
863International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

DESIGNING OPERATORS FOR AN OBJECT-ORIENTED SPATIO-TEMPORAL DATA MODEL

Ale RAZA
*
 and Wolfgang KAINZ

**

Geoinformatics, Spatial Information Theory and Applied Computer Science
International Institute for Aerospace Survey and Earth Sciences (ITC)

PO Box 6, 7500 AA Enschede, The Netherlands.
Tel: +31 – 53 – 4 874 374

*saraza@itc.nl, ** kainz@itc.nl

Working Group TC IV-4

KEY WORDS: Object-orientated, Spatio-temporal, Data model, Design, Topology.

ABSTRACT

A spatio-temporal data model consists of data structure, operations and consistency rules. Designing and implementing
such model has been a challenging task because of its complexity. This paper focuses on operators for a spatio-temporal
model. Two types of operators can be contemplated in this model, i.e., static and dynamic operators. Dynamic operators
such as create, kill, destroy and reincarnate, which change the system status are identified. These operators are based on
author’s previous work on an object oriented approach to design a unified cell tuple based spatio-temporal data model.
Unified Modeling Language (UML) and Object Constraints Language (OCL) are used to design this model. Operations
governing the SpatioTemporalClass of this model are discussed here. SpatioTemporalClass is a super-class of
ZeroTCellClass, OneTCellClass and TwoTCellClass. Topological notions of point set approach are employed to
analyze the various intersections of objects of SpatioTemporalClass. It is demonstrated how the create and kill operators
for ZeroTCellClass and OneTCellClass can be constructed in a consistent fashion. Designing these operators may pave
the way to design and implement a generic temporal GIS.

1 INTRODUCTION

One of the fundamental enigmas and impediments in designing a generic temporal GIS (TGIS) is the spatio-temporal
data model. To design such a model has been a challenging task for many researchers because of the complex data
structure. Few integrated approaches exist that treat spatio-temporal data in a unified fashion. Employing object-
oriented (OO) design and relying on a solid mathematical basis may reduce the complexity of the data structure. Object-
oriented design may facilitate to model space, time and attribute (three components of real world feature objects) in a
modular and systematic manner. The OO technique is a natural way to design a model, and its importance in spatial and
temporal databases has been acknowledged by many researchers. This may provide a cleaner data model, where each
component may be defined in its own and may be integrated in a more structured and flexible mode. The mathematical
concepts provide a sound basis to define the space and time, which may provide an unambiguous definition of data
model for implementation and a basis for further development of a spatio-temporal query language. The data model
consists of data structure, operations, and consistency rules. A class is a set of objects with common properties. A class
consists of data members and member function (operations). The former is called static and latter dynamic aspects of
the class. The structure of the data model is defined by data members (data), while operations and consistency rules are
defined by operations. This paper focuses on the dynamic part of the class, i.e., member functions or operators, which is
based on the authors previous work on a unified OO approach to design a spatio-temporal data model (Raza and Kainz,
1999). The earlier work presents the data members and consistency rules. Also various classes were defined.
SpatialClass, TemporalClass and AttributeClass represent the space, time and attribute component of a real world
feature object, respectively. SpatioTemporalClass and AttributeTemporalClass are the aggregation of Spatial-,
Temporal- and Attribute-Classes. This cell tuple based spatio-temporal data model is briefly introduced in section-2.2.
This paper focuses on operations governing the two subclasses (ZeroTCell and OneTCell) of SpatioTemporalClass to
construct this model. These operators have been implemented in Visual C++. Methods are the implementation of the
operation and specify the algorithm associated with the operation. Algorithms for spatio-temporal databases are
different from spatial databases. These algorithms are not discussed in this paper. An OO visual-modeling language,
i.e., Unified Modeling Language (UML), is used to define the data structure and operations. First UML is based on
solid semantics and notation definition, which is necessary for interoperability. Secondly, UML is an evolution from
Booch (Booch, 1994) object modelling technique (OMT), OO software engineering (OOSE) and other OO methods,
which have proven tracks of successful implementation in complex software design. It supports the definition of
interfaces to objects as data (attributes), operations and association. Operations of SpatioTemporalClass are defined in

Ale Raza

864 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

UML in compliance with the UML notation guide. To further elaborate and to avoid the unambiguous specification
Object Constraints Language (OCL) is used. An OCL is a formal, pure expressive language that is easy to read and
write. It has been developed by IBM Insurance Division (UML 1.3, 1999).

2 UNIFIED CELL TUPLE BASED SPATIO-TEMPORAL DATA MODEL

The conceptual schema for the spatio-temporal data model is presented here. UML is employed to design a unified
spatio-temporal data model. First we briefly introduce the UML presentation, notation and organization followed by cell
tuple based spatio-temporal data model.

2.1 Unified Modeling Language (UML)

The vocabulary used in the design of the model is presented in Figure 1. They are based on UML notations. The
constraints are defined in Object Constraints Language. Following conventions are used to define the data members and
member functions (operations) of the classes. They are in compliance with UML notation guide (UML 1.3, 1999).

Data members : <<stereotype>> visibility name: type-expression = initial-value
Operations : <<stereotype>> visibility name (parameter-list): return-type-expression

parameter-list : comma separated list of formal parameters
with following syntax.

kind name : type-expression = default-value
<<stereotype>> : Tag for data member (attribute) or

operations.
visibility : + public visibility

: - private visibilty
: # protected visibility

name : identifier string that represents the name of
the attribute (data type).

type-expression : language-dependent specification of the
implementation of the attribute.

initial-value : initial value of newly created object.
kind : in, out, or inout (default is in)
name : name of formal parameter
default-value : optional value expression for parameter.

The abstract class, attribute or operations are defined in italic. In addition to UML types, stereotype can be defined in
UML to add extra semantics. They are defined within guillemets <<stereotype >>. Following are the list of stereotypes
use in designing the model.

<<index>> : Information can be used in indexing.
<<time>> : The object is defined in time. This is assumes as a linear time.
<<dynamic>> : The kind of operation create, kill, destroyed or reincarnate (discussed later). This operation may

modify the state of the system.
<<query>> : The nature of operation is query. This operation does not modify the system’s state.

Following data type corresponds to the collection. The type collection is predefined in OCL. There are three collection
types in OCL, i.e., Set, Bag, and Sequence. Set is the mathematical set. A Bag is like set. A sequence is like a bag in
which the elements are ordered. Collection is a set as defined in the OCL and can be of following types.

Set{ } : a normal set. Members or objects of the set appeared only one and order is not important.
Sequence{ } : an ordered set, with no repetition.
Bag{ } : A collection of object, where repetition is allowed.

2.2 Conceptual Schema

The three components of reality, i.e., space, time and attribute form three classes, SpatialClass, TemporalClass, and
AttributeClass (Figure 2). These classes are aggregated to create the SpatioTemporalAttribute-Class, commonly known
as FeatureClass. The three classes, which are aggregated to generate the SpatioTemporalAttributeClass provide a basis

Operation()

Attribute:

Class name

Operation()

Attribute:

Class name

Association

Relation

MultiplicityMultiplicity

DependencyAbstract Class

Concrete Class

Aggregation

Generalization

{Constraints} Constraints

Interface
specifier

Role name

<<Stereotype>> Stereotype

Figure 1: Icons used to represent the model.

Ale Raza

865International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

for modeling STAO, which is the backbone of any TGIS. SpatialClass has one PointClass (subclass). A
SpatioTemporalClass is a superclass of three classes, i.e., ZeroTCellClass, OneTCellClass and TwoTCellClass. The
objects of ZeroTCellClass, OneTCellClass and TwoTCellClass are temporal- node, arc and polygon, respectively.
Three dimensions of time are
incorporated as three specialised classes
of LinearTimeClass, i.e.,
DataBaseTimeClass (DT),
WorldTimeClass (WT) and
SystemTimeClass (ST). ST reflects the
time at which spatial changes occur in the
system. ST is explicitly associated with
the spatial object and is independent of
DT and WT. It is different from DT in
the sense that the latter represents the
updating of STAO in the database, while
the former indicates the updating of the
spatial object. In a LinearTimeClass two
data types are defined, PointTime [0-T]
and IntervalTime [1-T]. The object of
SpatioTemporalClass can be defined as:
An (open) n-tcell is a topological space

homeomorphic to an open ball En of Rn.
A ZTC is a temporal node, a OTC is
temporal arc, a TTC is a temporal
polygon/area. ZTC, OTC and TTC are
members of the temporal cell complex
(TCC). A finite collection k of n-tcells is
a TemporalCellComplex if

• Different elements of k have
disjoined interiors.

• For each n-tcell in k the boundary of
n is a union of elements of k.

• If n, m ∈ k, and n∩m = ¬∅, then n∩ m is a tcell, and is a union of elements of k. Where tcell is either an n, m (of
different dimension) or a common face.

The objects ZTC, OTC and TTC define their own spatial and temporal configurations.

• ZTC: A zero-dimensional object, which has a position and is represented by one PointObject. ZTC’s life span is
represented by interval time 1-T [TFrom,TUntil].

• OTC: A one-dimensional object, which is bounded by two 0-tcells. The OTC object is an ordered sequence of point
objects. In case of two point objects the last and first points are the first and last 0-tcell. In case of a loop, the first
and last point or ZTC is the same. In the parametric form a OTC is an ordered sequence of points,
{x | x = p1, p2, p3, …, pi, ….. pn}

where pi ≠ pi-1 and 0 < z <1 and x = p1 + (p2 - p1) * z, x = p2 + (p3 – p2) * z , ……, x = pn-1 + (pn - pn-1) * z
Points other than the first and last point are called intermediate points, which form the shape of OTC. A loop must
have two intermediate points. There is no limit (depending upon implementation) of intermediate points for OTC.

• TTC: A two dimensional object bounded by a closed cycle of ZTCs and OTCs. The life of each TTC is depicted by
1-T [TFrom, TUntil].

All objects ZTC, OTC and TTC can either be
born or die. Consistency rules governing these
objects can be found in Raza and Kainz (1999).
TUntil could be NULL which shows the object is
still alive (active). If TUntil is not-null, then it
indicates that the object is dead (inactive).
Therefore, all active objects are represented with
timestamp [TFrom, *] and inactive with
[TFrom,TUntil]. An active n-tcell is not allowed to
have an inactive boundary (n-1)-tcell. Whereas,
an inactive n-tcell can have an active boundary of
(n-1)-tcell. For example, an active OTC can not

1

0, 1

0 .. *2

0,21 .. *

2.. *

0 .. *

{sequence}

{set}

1 0,1 0,1

Operation():

Attribute:

Temporal

SystemTime

<<time>> + 1-T: IntervalTime
<<time>> + 0-T : PointTime

......

.......

<<topology>> + zerotcellid : ZeroTCell
<<topology>> + oneotcellid : OneTCell
<<topology>> + twotcellid : TwoTCell
<<time>> + systemtime : 1-T

TemporalCellTuple

<<dynamic>> + create(P: Sequence(Point)): Boolean
<<dynamic>> + kill(P: OneTCell): Boolean
<<dynamic>> + destroy(P: OneTCell): Boolean
<<dynamic>> + reincarnate(P: OneTCell): Boolean
.........

<<index>> + pointSequence: sequence(Point)
<<time>> # systemTime: 1-T
<<query>> + /length : Real
<<index>> + parent: OneTCell

OneTCell

<<dynamic>> + create(P: Set(OneTCell)): Boolean
<<dynamic>> + kill(P: TwoTCell): Boolean
<<dynamic>> + destroy(P: TwoTCell): Boolean
<<dynamic>> + reincarnate(P: TwoTCell): Boolean
.........

<<index>> + onetcell: set(OneTCell)
<<time>> + systemtime: 1-T
<<query>> + /area : Real
<<query>> + /perimeter : Real
<<index>> + parent: TwoTCell

TwoTCell

<<dynamic>> + create(P: Point): Boolean
<<dynamic>> + kill(P: ZeroTCell): Boolean
<<dynamic>> + destroy(P: ZeroTCell)
<<dynamic>> + reincarnate(P: ZeroTCell): Boolen
......

<<position>> + pointid: Point
<<time>> # systemTime: 1-T

ZeroTCell

Operation():

Attribute:

SpatioTemporalAttribute

Operation():

Attribute:

Attribute

WorldTime

<<time>> + 1-T: IntervalTime
<<time>> + 0-T : PointTime

......

DataBaseTime

<<time>> + 1-T: IntervalTime
<<time>> + 0-T : PointTime

......

Spatial

Attribute:

Operation():

Attribute:

Operation():

SpatioTemporalPoint

<<position>> + x : Real
<<position>> + y : Real

.....

Parent

Child

1

1 ..*

Parent

Child

1

1..*

Figure 2: Conceptual schema for cell tuple based spatio-temporal data
model [adpated from (Raza and Kainz, 1999)].

ZTC

OTC

TTC

Temporal
cell

complex

Temporal- Cell and Cell Complex Valid SpatioTemporal Configuration
Invalid

Configuration

Inactive n-tcellActive n-tcell

ZTC

OTC

TTC

Figure 3. Valid and invalid spatio-temporal configuration.

Ale Raza

866 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

have inactive ZTC(s), while, an inactive OTC can be defined by active ZTC(s). Figure 3 is the illustration of some
simple valid and invalid spatio-temporal configuration for ZTC, OTC, TTC. Active (alive) objects are indicated by
black shade and dead (inactive) by gray shade. This imposes consistency constraints while constructing or updating the
spatio-temporal database. As the object is defined as a spatio-temporal object, the topological relations could be defined
as spatio-temporal topological relations, i.e., the spatial relations which are valid over time. The
TemporalCellTupleClass preserves the temporal cell tuple structure (Figure 2). A temporal cell tuple structure
encapsulates the spatio-temporal topology of each spatio-temporal object. A temporal cell tuple (TCT) is a set of C and

T {C, T}, where C is a set of cells {c0, c1, c2, ….cn | ci ∈ TCC} and T is a time interval {TFrom,TUntil | (TFrom < TUntil) ∧
(TFrom,TUntil ∈ ST)} or 1-T. Therefore, TCT = {c0, c1, c2, ….cn, TFrom,TUntil}.

3 OPERATIONS FOR SPATIOTEMPORALCLASS

Two types of operators can be defined, i.e., static and dynamic operators. A static operator does not effect the system’s
state or status of spatio-temporal objects, e.g., query operators (calculating the length, area, time period, boundary or co-
boundary, etc). On the other hand, dynamic operators change the state of the system or status of the spatio-temporal
objects, e.g., creating, deleting or updating an n-tcell. Normally, in atemporal GIS, three fundamental dynamic
operations are performed, i.e., Insert, Delete and Update. All dynamic operators are the variation of one of these
operations (Worboys, 1997). Unlike atemporal GIS, in a TGIS an object may die or be killed, but they remain in the
database with a certain time stamp indicating their life span. As mentioned earlier any n-tcell object can be born or die.
Therefore, four fundamental dynamic operators can be distinguished in spatio-temporal databases, i.e., Create, Kill,

Reincarnate or Delete (Destroy) the objects (ZTC, OTC or TTC) of respective class. In spatio-temporal databases the
kill operation is different from delete operation, as the latter is merely a purge operation. Updating of spatio-temporal
objects is complex, any update operation effects the other objects, particularly in unified approach. Any spatial change
is the result of creation (birth) and / or destruction (death) of a n-tcell. Create operator is equivalent to the usual insert
operators. The task of this operator is to create a new and/or update an exiting object. This operator specifies time stamp
[start, *] of each spatial object, where upper bound of time interval is undefined (*). All objects with [start, *] time
stamps are called active objects. The Kill operator, kills the spatio-temporal objects by defining the upper bound of the
time interval. Objects after being killed are called inactive objects. These objects remain in the database only for the
query purpose or Reincarnate operator. Therefore, upper bound with (*) of ST is replaced by current system time. The
operator Destroy or Delete, permanently deletes the spatio-temporal object from the database. Therefore, they are no
longer available for any type of operations (static or dynamic). The operator Reincarnate turns an inactive object to an
active object by replacing the upper bound of time interval to (*). The Create and Kill operators are discussed in this
paper. Generally in a spatial data model the Create (update) operation is performed by checking the intersection of
spatial objects (node, arc or polygon). Spatio-temporal data models demand different treatment of spatial objects,
because the existing ones are not thrown out, they are persevered with valid time stamp. This Create operation is
basically an overlay operation. The overlay operation in spatio-temporal databases is much more complex than its
spatial counterpart. Computationally, polygon-polygon operations is most challenging task in vector type spatial
database (Laurini and Thompson, 1992).

In the unified spatio-temporal data model, when a ZTC, OTC or TTC is inserted, the
following scenario can be expected. A ZTC may intersect with ZTC, OTC or TTC, a OTC
may intersect with ZTC, OTC or TTC and a TTC may intersect with ZTC, OTC or TTC.
Figure 4 shows all nine possibilities when a n-tcell at time T1 may intersect with a n-tcell
at time T2. The cross (X) shows invalid intersection or overlay, i.e., geometrically ZTC

can not intersect with ZTC object (node can not intersect a node). The tick (√) is a valid
overlay operation, e.g., a ZTC can intersect with a OTC or TTC object. In each case there
are various possibilities, e.g., ZTC may intersect at the boundary of OTC or the interior of
OTC. The three topological invariant of spatial objects (n-tcells) are boundary, interior and
exterior. This point set topology approach is employed to analyze these intersections. Only

boundary (∂) and interior (°) of OTC and TTC are considered to investigate these
intersections. The intersection at the exterior of any n-tcell is straightforward. The
boundary of ZTC is empty. Create and Kill operators needed for ZeroTCell- and OneTCell-Class for 2-

TemporalCellComplex are discussed in this paper. These operations are closed as intersections of two n-tcells (0£ n £2)
always produces an n-TemporalCellComplex. It is assumed that all n-tcells are inside the universal (void) 2-tcell (∅).
The syntax for each operation of the respective class is given in Figure 2.

4 ZEROTCELLCLASS

ZTC OTC TTC

ZTC

OTC

TTC

√

√√√

√ √ √

T1

T2

√X

Figure 4. Possible
intersection for n-tcell.

Ale Raza

867International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

4.1 ZTC insertion (create operation)

Various possible scenarios and actions while inserting a ZTC are discussed in sequel.

4.1.1 ZTC coincidence: This case is trivial because the ZTC can not be added to an existing one.

4.1.2 ZTC with OTC: There are four possibilities (Figure 5).
a] At a boundary of OTC: Operation is rejected, as it is similar to ZTC to ZTC insertion. b] At intermediate point of
OTC: Kill OTC (a1) and TCT (c1 and c2). Create ZTC (n3), two OTC (a2 and a3) and TCT (c3, c4, c5 and c6).
c] At point between the intermediate points
of OTC: Create new point object (p’), new
ZTC (n3) and new TCT (c3, c4, c5 and c6).
d] At point between of two ZTC: Same as #
3.

4.1.3 ZTC with TTC: A ZTC may
intersect with TTC at the boundary or
interior of TTC.
1] At boundary of TTC: The boundary of
TTC is OTC, therefore it is similar to ZTC to
OTC intersection, where we had three
possibilities. ZTC can intersect at:
a] The boundary of OTC: Operation is
rejected, as it is similar to ZTC to ZTC
insertion.
b] The point between the intermediate points or between ZTC of OTC (Figure 6): Kill TTC (A), OTC (a2), TCT (c1,
c3, c5,…, c8). Create a point object (p’), a ZTC (n3), a OTC (a3, a4), a TTC (A’) and TCT (c9, c10, .. c18).
c] The intermediate point of OTC: Same as [b], expect no point object is created.

2] The interior of TTC: The process is shown in Figure 7. Only new ZTC and associated TCT is added.

4.2 ZTC Kill Operator (fl)

A ZTC (isolated) can be killed when it is not a boundary
or face of OTC by simply closing the upper bound of the
time interval. The case of ZTC being a face of OTC is
discussed as follows.
1] ZTC associated with OTC: A ZTC can be associated
with OTC in following ways (Figure 8).
A ZTC can be a boundary of single OTC (Figure 8[a]), a
ZTC can be a boundary of two OTCs (Figure 8[b]) or a
ZTC can be a boundary of more than two OTCs (Figure
8[c]). In all cases operation is discarded, as an active OTC
can not have an inactive ZTC.
2] ZTC associated with TTC: Same convention applies as
in case of ZTC associated with OTC. Therefore, no further elaboration is considered.

5 ONETCELLCLASS

T1

T2

n1

n2

a1

n1

n2

a1

c1
c2

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)

n1

n2

a1

n1

n2

a3
a2

c1
c2

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)

c1 (1, 1, 0, T1, T2)
c2 (2, 1, 0, T1, T2)
c3 (2, 2, 0, T2, *)
c4 (3, 2, 0, T2, *)
c5 (3, 3, 0, T2, *)
c6 (2, 3, 0, T2, *)

n3

c3 c4 c5

c6
n1

n1

n2

a1

n2

a3
a2

c1
c2

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)

c1 (1, 1, 0, T1, T2)
c2 (2, 1, 0, T1, T2)
c3 (2, 2, 0, T2, *)
c4 (3, 2, 0, T2, *)
c5 (3, 3, 0, T2, *)
c6 (2, 3, 0, T2, *)

n3

c3 c4
c5

c6

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)

c1 (1, 1, 0, T1, T2)
c2 (2, 1, 0, T1, T2)
c3 (1, 2, 0, T2, *)
c4 (3, 2, 0, T2, *)
c5 (3, 3, 0, T2, *)
c6 (2, 3, 0, T2, *)

n1 n2
a1

c1 c2

n1 n2a2

c3 c6

a3

c4 c5

n3

[a] [b] [c] [d]

a1 a1 a1

a1

Figure 5. Create ZTC: ZTC intersect with OTC.

A '

n1

n2

c 1 7c 2

c 18

c 4

c 13 c 14

c 12

c 11

a1

a4

c 1 0c 9 c 15c 16

c1 (1 , 1 , A , T1 , T2)
c2 (1 , 1 , 0 , T1 , *)
c 3 (2 , 1 , A , T1 , T2)
c4 (2 , 1 , 0 , T1 , *)
c 5 (2 , 2 , A , T1 , T2)
c6 (2 , 2 , 0 , T1 , T2)
c7 (1 , 2 , A , T1 , T2)
c8 (1 , 2 , 0 , T1 , T2)

c9 (3 , 3 , A ' , T2 , *)
c10 (3 , 3 , 0 , T2 , *)
c11 (1 , 3 , A ' , T2 , *)
c12 (1 , 3 , 0 , T2 , *)
c13 (2 , 4 , A ' , T2 , *)
c14 (2 , 4 , 0 , T2 , *)
c15 (3 , 4 , A ' , T2 , *)
c16 (3 , 4 , 0 , T2 , *)
c17 (1 , 1 , A ' , T2 , *)
c18 (2 , 1 , A ' , T2 , *)

a3

n3

A

n1

n2

c 1c 2

c 3

c 4

c 5 c 6

c 8

c 7

a1

a2

c1 (1 , 1 , A , T1 , *)
c2 (1 , 1 , 0 , T1 , *)
c3 (2 , 1 , A , T1 , *)
c4 (2 , 1 , 0 , T1 , *)
c5 (2 , 2 , A , T1 , *)
c6 (2 , 2 , 0 , T1 , *)
c7 (1 , 2 , A , T1 , *)
c8 (1 , 2 , 0 , T1 , *)

A

a2

Figure 6. Create ZTC: at the boundary of TTC.

c1 (1, 1, A, T1, *)
c2 (1, 1, 0, T1, *)
c3 (2, 1, A, T1, *)
c4 (2, 1, 0, T1, *)
c5 (2, 2, A, T1, *)
c6 (2, 2, 0, T1, *)
c7 (1, 2, A, T1, *)
c8 (1, 2, 0, T1, *)

A

n1

n2

c1c2

c3

c4

c5 c6

c8

c7

a1

a2

A

n1

n2

c1c2

c3

c4

c5 c6

c8

c7

a1

a2

n3

c1 (1, 1, A, T1, *)
c2 (1, 1, 0, T1, *)
c3 (2, 1, A, T1, *)
c4 (2, 1, 0, T1, *)
c5 (2, 2, A, T1, *)
c6 (2, 2, 0, T1, *)
c7 (1, 2, A, T1, *)
c8 (1, 2, 0, T1, *)
c9 (3, 0, A, T2, *)

c9

Figure 7. Create ZTC: at interior of TTC.

T1

T2 ↓ n1 ↓ n2

n1 n2 n3a1 a2

c1 c2 c3 c4

n1 n2a1

n1 n2a1

↓ n2

n1 n2 n3

n4

n5

n1 n2 n3

n4

n5

[a] [b] [c]

n1 n2 n3a1 a2

c1 c2 c3 c4

Figure 8. Kill ZTC: ZTC is a boundary of OTC.

Ale Raza

868 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

5.1 OTC Insertion (create operator)

Insertion of OTC is a recursive operation, which starts by insertion of boundary of OTC, i.e., zero, one or two ZTC.
Like ZTC, this operation can also be viewed from three perspectives, i.e., when OTC intersects with ZTC, OTC and
TTC. The intersection of ZTC with OTC and OTC with ZTC is not symmetric, like in spatial data structure. In spatio-
temporal case it is vital that what exist first, i.e., ZTC or OTC.

5.1.1 OTC with ZTC: There are three possibilities:

a] ZTC intersect at boundary of OTC
(Figure 9[a]): If one of the boundaries of
OTC coincides with ZTC (n1), then the n1
become a boundary of new OTC (a1).
New ZTC (n2) is added which becomes a
second boundary of OTC (a1). The TCT
c1 is killed and new TCT (c2 and c3) are
added.
b] ZTC intersect at intermediate point of OTC (Figure 9[b]): Two new ZTC (n2 and n3) are added. Two new OTC are
added, i.e., a1 and a2, with boundaries <n2,n1> and <n1,n3>, respectively. TCT c1 is killed. New TCTs (c2, c3, c4 and
c4) are added.
c] ZTC intersect at point between intermediate or ZTC of OTC (Figure 9[c]): Two new ZTC (n2 and n3) are added.
Two new OTCs (a1 and a2) are added, with boundaries <n2,n1> and <n1,n3>, respectively. TCT c1 is killed. New
TCTs (c2, c3, c4 and c4) are added.

5.1.2 OTC intersect with OTC: This operation could be very complex, i.e., there are number of possibilities when
OTC at T1 can intersect with OTC at T2. To simplify, we use a point set approach. Let a1 be a OTC (with no

intermediate points) with ∂a1 and °a1 at time T1 and a1’ be a OTC with ∂a1’ and °a1’ at time T2. A 2x2-intersection
can be defined as.







°∩°∂∩°
°∩∂∂∩∂

=
a1'a1a1a1

a1'a1a1

'

'
I4

a1

When we consider the empty [∅] and non-empty [¬∅]
intersection (single) of two objects. There are 24 = 16 possible
intersections between OTC at time T1 and OTC at time T2.
Not all are applicable or valid. Some of them are symmetric.

The valid cases are when: 1] ∂a1 intersects with ∂a1’, 2] ∂a1
intersects with °a1’, 3] °a1 intersects with ∂a1, 4] °a1
intersects with °a1’, 7] °a1 intersects with ∂°a1’, 9] °a1’
intersects with ∂°a1, 10] ∂a1 intersects with ∂a1’ and °a1
intersect with °a1’, 12] °a1 intersects with ∂°a1’ and ∂a1
intersects with °a1’, 13] °a1 intersects with °a1’ and ∂a1’
intersects with ∂°a1, and 14] ∂a1 intersects with ∂°a1’ and
∂a1’ intersects with °a1. Without going into details of all the
intersections, only valid intersections are considered and case
1,2,3 and 4 are discussed in details. However, OTC is
extended to n-segments. To simplify, the orientation of OTC
at T1 and T2 is assumed to be the same.
1] Boundary of OTC intersects with boundary of OTC: A
ZTC (n3), a OTC (a2) and TCTs (c3 and c4) are added (Figure 11).
2] Boundary of OTC intersects with interior of OTC: Two new ZTC (n3 and n4) and a new OTC (a2 and a3) are added
by defining boundaries as <n3, n2> and <n2, n4>, respectively. Exiting ZTC (n2) is used in defining the boundaries of
OTC. New TCT (c3, c4, c5 and c6) are added (Figure 12).
3] Interior of OTC intersects with boundary of OTC: The boundary of OTC (a1’ at time T2) can intersect with interior
of OTC (a1 at time T1) in two ways.
a] When it intersects at the intermediate point, a new ZTC is generated and existing OTC (a1) divided into two parts (a2
and a3), while a1’ remains unchanged (Figure 13[a]). OTC a1 and TCT c1 and c2 are killed. ZTC (n3), three new OTC
(a2, a3 and a4) are added and new TCT (c3,..c6) are added.

T1

T2

a1n1 n2

c2 c3

a1
n2 n3

c2 c5
c3 c4

c1 (1, 0, 0, T1, T2)
c2 (2, 1, 0, T2, *)
c3 (1, 1, 0, T2, *)
c4 (1, 2, 0, T2, *)
c5 (3, 2, 0, T2, *)

a2

n1

a1n2 n3

c2 c5c3 c4

c1 (1, 0, 0, T1, T2)
c2 (2, 1, 0, T2, *)
c3 (1, 1, 0, T2, *)
c4 (1, 2, 0, T2, *)
c5 (3, 2, 0, T2, *)

a2

n1

c1 (1, 0, 0, T1, *)

[a] [b] [c]

c1 (1, 0, 0, T1, T2)
c2 (1, 1, 0, T2, *)
c3 (2, 1, 0, T2, *)

c1 (1, 0, 0, T1, *)c1 (1, 0, 0, T1, *)
n1

c1

n''
a'

n'

n1
c1

a'
n' n''

a'n' n''

n1
c1

Figure 9. Create OTC: OTC intersect with ZTC.

Intersection

∂a1∩ °a1' °a1∩ ∂a1' °a1∩ °a1'

∅

Illusturation

¬∅ ∅ ∅1

2

3

4

¬∅∅ ∅ ∅

∅ ∅ ¬∅ ∅

¬∅∅ ∅ ∅

Object a1 at T1
(T1,*) Object a1' at T2 Inactive Objects

n1 a1 n2 a2 n3

n1 a1 n2
n1 a1

n
3

n
2

n
4

n
1

 a
1

 n
2

n
1

 n
3

 n
2

a4 n4

n1 a1 n2
n1 n2

a3 a2

a5

n1 a1 n2

a
2

a
3

a
2

 a
3

SpatioTemporal Objects

Active Objets

n3

n4

a4

n5
n1 a1 n2

n
1

 a
1

 n
2

∂a1 ∩ ∂a1'

7 ¬∅ ¬∅∅ ∅ n1 a1 n2 n1 n3 n4 n2

 a2 a3 a4

n1 a1 n2

9

10

∅ ∅¬∅ ¬∅

¬∅ ¬∅∅ ∅

n1 a1 n2

n1 a1 n2 n1 a1 n2

n3 n1 n2 n4

 a2 a1 a3

n1 a1 n2

12

13

14

∅ ¬∅ ¬∅ ¬∅

¬∅ ¬∅ ¬∅∅

¬∅ ¬∅ ∅ ¬∅ n1 a1 n2

n1 n3 n2 n4n1 a1 n2

 a2 a3 a4

n1 a1 n2 n1 n3 n2

 a2 a3

n1 n2 n3

 a1 a2

n1 a1 n2

n1 a1 n2

Figure 10. OTC-OTC intersection (single segment).

Ale Raza

869International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

b] When a1’ intersect at any point between the intermediate point or ZTC of a1 (Figure 13[b]). A new point and ZTC is
created and a1 is divided into two parts (a2 and a3). OTC a1, TCT c1 and c2 are killed. New point, ZTC (n3), three
new OTC (a2, a3 and a4) and new TCT (c3, .., c6) are added .

4] Interior of OTC intersects with interior of OTC: Interior of OTC (a1) at time T1 can intersect with interior of OTC
(a’) at time T2 in following ways:
a] Both intersect at intermediate point (Figure 14[a]).
b] Intermediate point of a’ intersects at point between intermediate point of a1 (Figure 14[b]).
c] Intermediate point of a1 intersects at point between intermediate point of a’ (Figure 14[c]).
d] Intersect at the intermediate point of both a1 and a’(Figure 14[d]).

First three cases (a, b and c) have the same steps for insertion of OTC except the third case where a new point
calculated as intersection. All results in four new OTCs. Kill OTC (a1), TCT (c1 and c2). Add ZTC (n3, n4 and n5),
OTC a2, a3, a4 and a5 with boundaries <n1,n4>, <n4, n2>, <n3,n4> and <n4,n5>, respectively and TCT (c3, c4, …,
c10). In the forth-case (d) five new OTCs are generated as shown in Figure 14[d].

5.1.3 OTC with TTC: Same conventions are employed as in the case of
OTC-OTC intersection. OTC (a) at time T1 can intersect with TTC (A) at
time T2 in many ways. This can be expressed by a 2x2 intersection metrix.







°∩°∂∩°
°∩∂∂∩∂

=
A

AA
I4

aa

aa

A

Like OTC, this, too, provides 16 possible intersections, but all are not valid.

Five valid intersections exist when 1] ∂a intersects with ∂A, 2] ∂a intersects
with °A, 3] °a intersects with ∂A, 4] ∂a intersects with °A and °a intersects
with ∂A, 5] °a intersects with ∂A and °a intersects with °A. Details of case-
1 is provided here. Only single boundary of OTC and TTC is considered
here.
1] Single boundary of OTC intersect with of TTC: Single boundary of OTC
can intersect with the boundary of TTC in two ways, i.e., a] intersects at

T1

T2 a1'

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)

a1n1 n2

c1 c2

n3

a1n1 n2

c1 c2

a2

c3 c4

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)

c3 (2, 2, 0, T2, *)
c4 (3, 2, 0, T2, *)

Figure 11. Create OTC: Boundary –
boundary intersects of OTC.

a1

T1 T2

a1'

a2

a3

a1

a2

a3

a1
n1 n2 n2

n2

n1

n1
c1 c2 c1 c2

c4

c3

c1 c2

c4

c6

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)
c3 (2, 1, 0, T2, *)
c4 (3, 2, 0, T2, *)
c5 (2, 3, 0, T2, *)
c6 (4, 3, 0, T2, *)

c5

c6

c3

c5

n3

n4

n3

n4

Figure 12. Create OTC: Boundary-
interior intersects of OTC.

T1 T2

a1

a1'

a2

a3

a4

a2

a3

a4

n1

n2

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)

c1

c2

c3

c6

n1

n2

n3

n3 n4c8

c5

c4 c7

c1 (1, 1, 0, T1, T2)
c2 (2, 1, 0, T1, T2)
c3 (1, 2, 0, T2, *)
c4 (3, 2, 0, T2, *)

c5 (3, 3, 0, T2, *)
c6 (2, 3, 0, T2, *)
c7 (3, 4, 0, T2, *)
c6 (4, 4, 0, T2, *)

c3

c4

c6

c5

c8c7

[a] [b]

n4

a1

n4

a1

Figure 13: Create OTC: Interior-boundary
intersects of OTC.

a3

a4

a2

a5

a3

a4

a2

a5

a4

a5

a3

a2

[a] [b] [c] [d]
T1 T2

a1
a1'

a2
a4

a5

a6
a3

n1
n2

n3

n4

n5

c3 c4
c5

c6

c8

c7

c9

c10

c1 (1, 1, 0, T1, T2)
c2 (2, 1, 0, T1, T2)
c3 (1, 2, 0, T2, *)
c4 (4, 2, 0, T2, *)
c5 (4, 3, 0, T2, *)

n1

n4

n2

n3

n5

c3 c4

c8

c7

c5

c6

c9

c10

c1

c2

n1

n2

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T2, *)

c3

c4

c9

c10

n1

n2

n3

n4

n5

n6

c5

c6

c7

c8 c12

c11

c1 (1, 1, 0, T1, T2)
c2 (2, 1, 0, T1, T2)
c3 (1, 2, 0, T2, *)
c4 (4, 2, 0, T2, *)
c5 (4, 5, 0, T2, *)
c6 (5, 5, 0, T2, *)

c6 (2, 3, 0, T2, *)
c7 (3, 4, 0, T2, *)
c8 (4, 4, 0, T2, *)
c9 (4, 5, 0, T2, *)
c10(5, 5, 0, T2, *)

c7 (5, 3, 0, T2, *)
c8 (2, 3, 0, T2, *)
c9 (3, 4, 0, T2, *)
c10(4, 4, 0, T2, *)
c11(5, 6, 0, T2, *)
c12(6, 6, 0, T2, *)

T1 T2

a1'

n2

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T2, *)

a1

c1

n1

c2

a1

Figure 14. Create OTC: Interior-interior intersects of OTC.

a3
n3 n4c13 c14

a2

c19

c5

c20 c7

c15 c16

c9 c10

c11

c12

c1 (1, 1, 0, T1, *)
c2 (1, 1, 1, T1, *)
c3 (2, 1, 0, T1, *)
c4 (2, 1, 1, T1, *)
c5 (1, 2, 0, T1, *)
c6 (1, 2, 1, T1, *)
c7 (2, 2, 0, T1, *)
c8 (2, 2, 1, T1, *)

c1 (1, 1, 0, T1,T2)
c2 (1, 1, 1, T1, T2)
c3 (2, 1, 0, T1, T2)
c4 (2, 1, 1, T1, T2)
c5 (1, 2, 0, T1, *)
c6 (1, 2, 1, T1, T2)
c7 (2, 2, 0, T1, *)
c8 (2, 2, 1, T1, T2)
c9 (4, 4, 0, T2, *)
c10 (4, 4, 1, T2, *)

c11 (2, 4, 0, T2, *)
c12 (2, 4, 1, T2, *)
c13 (3, 3, 0, T2, *)
c14 (4, 3, 0, T2, *)
c15 (1, 5, 0, T2, *)
c16 (1, 5, 1, T2, *)
c17 (4, 5, 0, T2, *)
c18 (4, 5, 1, T2, *)
c19 (1, 2, 2, T2, *)
c20 (2, 2, 2, T2, *)

c18
c17

A2

n1

n2
a1

a2

c1 c2

c3

c4

c6

c5

c8 c7
A1

n1

n2
a1

a2

c1 c2

c3

c4

c6

c5

c8 c7
A1

n3
a3

c9 c10

c1 (1, 1, 0, T1, *)
c2 (1, 1, 1, T1, *)
c3 (2, 1, 0, T1, *)
c4 (2, 1, 1, T1, *)
c5 (1, 2, 0, T1, *)

c6 (1, 2, 1, T1, *)
c7 (2, 2, 0, T1, *)
c8 (2, 2, 1, T1, *)
c9 (3, 3, 0, T2, *)
c10(1, 3, 0, T2, *)

[a]

[b]

T1T2

a4

a5

Figure 15. Create OTC: Boundary of
OTC intersects with boundary of TTC.

Ale Raza

870 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000.

boundary of TTC Figure 15[a], b] intersects at boundary of OTC of TTC Figure 15[b]. In the first case, the creation of
OTC yields a new TTC, while in the latter no new TTC is created.

a] Intersect at boundary of TTC: Kill TTC (A1), OTC (a1), TCT (c1, c2, c3, c4, c6 and c8). Create ZTC (n3 and n4),
OTC (a3, a4 and a5), TTC (A2) TCT (c7, c9, c10, .., c20).
b] Intersect at boundary (ZTC) of OTC: Create ZTC (n3), OTC (a3) and TCT (c9 and c10).

5.2 OTC Kill Operator (fl)

Killing an isolated OTC is straightforward, as
the null (*) value of the upper bound of time
interval (system time) is replaced by current
time. Cases when the boundary (ZTC) of OTC
belongs to another OTC can be complex. An
OTC itself can be a boundary of TTC. These two
cases are discussed below.

5.2.1 Boundary of OTC shared by another

OTC: a] Shared by one OTC (Figure 16[a]):
Kill ZTC (n1), OTC (a1) and TCT c1 and c2). b]
Shared by two OTCs (Figure 16[b]): Kill OTC
(a2) and TCT (c3 and c4). c] Shared by two or
more OTC (Figure 16[c]): Kill ZTC (n1), OTC (a1) and TCT (c1 and c2).

5.2.2 OTC is a boundary of TTC: a] TTC is defined
by a single OTC. b] TTC is defined by more than one
OTC. c] OTC is shared by two TTC. In all three cases
(Figure 17) the Kill operation is discarded (enforce
spatio-temporal consistency rule), as the OTC is the
boundary of TTC and TTC can not have an inactive
boundary).

6 CONCLUSION

We present a novel approach based on state-of-the-art OO concepts, UML and the mathematical theory of cell
complexes. Four dynamic operators, i.e., create, kill, destroy, and reincarnate have been identified to update a spatio-
temporal data model. These operators are designed for a unified cell tuple based spatio-temporal data model.
Singularities of n-tcells are incorporated. To discern the various geometric intersections between two n-tcells, the notion
of point set approach is employed. Various scenarios are discussed while applying create and kill operators. The results
of any create or kill operator produces a n-TemporalCellComplex and guarantees the spatio-temporal consistency in the
database. One of the chief advantages of this approach is that it may provide a basis for implementing any generic
TGIS.

7 REFERENCES

Booch G., 1994, Object-Oriented Analysis and Design with Application, The Benjaman/Cummings Publishing
Company, Inc.

Laurini R., and Thompson, D., 1992, Fundamentals of Spatial Information Systems, Academic Press Limited, London.

Raza A., and Kainz W., 1999, Cell Tuple Based Spatio-Temporal Data Model: An Object Oriented Approach, Eight
ACM Conference on Information and Knowledge Management (CIKM’99) and Symposium on Geographic
Information System (GIS’99), November 2-6th, Kansas City, USA.

UML 1.3, 1999, http://www.rational.com/uml/index.jtmpl (10 March 1999).

Worboys M., 1997, GIS: A Computing Perspective, Taylor & Francis.

n1 n2 n3a1 a2

c1 c4

n1 n2 n3 n4
n1 n2

n3

n4

c1 c2 c3 c4 c5 c6

a1 a3a2 a1

a2

a3
c1 c2

c3

c4

c5

c6

↓ a1 ↓ a2 ↓ a1

n1 n2 n3
a1 a2

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)
c3 (2, 2, 0, T1, *)
c4 (3, 2, 0, T1, *)

c2 c3

c1 (1, 1, 0, T1, T2)
c2 (2, 1, 0, T1, T2)
c3 (2, 2, 0, T1, *)
c4 (3, 2, 0, T1, *)

c1 c4c2 c3

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)
c3 (2, 2, 0, T1, *)
c4 (3, 2, 0, T1, *)

c5 (3, 3, 0, T1, *)
c6 (3, 3, 0, T1, *)

n1 n2 n3 n4

c1 c2 c3 c4 c5 c6

a1 a3a2

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)
c3 (2, 2, 0, T1, T2)
c4 (3, 2, 0, T1, T2)

c5 (3, 3, 0, T1, *)
c6 (3, 3, 0, T1, *)

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)
c3 (2, 3, 0, T1, *)
c4 (4, 3, 0, T1, *)

c5 (2, 2, 0, T1, *)
c6 (3, 2, 0, T1, *)

n1 n2

n3

n4

a1

a2

a3
c1 c2

c3

c4

c5

c6

c1 (1, 1, 0, T1, T2)
c2 (2, 1, 0, T1, T2)
c3 (2, 3, 0, T1, *)
c4 (4, 3, 0, T1, *)
c5 (2, 2, 0, T1, *)
c6 (3, 2, 0, T1, *)

T1

T2

Figure 16. Kill OTC: Boundary of OTC shared by another OTC.

A2

A1

A1A1

n1 n2n1
c1

c2

a1 c1

c2

c3

c4
a1

c5c6c8c7
n1 n2c1

c2

c3

c4

a2 a3

a2

a1

c5 c6 c7c8

c9c10 c12c11

c1 (1, 1, 0, T1, *)
c2 (1, 1, 1, T1, *)

c1 (1, 1, 0, T1, *)
c2 (1, 1, 1, T1, *)
c3 (2, 1, 0, T1, *)
c4 (2, 1, 1, T1, *)

c5 (2, 2, 0, T1, *)
c6 (2, 2, 1, T1, *)
c7 (1, 2, 0, T1, *)
c8 (1, 2, 1, T1, *)

↓ a1
↓ a1

Operation is discarded

↓ a1

c1 (1, 1, 1, T1, *)
c2 (1, 1, 2, T1, *)
c3 (2, 1, 1, T1, *)
c4 (2, 1, 2, T1, *)
c5 (1, 2, 0, T1, *)
c6 (1, 2, 1, T1, *)

c7 (2, 2, 0, T1, *)
c8 (2, 2, 1, T1, *)
c9 (1, 3, 2, T1, *)
c10 (1, 3, 0, T1, *)
c11 (2, 3, 2, T1, *)
c12 (2, 3, 0, T1, *)

[a] [b] [c]

T1

T2

Operation is discardedOperation is discarded

Figure 17. Kill OTC: OTC is a boundary of TTC.

Ale Raza

	Book4B.pdf
	Book4C.pdf
	Ale Raza

