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1. ABSTRACT

The newest version of the ITC GIS and Remote Sensing software ILWIS offers an
integrated set of modules to perform geostatistics.
Its functionality for image processing, geographic analysis and digital mapping combined
with extensive geostatistical tools make it a modern product for education and research in
the field of G.I.S.
It incorporates spatial correlation tools like semi-and cross variogram modelling.
Anisotropy and spatial trend in the data can be studied. Unlimited numbers and types of
attributes can be linked to both vector and raster maps. Many options of statistical
interpolation (Kriging) and error estimation are implemented and described in this article.
Especially, the flexible integration of different data formats is emphasized.

2. INTRODUCTION

Geographic data have a geometry that is often structured either in regular grid patterns
(‘ raster’ ) or as randomly distributed sample points, lines or polygons (‘ vector’ ).
Statistical analysis on ‘raster’  data can involve image processing techniques that make
frequently use of concepts like histogram equalization, clustering and filtering methods,
multi-band image classification, auto- and cross-correlation.
In the ‘vector’  case the incoming data can have a rather irregular geometric position. The
geometric information contains  point coordinates in some local or global (e.g. latlon)
system.
The semantic information about the points , lines or polygons can be stored in any (user-
defined) range of values, This is called “domain”  in ILWIS. (Koolhoven and Wind 1996)
In case of statistical models the domain must have a numerical content. This means that
the vectors should have at least one attribute with numerical values as domain.

The statistical study of data available in this point vector format (in particular as a result
of measurement samples of any kind) is called geostatistics.
It makes use of the study of spatial continuity  of so-called regionalized
variables.(Burrough and McDonnell, 1998)
Geostatistics assumes that one can set up a stochastic model to predict measurement
outcomes at unvisited locations based on measurements at visited ones.
The stochastic modelling implies for instance the test on normality or log-normality,
followed by a search for covariance or variogram models. The combination of point
maps with associated tabular data is therefore essential.
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To each measurement location one can link various properties by means of an attribute
table. These tables accept quasi-unlimited amounts of records and fields and allow many
table- and join-operations.
Moreover  ILWIS offers variogram surfaces and curve fitting techniques to investigate
the stochastic properties of the data.
After finding the model that matches the observations best, the prediction of values at
unvisited locations is done by gridding. Gridding is an interpolation technique that
transforms a point map into a raster map covering the same geographic area.
The geostatistical interpolation follows one of the methods derived from the work of
Krige or his successors (Krige 1951, Matheron 1965).
The ‘Kriging’  method is statistical in the sense that it supposes knowledge of the
correlation between point measurements at different locations and that it produces an
estimate of the variance (and standard deviation) in the error of the prediction.
This error variance is minimal compared to error variances of other statistical
interpolation methods. The estimation is unbiased.

IN BRIEF , this article wants to point out three aspects of the geostatistics in ILWIS:
Modelling:  spatial correlation and variogram analysis on point map data,
Kriging prediction: interpolation by gridding using the models found and statistical
interpretation using so called error maps.
Integration of geostatistics with other G.I.S. tools to allow teachers and researchers to
place their study case in a realistic context and a correct georeference.

3. SPATIAL CORRELATION AND EMPIRICAL SEMIVARIOGRAM

Geostatistics is the science of modelling and estimating spatial variability. So it studies
data that fluctuate in space (and time) and their predictability at unvisited locations.

A useful characteristic that expresses spatial correlation, or spatial continuity, is the
semivariogram. Assume Z(xj) is a random function of the location vector xj  In case of
intrinsic stationarity the semivariogram is defined using the variance of Z(xj ) –  Z(xj+h) :
(Deutsch and Journel 1992)

γ (h)  =  E (Z(xj) –  Z(xj+h))2   / 2     which is a function of the separation vector h only.

The empirical semivariogram being an estimator of γ (h)  is calculated from the
separation vectors between all point pairs, subtracting attribute values z(xj), z(xk)
measured in pairs of distinct points.

It is defined using all available pairs of point vectors xj and xk   in the map, by:

γ(hi) = ΣΣ [ Z(xj) –  Z(xk) ]
 2   / 2N(hi)

The distance hi ranges over a discrete and finite set of mean lag-length values.
To each hi value corresponds a set of possible separation vectors h,  that have a length
belonging to the class of hi (in fact hi equals the mean of all lengths in that set). The class
of hi contains N(hi) point pairs.

For a given i, the summation ΣΣ is taken over all xj –  xk with (i –  1).s < || xj –  xk || <  i.s,
where i = 1 n,  with n the number of distance classes (“ lags” )  and s is the so-called lag

spacing. (Ilwis-Help1999)      The values of  γ (hi) are obtained in ILWIS from a point
map as input. The point map must have an attached attribute table that contains columns
(attributes) with numerical values. The computation is implemented in the operation
called “ Spatial Correlation” .
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Figure 1. Tabular output of point pair statistics

This operation produces a table with several columns as output. (Figure 2) Each pair of
value columns can be plotted in an xy graph so that semi-variograms can be displayed
and studied in order to find the best choice for the parameters of a variogram model
needed for the Kriging interpolation.

Semivariogram values restricted to certain directions with respect to the map North can
be computed. In this way so-called bi-directional variograms are produced. These can in
turn serve as input to the Kriging operation with geometric anisotropy.

If anisotropy is expected, it can be visualized quickly by making a variogram surface.
This is a square raster “ map”  that shows clearly the direction and strength of possible
anisotropy, so that the azimuth and range ratio can be used to choose proper parameters
for the bi-directional case.

Figure 2. The grey cells show 5 distinct groups of point-pairs found in the point map

4. MODELLING THE SEMIVARIOGRAM

The theoretical semivariogram γ (h) is estimated by the described formula, but remains
unknown. To account for spatial continuity in the stochastic sense, and use it for
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prediction, we need to adopt a variogram model that fits best the outcomes of the
experimental semivariogram. That model needs to be formulated as a continuous function
defined for all distances occurring between the point where the interpolation takes place.
ILWIS offers 7 types of functions:  Spherical, Exponential, Gaussian, Wave, Circular and
Rational Quadratic. Each of these models depends on the choice of 3 parameters: Nugget,
Sill and Range.  Moreover there is a Power model (including the linear case) which
requires Nugget, Slope and Power-exponent. Within certain range limits these parameters
can be set by the user in order to match as close as possible the experimental outcomes.
(Ilwis-Help, 1999)

Experimental and model semi-variograms can be placed in one graph with common x and
y axis. For a judgement of the Goodness of  Fit one should compute the model function
values for the distances (lags) that occur really in the output of the experimental semi-
variogram table. In ILWIS one can use for this the ColumnSemivatiogram operation.
A criterion of good fit could be to minimize as much as one can the following expression
of relative squares of differences.

)h( iγ    is the experimental result for distance class hi

)h( iγ    is the model semi-variogram value for the same class hi

The ideal value of R2  is 1 (a perfect fit):

One can of course also simply evaluate and minimize the sum of squared differences

possibly modified with weight factors.

 It will be 0 in case of perfect fit.

Any other criterion to optimize the curve fitting can be formulated and investigated.
This can be repeated many times for varying parameters, either on the command line or in
a script as an automated iteration.
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Figure 3. Experimental variogram outcomes (red points) combined with two possible model
variograms (smooth curves)

5. POINT MAP INTERPOLATION

ILWIS offers a variety of interpolation possibilities where dimensionless points in a map
are used (together with attribute values and an appropriate georeference) such that the
program produces a raster map with equidistant pixels (“ gridding” ) that get estimations in
a similar value domain. In almost all methods the estimation is a weigthed mean. (except
for the methods “ Nearest Point”  and “ Trend Surface” ).
The methods “ Moving Average”  and “ Moving Surface”  are deterministic and assume no
model of spatial continuity.
The different Kriging methods, however, need a model function that is based on a good
estimation of the covariance or semi-variance in the point data. The function describes
how the values in different location stochastically depend on each other.
Five Kriging methods are available:

Simple Kriging
Ordinary,  the most widely used method
Anisotropic Kriging (accounting for geometric anisotropy)
Universal Kriging  (accounting for local trends)
Co-Kriging (with more than 1 regionalized variable as input)

The ILWIS implementation expects in all cases a semivariogram model with fixed
parameters as input. Per interpolation only 1 function is allowed, hence nested models are
not (yet) possible.
On the other hand, while varying the search radius in Universal Kriging, local trends in
the output (the predictions) can be incorporated
Simple Kriging in ILWIS means that there is no search radius  limitation. Perhaps
‘ global’  Kriging would have been a more appropriate term, because many authors refer to
a model with known and constant expectation for the regionalized variable if the term
‘ simple’  is used (Cressie 1993).
Anisotropic Kriging must be preceded by proper inspection of variogram surfaces with
different pixel sizes. One should be aware of the effect of scale change. What appears
anisotropic in a certain direction need not to be so at another scale.
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The direction of the 2 main axes of anisotropy can be found from the variogram surface,
but nugget, sill and ranges should be estimated from the graphs obtained from the bi-
directional ‘ spatcorr’  operation
In ILWIS geometric anisotropy is handled by applying an affine transformation on the
matrix of distances between the points within the search circle. These transformed
distances are fed into the Kriging system of equations both on left and right hand side of
the equations. The ‘ elliptic’  distance transformation consists of a rotation of coordinate
axes towards the axes of anisotropy , followed by a differential scaling with scale ratio
equal to the ratio of the two principal ranges. This ratio is one of the parameters entered
by the user, together with the semivariogram model parameters.
All methods ask from the user to decide how to treat almost co-inciding points, These
points create possibly a singularity in solving the Kriging system This yields undefined
estimations.

6. KRIGING ESTIMATION AND ERROR MAP

The Kriging system produces n weights w1  w n as solutions if there are n points in the

search circle (ellipse). Apart from that, an extra unknown, the ’ Lagrange multiplier’   λ is
computed.
The weights are used to compute the Kriging estimation.

λ  is used to compute the error variance of that estimation. (Ilwis Help, 1999)

The left-hand matrix depends on the mutual distances between the various input sample

points and on the variogram function γ selected for the variable to be interpolated.
The position of the pixel (point) where the estimation takes place, influences only the
right hand column in the equation. This column must be recomputed for each pixel that is
interpolated. The left matrix needs only to be recomputed if the set of sample points
inside the limiting circle is different from the previous one.
One could improve the matrix inversion by making the diagonal dominant with respect to
the off-diagonal elements, thus avoiding too much pivoting when solving the system. This
is particularly relevant for large matrices caused by dense sample points combined with a
large search radius.
It can be implemented by setting up the Kriging system using the covariance function in
stead of the experimental variogram outcomes as input for an ordinary Kriging algorithm
as described in (Deutsch and Journel, 1992) and (Isaaks and Srivastava, 1989). It will be
considered in future releases of ILWIS because of its numerical advantages.
The map of square roots of error variances ( in ILWIS simply called “ error map” ) is a
raster map with geometric properties equal to those of the interpolation map (the map
with Kriging estimates).
It has the same number of rows and columns and the same real world coordinates
connected to it by means of its georeference.
Therefore all ILWIS map calculations can be performed on combinations of estimates and
errors. One may produce in this way probability maps that show confidence intervals
around the estimates. (Pebesma, 1996)
The georeference of the output raster maps ensures that they have a coordinate system in
common with the input sample points. The ILWIS feature of dependency between source
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objects and their resulting ‘ target’  objects makes recalculation after slight modifications
in the samples an easy task,
This offers a very handy tool to investigate and optimize sampling patterns and strategies,
especially if one automates the interpolation of many different input point samples in a
script.
(Van Groenigen, 1999)
It makes ILWIS a flexible and open end research tool.
Another example of making use of the integrated functionality of ILWIS is the modelling
of variograms and subsequent Kriging with indicators. The indicators are data
transformed into the Boolean domain based on a given cut-off value. This is simply done
by creating an extra boolean column in the attribute table of the point map, using an  iff-
statement. The new column is used as input for variogram modelling and fitting. The
variogram parameters are used in turn, to perform so-called Indicator Kriging.
For Block Kriging a feasible approach is to make proper use of the filter and aggregate
operations in the ILWIS raster domain. It offers many standard filters, many user-defined
filters and a variety of aggregation methods (Ilwis Help, 1999)

7. KRIGING WITH LOCAL TRENDS

A non-stationary regionalized variable can be regarded as having two components: the
drift consisting of the average value of the variable within the neighborhood and the
residual being the difference between the actual measurements and the drift (Van der
Meer, 1993).
Universal Kriging consists of three operations:
First the drift within a limiting distance is estimated and removed, secondly; the
stationary residuals are kriged to obtain the needed estimates and finally the estimated
residuals are combined with the drift to obtain estimates of the actual surface.
The set of estimates can be seen as a smooth surface defined within the point map limits.
In this ‘ trend’ -Kriging approach, one should choose variogram models with care. The
range of the model and the search radius of the interpolation are to be fine-tuned with
respect to each other.
ILWIS offers as options both linear and quadratic trend polynomials in two variables x
and y (the map coordinates).
The Kriging matrix equation for the linear case is shown below. The estimation is done
for the location xp , yp .  In this example, it is computed using 5 input sample points.
The quadratic case has 3 more rows and columns in the left hand matrix. These contain
the 2nd degree terms in the sample coordinates xi and yi  The same goes for the right hand
vector and coordinates xp and yp of the estimated point.
The column of unknowns has, in the quadratic case, 3 more Lagrange parameters to be

solved: α3 ,α4 ,α5
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8. CROSS-VARIOGRAM AND CO-KRIGING

Most data sets with samples points will contain more than only one variable. Besides a
primary variable of interest, that has to be interpolated, there can be several secondary
variables present.
These secondary variables could be more or less correlated with the primary variable and
could serve as supplementary information to better predict the primary one.
ILWIS offers the functionality of estimating a primary variable (the ‘predictand’ ) with
one secondary variable (the ‘co-variable’ ).
The underlying theory is well explained in   (Cressie 1993), (Deutsch and Journel 1992)
and (Isaaks and Srivastava 1989)
For the ILWIS Cokriging algorithm see (ILWIS Help,1999) for more information.
In this algorithm we assume two conditions of unbiasedness:

One on the m weights ω i assigned to predictand A, for which Σ ω i = 1

And one on the n weights η i  assigned to covariable B, for which Σ η i = 0.

It leads to a system with one more row and column and an extra Lagrange parameter µ 2
for the covariable.
Thus the system has n + m + 2 unknowns:
At this moment we have implemented the variogram model values of predictand A,
covariable B and the cross-variogram of A and B as input to the CoKriging system. So
the sub-matrices  G** are made out of semivariogram values whose parameters are
selected by the user. This requires a well chosen combination of semi-variogram models

γA , γB and γAB

The models should fit the empirical outcomes of the Crossvar operation sufficiently close.

Morover they should fulfill the Cauchy-Schwarz condition  γAB
2

 < γA .γB  for all
occurring lags (point pair distances) in the sample map.
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The estimator is implemented as

 
And its error variance is implemented as:

Var  =    σ 2   =  µ1   +  Σ ωi γA(hi)   +  Σ ηj γAB(hj)

One of the reasons to use a covariable is the fact that the predictand is undersampled,
compared to the covariable, for instance if there are large areas in the map where only the
more densely sampled variable is measured. In such areas the only information we have
about the predictand is its cross-correlation with the covariable. (Stein, 1988, 1991) show
examples of simulated and real world data in soil studies.
Another reason to apply Cokriging can be the fact that the covariable measurements have
a higher precision or reliabilty.
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9. INTEGRATING VECTOR AND RASTER G.I.S. WITH
GEOSTATISTICS

ILWIS is a G.I.S package that emphasizes the integration between information in vector
format (digitized points, lines, polygons, locaions known from GPS readings) and raster
format (imagery from remote sensing, aerial photography, scanned maps).
The georeference of raster maps is implemented in combination with coordinate system
definitions including map projections. The georeference settings define the spatial
resolution of  interpolation from point to raster maps and keep the link between
coordinates in both formats.
Any vector map with coordinates that are convertible to geographic latitude and longitude
using a map projection and if needed a geodetic datum, can be overlaid on a Kriging
result without the need to resample the latter again. The coordinate transformation link is
established via the coordinate system of the initial point map.
In case of multivariate interpolation (“ Co-Kriging” ), two point maps with different
coordinate systems and projections may be combined if they overlap in a common
geographical region of interest.
This often happens in real world situations and in research projects.
If the map projection of vector data is unknown, a link can still be defined by entering a
minimum number of control points in both coordinate systems.
This link ensures a smooth, accurate and very user-friendly display, update, combination
and retrieval of geographic information. (see Figure 1)
The information is either stored in the geometrical formats vector or raster, or in tabular
form. The tabular storage structure is linked to the various maps by means of common
identifiers that make use of the flexible domain concept.
In geostatistics the most common domain is of type “ value”  i.e. numerical values of
measurements at point locations are input and interpolated values with the same
numerical range are output.
But other domains can be created by the user and used in various contexts.
A boolean domain, for instance, allows for the creation of indicator and probability
maps, if one uses the tabular calculation of critical values and confidence intervals
properly.
The filter possibilities of ILWIS in raster maps enable the user to carry out statistical
estimations on square sub-areas leading to block Kriging.
The ILWIS script language makes the production of prediction maps for many
simulated situations possible.  It can help in finding optimal designs of sampling
schemes. (Van Groenigen, 1999)
The dependency between source point-map or source table and interpolated (gridded)
output is an ILWIS feature that facilitates the update of source and target objects (maps,
tables) without the need of re-entering all interpolation parameters again.
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Figure 4.  ILWIS Map View showing Kriging results (color) on top of which the point
map of input samples and a topographic segment map have been overlaid.

10. CONCLUSIONS

With the release of its youngest version, ILWIS offers a rather complete set of geostatistical functions and
tools.
Integrated with its G.I.S and Image Processing capabilities it can serve as a new instrument for research and
education, making full use of the smooth linkage between raster, vector and tabular format of data.
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