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ABSTRACT

With more than 10 million subscribers Mannesmann Mobilfunk is the leading GSM network operator in Germany. Due
to the increasing number of subscribers in the D2 network and the resulting high traffic load, the network must be
continuously adjusted. For planning radio networks topographic data is used. This includes demographic data, traffic
data, information about land use and terrain height data.

For urban areas, where the network is planned using very large scales , details of the location and height of buildings is
necessary. Up to now the building structure of more than 50 major cities has been derived from aerial image
interpretation using photogrammetric procedures. In total, an area of more than 6000 sq km of building structure data
has been identified and is available in a high spatial precision.

Since the production of such 3D-city models with manual photogrammetric methods and subsequent building-
modelling is very time-consuming and costly, it is only applied to selected cities and up to now without modelling
additional objects like trees.

However, also for smaller cities and the surroundings of metropolitan areas where information about the location and
height of buildings and trees is currently still missing, data with improved accuracy will be needed for network planning
in the future.

For this reason alternative methods with a higher extent of automation are gaining in importance. The acquisition of
Digital Surface Models (DSM), i.e. precise information about the location and height of objects like buildings and trees,
with methods using radar and by correlation techniques will be considered in this paper.

The objective of this paper is the detection of buildings and trees in Digital Surface Models (DSM) with methods of
digital image processing. A radarinterferometrically derived DSM and a DSM derived from correlation methods applied
to aerial images of the Duesseldorf area serve as a source for the object detection. Different filtering techniques are
used to detect objects in the DSMs. The classification of the detected objects into buildings and trees is realized by the
application of special methods on the according magnitude image of the radar data and the orthophoto.

In addition, information from ATKIS (Authorative Topographic and Cartographic Information System) is also used.
The comparison of the results of the radarinterferometric data on the one hand and the correlated aerial image data on
the other hand leads to an evaluation of the potential of radarinterferometric data for the application in radio network
planning. For accuracy purposes the two approaches will also be compared with Mannesmann Mobilfunk”s existing
3D-building data of that area.

Finally, the exemplary integration of the detected objects (buildings and trees) into the German ATKIS is shown. The
ATKIS data will be used at Mannesmann Mobilfunk for several purposes, e.g. for controlling and enhancing the
network quality. ATKIS which is still in development offers nationwide detailed land use information. In the first stage
of realization, urban areas are represented by polygons. ATKIS does not yet contain single buildings or trees. Hence, a
way is shown how information on buildings and vegetation can be added to ATKIS in the Mannesmann Mobilfunk
environment in order to increase the information content of this data.

1 INTRODUCTION

The D2 mannesmann network is operated by Mannesmann Mobilfunk and is based on the GSM (Global System for
Mobile Communication) standard. Currently, more than 10 million customers use the D2 network with its voice, data

International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4. Amsterdam 2000. 987



Eckhard Siebe

and international roaming services. In order to continuously improve and optimize the network quality with the help of
computer simulations a precise knowledge of influences of the electromagnetic wave propagation is necessary. With
this information the cellular network can be adopted to the coverage and capacity demands of the market.

An economic network planning can only be carried out with the use of information technologies. The D2 network
currently operates approx. 20000 cells all over Germany. The handling of such dimensions for planning purposes is
only possible with computer based processes. To simulate the radio part of the network, complex physical models are
implemented in special software tools. These models require a digital description of the real world which is relevant to
the 900 MHz electromagnetic waves: land use data, building data, terrain elevation data, demographic data, traffic
network data, and topographic maps.

2 3D CITY MODELS USED BY MANNESMANN

Within the last few years the demand for capacity in the hot spot regions has increased tremendously. One possibility to
raise capacity is the introduction of smaller cell sites. However, because of the multiple use of frequencies and the
resulting interference problems, the precise knowledge of the antenna locations and their surrounding topography is
very important for the frequency reuse assignment.

In 1995, Mannesmann Mobilfunk started to place orders for generating 3D city models for selected German cities. Prior
to this some feasibility studies were carried out in order to define methods, requirements and practicability. Up to now
data for more than 50 cities with more than 6000 sq km in total has been generated with almost the same standard.
Mannesmann Mobilfunk defines city structure data as geocoded digital elevation data in urban areas including the
heights of building blocks. The buildings are generalized to the type of boxes. The data is available in vector as well as
in raster form. In addition, precise ortho image mosaics help the planners in their daily work.

Fig. 1 shows a perspective view of downtown Duesseldorf and demonstrates the quality of the model.

3 DETECTION OF BUILDINGS AND TREES IN DIGITAL SURFACE MODELS

Since the production of such 3D-building models with manual photogrammetric methods and following building-
modelling is time-consuming and costly, it is only applied to selected cities and up to now without modelling other
obstacles like trees.

But also for smaller cities and the surroundings of metropolitan areas, where information about the location and height
of buildings and trees has been lacking up to now, data with improved accuracy will be needed for network planning in
the future.

For this reason alternative methods with more automated steps come to the fore. The acquisition of Digital Surface
Models (DSM), i.e. precise information about the location and height of objects like buildings and trees, with methods
using radar and correlation techniques will be considered in the next chapters.
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3.1 Semi-automated Approach using digital aerial images

The following examinations are based on b/w aerial images from the Duesseldorf area of (approx. 15 x 15 sq km) taken
in 1995 from a WILD RC30 camera with a scale of 1 : 15 000. The use of stereo correlation techniques within the
program OrthoMax led to a base Digital Surface Model (DSM) with approx. 40% pixels of height values. Due to the
dense urban area on the one hand and water and fields in the Rhine area on the other hand, this result is acceptable.

The global completion of the raw DSM requires several procedures within the Erdas Imagine GIS environment. First
the outliers have to be eliminated by applying low pass filters. The completion will be done by using averaging filters
repeatedly. Approx. 95% of the DSM is now complete. The remaining 5% will be filled by interpolation methods in a
further step. A mean value filter is applied several times where at last only bigger continuous areas remain. These areas
are e.g. shadows of tall buildings, meadows, flat roof buildings, water areas, etc.. In order to fill the gaps of the terrain
height data, a procedure called “median of the smaller values” was developed. The basic idea of this concept is to define
the terrain height excluding the existing building information. For this purpose a 100m by 100m filter is adopted.
Within this filter the local maxima of the terrain and the buildings are defined. The median of the smaller values is a
good approximation of the terrain height because the outliers have no effect. A complete DSM was generated this way.
A comparison of the results with the reference terrain model shows a good correspondence, the mean difference was
1m, the standard deviation was + 0.8 m.

The next step is to extract objects from the DSM. These objects are
classified into buildings and trees with the help of ortho images. The
object extraction can be separated into object detection and object
classification. The basic digital terrain model (DTM) is generated
using minimum and maximum filters successively. This is known as
the procedure ‘opening’ (Baltsavias et al., 1995). In this study the size
of the filters was changed depending on the landscape (open areas,
forest, industry, residential areas, etc.). The result is a good
approximation of the terrain height. The difference between the DSM
and the DTM leads to a normalized surface model in order to detect
objects via segmentation. Using a threshold value of 3m leads to
objects or blobs which can most likely be defined as buildings or
trees. In a last step, detected areas lower than a defined minimum size
are removed and gaps in detected blobs are filled. Fig. 2 shows the
different steps for detecting objects from a DSM.

Fig. 2. Object Detection Aerial Image

_ For the classification of the detected objects the ortho image is used. A
criterion for the distinction between buildings and trees is the
distribution of the directions of strong gradients. In case of a building
the frequency distribution of the gradients forms two maxima, in case
o oo of trees the distribution is random. For the determination of the
directions of the gradients a threshold value was introduced. As shown
in Fig. 3, the histogram of the direction of strong gradients varies
between buildings and trees.
For the distinction between the two object types two criteria are used.
Firstly, the standard deviation of the frequency distribution is used.
Tesaaoraes] Hereby we use the effect that the standard deviation of the frequency
of strong gradients distribution is higher in buildings than in trees. Because the size of the
object area has an impact as well, we secondly use the quotient of
standard deviation and size for every object. Again a threshold,

gradient direction

Fig. 3. Frequency Distribution
of Buildings and Trees
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varying with the size of the object, was introduced and finally leads to the distinction between the two object types.

The accuracy of this distinction will be discussed next. For the accuracy evaluation we selected 255 randomly
distributed pixels and visually determined the objects within the ortho image. The confusion matrix explains the
accuracy:

Reference data (ortho As shown in table 1, 153 pixels of 170 in total were recognized

image) correctly as objects, 17 pixels were recognized incorrectly as

objects. 6 pixels were not recognized as objects in the DSM,

Object | Remainder | X although they exist in the reference data. The reason for the

N _ | object 153 17 170 incorrect determnatlop of some objects results frorp errors in the

S £33 stereo correlation, which leads to some extent to incorrect height

cF- %g Remainder [ 6 79 85 points. Because not all of the blunders can be detected, the

g ©Z procedure ” Opening” finds more objects than existing. This was
z 159 96 255 . .

often the case in the area of the Rhine meadows. Further errors are

the result of the threshold value (only objects higher than 3 m and

Table 1: Confusion Matrix for testing the larger than IOSqm have been reviewed).
Accuracy of Detected Objects

Table 2 describes the accuracy of the object

Reference data (ortho image) - e . e Do
classification. 66 pixels classified as buildings

Buildings | Trees | Remainder | X correspond with buildings in the reference data , 9 pixels

Build: Py . o o5 are classified as buildings, although they are trees in the

§ 5 urcngs reference data. The class 'trees' is recognized more

s g é Trees 5 73 7 85 precisely: 73 pixels are classified correctly, 5 building

el 2 2 | Remainder 3 3 79 85 pixels are wrongly assigned as trees. These
T = . e . . K

2 D misclassifications have different reasons. Firstly, the

z 74 85 96 255 . L g

spatial vicinity of buildings and trees often lead to a

. . ) combined object 'building' (because of the larger spatial

Table 2: Confusion Matrix for testing the Accuracy part). Secondly, buildings with non-rectangular edges

of Detected and Classified Objects are misclassified as trees due to their frequency

distribution of the gradients.

In total, we can summarize that the overall accuracy of the object detection is 91 %. Due to classification errors the
overall accuracy of the steps “object detection” and “object classification” is — with 85 % - slightly lower.

In the last working step we calculate the height of the detected and classified objects. Within the detected area we assign
the median height as the representative height for the individual object. A comparison with the reference data for the
buildings ( reference data for the trees was not available) shows an accuracy of —1.1m with a standard deviation of
+2.6m. These differences result mainly from the median height assignment to all sizes of buildings which includes a
higher inaccuracy in larger building blocks where the computed median value does not fit exactly to all parts of the
building.

3.2 Semi-automated Approach using radar-interferometric images

For the detection of objects in radarinterferometric images we used data of the STAR-3i System from Intermap
Technologies Ltd., Canada. The DSM and the corresponding radar-intensity images were derived by airborne one-pass
interferometry with across-track configuration. The STAR-3i data was acquired on July 28 and 29, 1998 with a
wavelength of 3 cm (X-band) and a spatial resolution of 2.5 m. The geometric accuracy of the radarinterferometric
images is * 3 meters, the height accuracy is + 2 meters. These accuracy statements published by Intermap Technologies
Ltd. are valid only for rural, not for urban areas. Generally the advantages of radar-interferometry are automated
processing and independence from weather conditions.
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For this semi-automated approach using radarinterferometric images
the same method was chosen as for the detection of objects in the
aerial images. One reason for this was to guarantee a real comparison.
First of all we generated a Digital Terrain Model by using the
‘opening’. The sizes of the matrices for the minimum filters and the
maximum filters were adjusted to the smaller spatial resolution of 2.5
m. The following subtraction of the Digital Surface Model and the
Digital Terrain Model lead to the detection of blobs (see figure 4).

For the distinction of these blobs into buildings and trees (object-
classification) we tested the use of the coherence data which shows
the correlation between the two radar images. Different types of land
use influence the correlation in different ways. Investigations on
ERS-1 data have revealed that forested areas are characterized by
lower coherence than fields (Derkum and Schwibisch, 1997).
Nevertheless, these results cannot be transferred to the present
inquiry because we used One-Pass-interferometric and not Two-Pass-
interferometric data like the ERS-1.

Thus, we chose an unsupervised classification without using the
coherence image for the object-distinction. The input data for the
classification was calculated by using a variance-filtering with three
different sizes of filter-matrices. Tests showed that the best results
of the classification can be reached with filter sizes of 5 x5, 11 x
11 and 17 x 17 pixels. The unsupervised classification was realized
with ERDAS Imagine. The classified dataset consisted of 80 classes
from which the relevant classes ‘buildings’ and ‘trees’ and a third
class (that represents all other objects) had to be derived. For this
reclass we used the radar-intensity image and a topographic map for
a visual recognition of buildings and vegetation. The result of the
reclass was a dataset that contains buildings, vegetation and all other
objects as a third class. This dataset was the base to decide whether
the previously detected objects were buildings or trees. The decisive
criterion for this was the most frequently occurring class.

Fig. 5. Object Classification
Radar Image
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Reference Data The steps ‘object-detection’ and ‘object-classification’ lead

(Ortho image) to a result that had to be checked. We used the same
method as described above. Again, the ortho image was the

Object | Remainder z reference for a comparison of 255 randomly distributed

pixels. It should be noted, that the images were 3 years
older than the radar data. Thus some changes were
Remainder 21 64 85 expected. Hence the result of the accuracy analysis could
appear worse than it actually is. First, the accuracy of the

Object 138 32 170

Result of
the Object
Detection

= 19 % 255 step ‘object-detection’ shall be checked. The error matrix

(see table 3) indicates that for 138 pixels of 170 in total the

Table 3. Confusion Matrix for Testing the Accuracy object-detection was successful. 32 pixels were recognized
of detected Objects incorrectly as objects. Another 21 pixels were not detected

as objects. In general, these errors are due to the
inaccuracy of the DSM which was used for the object
detection. Effects like lay-over, shadowing and specular
reflection occur very frequently in urban areas and lead to
an incorrect representation of the surface-height.

Table 4 shows the accuracy of both steps ‘object-detection’
and ‘object-classification’. 54 Pixels are classified
correctly as buildings. 10 pixels which belong to the class
‘trees’ in the reference data were classified incorrectly as

Reference Data (Ortho Image)

Buildings | Trees | Remainder [ X buildings. The accuracy of the object-classification of trees

is higher. Thus 65 pixels are identified accurately as trees.

- Buildings 54 10 21 85 Another 9 pixels were classified incorrectly as buildings

2 although they are buildings in the reference data. The

) E TS 9 65 11 85 misclassifications of objects trace back to the reclass of the

%g 80 classes to the relevant classes ‘buildings’ and ‘trees’.

2 - The assignment of the classes was problematic, because a
= & | Remainder 10 11 64 85 .. . o1 q-

50 clear distinction of buildings and trees was not always

& possible.
b 73 86 96 255 The overall accuracy of the result of the object-detection

18 79.2 %, and 71.8 % for the result of object-classification.

Table 4. Confusion Matrix for Testing the Accuracy
of Detected and Classified Objects

In the next, step we calculated the height of the detected and classified objects as described above. Here we chose the
maximal value within each detected blob because the DSM represents the real height of the buildings only in a few
pixels and is generally too low. The accuracy of the building-height is —3.8m with a standard deviation of + 2.9m.
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3.3 Comparison of the results

image

[ Tree

“1 B suiding

Objects detected

% within the aerial
DSM and classified
within the ortho

Objects detected
within the radar

) DSM and classified
within the radar

For a visual comparison of the result of the steps ‘object-detection’
and ‘object-classification’ see figure 6, where you can recognize a
part of the city of Duesseldorf with a park called ‘Hofgarten’. A
comparison with the ortho image shows that the blobs, that were
detected and classified in the DSM derived by the ortho images,
represent the real situation very well. The trees of the park and the
building blocks of the city are recognizable. The blobs that were
detected and classified in the radar data represent the reality more
fragmentarily. Some buildings and trees were not detected at all,
and the shapes of the detected buildings hardly correspond to the
real shapes.

intensity image

In both illustrations of the results you can find objects which are
classified incorrectly. Especially, the round building at the left
edge of the picture (Tonhalle) is striking. Because of its round
shape it was classified by using the ortho images incorrectly as a
tree. Using the radar data the result was a correct classification of
this object as a building.

B Buiding
AN [ Tree

Ortho image

mmmmmmm

Fig. 6. Comparison of the Results of Object
Detection and Object Classification

Onh]c; Image- | o 40r Data As table 5 shows, the overall accuracy of the detected
Overall . aa objects in the ortho image data is 12 % higher than the
verat accutacy o 91 % 79.2 % overall accuracy of the detected objects in the radar-data.
object-detection . .
The same tendency is shown regarding the overall accuracy
Opverall accuracy of . . . il .
object-detection and 84.7 % 71.8 % of the steps ‘object-detection’ and ‘object-classification’
object-classification together. Here, the accuracy of the result of the ortho image
Accuracy of the 1lm 38m data is 13 % better than the result of the radar data. Also,
building-heights concerning the accuracy of the object height the values
Standard Deviation +26m +29m calculated in the ortho image data are better than the values
calculated in the radar data.

Table 5. Comparison of the Accuracy Results

4 INTEGRATION OF BUILDINGS AND TREES INTO ATKIS

As a result of the described working steps we obtained two datasets, which contain buildings and trees detected and
classified in the ortho image data on the one hand, and in the radar data on the other hand. For the exemplary integration
of this information into ATKIS we chose the dataset, which was derived from radar data. The structure of the dataset
had to be adapted to the structure of ATKIS. Thus, a raster-vector-conversion was necessary, which was realized under
ERDAS Imagine. Buildings and trees are object types which are foreseen in the ATKIS structure in theory, but not yet
realized. So we could used the given structure in order to store building heights and tree heights. In general, the
integration was relatively simple to realize. Further tests have to be carried out in order to verify the additional
advantage of this integration for the radio network planning process.
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5 CONCLUSIONS

In this paper we demonstrated some semi-automated procedures for detecting and classifying objects like buildings and
trees from aerial images as well as from radarinterferometric sources. Finally, we integrated exemplarily the additional
information into the German ATKIS database.

The advantages of the radarinterferometric data are the lower costs and the immediate availability. However the
accuracy is lower in terms of the height determination as well as the spatial detection. To what extent the lower
accuracy has relevant influence on the radio wave propagation models, has to be investigated in detail.

In summary the procedures of detecting and classifying buildings and trees (either from aerial images or radar sources)
are very promising. These methods can be a good help in creating realistic and up-to-date DSM for the needs of the
radio network planning in mid-sized cities.
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