grouping problem completely and thus a combination of the
two must be used. The third type of algorithms are extraction
algorithms that do not have distinct segmentation or
classification components. Data sets are mnot initially
decomposed into point groups for which parameters or
descriptions are subsequently determined. Instead the total
data set is interrogated to identify the presence of surfaces of a
predefined type in the data set. Membership of points to these
surfaces is then established.

2.3 Algorithms For The Evaluation Of Uniformity And
Proximity

A number of algorithms were reviewed and those presented by
Jolion et. al. (1991) and Newman et. al. (1993) were selected
as being the most suitable for the evaluation of uniformity and
proximity as measures to establish target groups.

The clustering algorithm as used by Jolion et. al. can integrate
multiple sources of information about the same data se,
allowing a more complete analysis ( Jolion et. al. 1991 ). This
type of algorithm can also make efficient use of all available
vniformity indicators. The algorithms presented by Roth and
Levine (1993) and Chen (1989) can only use the fit of points
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to a geometric primitive anc. thus the position of peints in
isolation.

Jolion’s algorithm is also ‘context-insensitive’, unlike
Krishnapuram and Munshi’s (1991) and Hoffman and Jain’s
(1987) algorithms. These algorithms require the input of a
maximum number of point groups to be formed in the feature
space, and thus exhibit the paradox of requiring knowledge
about the data set in order to interpret it (Quek et. al. 1993).
Jolion’s algorithm dynamically selects the appropriate number
of point groups in a data driven process.

Jolion’s algorithm makes direct use of uniformity indicators
without having to threshold them (i.e. map computed values
to -1, 0, or +1), as is required for Besl and Jain’s (1988)
algorithm. Abdelmalek (1990) and Krishnapuram and Munshi
(1991) note the difficulty associated with selecting appropriate
thresholds for the re-scaling of curvature values.

In addition to using uniformity indicators directly, Jolion’s
algorithm makes use of the entire data set when producing its
decompositions. Errors in the data set do not have significant
effects on the results of the segmentation. Other techniques,
such as region growing and ~boundary identification
(Krishnapuram and Munshi 1991) or selecting only a small
subset of ‘significant’ data points, may lead to spurious
segmentation of the data.

Jolion et. al (1991) have taken an ‘intelligent’ approach to the
target point grouping. The algorithm identifies a portion of the
feature space that will produce the most significant cluster, to
be refined in a ‘brute force’ process limited to only a portion
of the data set. Krishnapuram and Munshi’s (1991) algorithm
requires multiple clustering’s of the entire data set, from which
the best segmentation is selected. This ‘brute force’ approach
to clustering results in a slow and computational inefficient
algorithm (Krishnapuram and Munshi 1991).

As indicated earlier the point groups returned from an analysis
of the selected uniformity indicators may contain points from
more than one surface of the same type. Therefore, a proximity
measure must be used to split disjoint surfaces that have been
grouped together. To evaluate the proximity of the points, the
_separation of all points in a group can be computed with
respect to one point in the group and in a given direction
(Figure 2). The separations from the common point of all
points on the same surface will be similar (Figure 2,
separations in range D; — D). Points on the surface with the
same or opposite orientation will have distinctly different
separations from the common point (Figure 2, separations in
range D3 - Dy). The means of these two ranges will be
significantly different (Figure 2, D,y; # Dy2), indicating that
two point groups are not in close proximity. In a majority of
cases, the evaluation of point proximity’s will separate points
on surfaces with the same or opposite orientations. However,
the algorithm can not successfully discriminate between points
on surfaces if they are parallel and close together, or when the
surfaces are duplicated next to each other, as there is no
significant difference in the separations of the points.
The descriptions of the point groups created by Jolion’s
algorithm are to be produced using a modified version of
Newman’s et. al. (1993) algorithm. The simplicity of this
algorithm, its compatibility with Jolion’s algorithm and the
ease with which it can be modified were significant in its
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selection as the classification algorithm. The details of this
selection process and the evaluation of this algorithm are
beyond the scope of this paper.
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Figure 2. Separation of points for the evaluation of data point
proximity.

2.4 Pre-processing Of Target Field Data Sets.

Target fields to be decomposed using the selected
segmentation algorithm require pre-processing before the peint
grouping can be undertaken. The uniformity indicators upon
which the point grouping is to be based are computed from the
local contmuous approximation:

wLv) =Ci W+ Cyuv+ C3 vV + Cau+ Cs v+ Cs

to the discrete data set of target points. For a majority of cases
the surface features can be computed directly from the
continuous approximation, however, in the case of points that
belong to more than one surface, this is not possible. Direct
computation of the surface features from the local continuous
approximation would retuin a single set of umiformity
indicators. If the point lies on more than one surface ie. an
edge point, then one complete set of indicators is required for
each surface on which the point lies. Figure 3 shows this
concept for surface normals at an edge point. Points requiring
multiple surface features of each type could be dealt with by
creating ‘dummy’ points. The surface features of each these
‘dummy’ points relate to the different surface on which the
point lies.
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Figure 3. Edge point with multiple valid uniformity

indicators.

Points requiring ‘dummy’ points could be identified by
examining the uniformity indicators computed at each point
without regard for points being edge points or otherwise, i.e.
only one set of indicators for each point. In particular the
curvature measures could be analysed to find those points that
have curvatures greater than might reasonably be expected at
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peints lying on a smooth surface, indicating that the point lies
on a sharp edge.

3. COMPUTER VISION CONCEPTS APPLIED TO
PHOTOGRAMMETRIC PROBLEM.
3.1 Nature Of Data Sets.
The algorithms to be evaluated have been successfully applied

to computer vision and machine intelligence tasks. A number
of difficulties were encountered in developing the algorithms.

These were due to the differences between the target field data

sets and the data sets used in the computer vision applications.
Computer vision data sets are continuous images of only a
portion of the object, with an established perspective. The
target field data sets are discrete points, representing the entire
object. These differences have a significant impact upon the
processing strategy to be adopted.

It was intended that surface normal information and curvature
information could be considered simultaneously in a three
dimensional  clustering  algorithm as  suggested by
Krishnapuram and Munshi (1991). However, the problems
detailed below have resulted in an alternative processing
strategy being adopted.

3.2 Edge Point Identification.

Edge points in the data set need to be given special treatment
regardless of the application. In computer vision applications
the continuous data sets lend themselves to edge point
identification, using well established filtering and simple edge
operators (Fan et. al. 1987). The contaminating effects of these
edge points on surface feature computation can be reduced or
removed by masking out edges in the images.

No simple and effective method was found for identifying edge
points in the discrete data sets based upon information that
could be computed for each point and its nearest neighbours in
isolation. An approach based upon analysis of surface
curvatures required the use object dependent thresholds.
Furthermore, this approach was not considered to be reliable.
Therefore, a computational ~approach requiring the
identification of edge points prior to point grouping was found
to be inappropriate.

The contaminating effects of edge points on surface features
computed at neighbouring points could not be reduced or
removed. Instead, edge points were left in the data set in the
knowledge that these and other points effected by their
contaminating effects would fall out of the clustering process
as isolated points. Edge points would not be grouped with
‘regular’ surface points as they do not exhibit features
consistent with the majority of points in the data set, ie
significantly larger curvatures.

3.3 Approximating Surfaces.

The initial algorithm development was undertaken using an
approximating suiface of the type used by Flynn and Jain
(1988):
wWLV)=C P+ G v+ C3uvP + Cy v* + Cs v +Cs uv
+C;V?+ Cgu+Cyv+ Cyo
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This approximating surface was replaced by the one presented
in Section 2, as the higher order function behaved poorly in the
vicinity of edge points. When used in a least squares fitting
process the high degree of freedom of the approximating
surface meant that it would often produce a good fit on all data
points in the surface patch, regardless of edges. This was at the
expense of a suitable representation of the underlying surface.
The simpler equation of section 2 produced a surface that
fitted a majority of points in the patch without unnecessary
oscillations in the approximating surface.

3.4 Surface Normal Directions.

The surface normal directions and their functions are valuable
quantities for the decomposition of data sets in both computer
vision and target field generalisation.

The continuous data sets used in computer vision applications
are less susceptible to ambiguities associated with surface
normal computations than the target field data sets. In
computer vision applications only a portion of the object is
considered (viewed) from a single point. This significantly
reduces the range of surface normal directions returned for
points on the object. There are no ambiguities caused by
normals being retumed that are parallel or near parallel but in
opposite directions. In computer vision (range data) all surface
normals are ‘out” of the object, ‘towards’ the sensor. In
addition, occlusions in the images mask out portions of the
object in which ambiguous surface normal directions could be
computed eg. potentially ambiguous normals: perpendicular to
imaging direction are not computed. (Figure 4a.)

The data sets representing objects to be generalised in this
evaluation have no established perspective and embody the
entire object. The surface normals are computed from
continuous local approximations of the discrete data set and
the surface normal can be on either side of this surface. The
surface normals can be ‘into’ or ‘out of the object. When
considering these surface normals there is no limit on the
range of directions to be considered. Therefore, parallel and
near parallel normals in opposite directions, which are
‘similar’ despite apparent differences must be accounted for in
the clustering process (Figure 4b.)

'b
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Figure 4. Ambiguous surface normals.

Instead of adding information to the point grouping process the
surface normal directions when computed for the entire object
tended to only cenfuse the clustering algorithm. Despite their
value the surface normal directions are not suitable for direct
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input into a clustering algorithm for this application. Instead
the value of the surface normal direction needs to be exploited
on selected portions of the data set where there range of
directions is limited and can be used to resolve ambiguities
arising from planar regions in the data set.

4. REFINED COMPUTATIONAL APPROACH.

The minimum and maximum curvatures at a point have been
found to be the only uniformity measures that are suitable for
direct input into the selected clustering algorithm for this
application. These values do not introduce ambiguities or
uncertainties into the point grouping process, however
considering these two measures in isolation will group points
according to surface type alone, ie. planar, cylindrical,
spherical and conical. Further processing is required if points
on the same surface type but with different orientations are to
be split, along with points on the same surface type with
similar orientations but in different locations.

Thus, the following processing strategy will be adopted:
- Minimum and Maximum curvatures will be considered in
isolation: grouping points according to surface type alone.
A two dimensional version of Jolion’s algorithm will be
employed..

- Points on planes of different orientation will be split by
considering surface normal directions for planar portions of
the data set in isolation. This, limits the range of normals
to be considered, and reduces the complexity of the
ambiguities associated with this measure.

- The proximity of points will be evaluated to split points
lying on surfaces of the same type, but in distinctly
different locations.

- Edge points (ungrouped in a two dimensional clustering
algorithm) will be assigned to multiple point groups based
on the geometric fit of the point to the underlying surface
of each point group.

5. CONCLUSION.

The difficulties encountered in algorithm development detailed
in this paper are related to the application of the uniformity
and proximity measures to the generalisation of target fields.
The problems encountered do not indicate a failing of the
uniformity and proximity measures in concept, only in
application. The problems associated with the application of
these measures will be addressed with the development of the
refined computational approach, in which surface curvature
and surface normal data are not considered simuitaneously.
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