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ABSTRACT

A method for the measurement of pipe systems from a collection of images is presented. A predefined library of parame-
terized object models defined by CSG trees is used to describe several types of piping elements. An initial measurement
of each component of the pipe system is obtained by selecting the appropriate model from the library, projecting this
model into the images and modifying the pose, and the shape of the model such that it is aligned with the object in the
images. The images are taken with a calibrated camera. In addition, the exterior orientations of the images are assumed
to be known approximately. All the selected models are combined in one tree, that describes the complete pipe system.
Constraints within object models and also between object models are applied.
For the precise measurement of pipe systems we developed a two stage fitting procedure. First, in a pixel based fitting
stage the model edges are optimally aligned with the pixels with high gradients in a buffer around the projected model
edges. Second, in an edge-model based fitting stage the grey values in the buffer are matched with the grey values pre-
dicted by a Gaussian smoothed step edge and the standard deviations of the measured parameter values are estimated. The
practical application of this fitting procedure is demonstrated using object models with constraints. The use of constraints
reduced the standard deviation of most of the estimated parameter values significantly.

1 INTRODUCTION

Piping installations are usually built with a limited number of standardized components, like e.g. straight pipes, curved
pipes, connecting elements and more complex elements like valves and tanks. Constructive Solid Geometry (CSG) is
an appropriate representation scheme to model piping installations (Ermes and van den Heuvel, 1998). A CSG model
is a tree-like structure in which primitive shapes are combined using volumetric Boolean operations (union, intersection,
difference) to form more complex shapes. A typical set of primitives contains shapes such as a box, a sphere, a cylinder, a
torus, a prism, etc. Each primitive can be parameterized by its position, orientation, and shape (e.g. length and radius for
a cylinder). With a CSG tree these primitive elements are combined to represent more complex, composite objects like
flanged pipes and T-junctions. Finally, the piping installation itself can be described by one CSG tree that combines the
CSG trees of its primitive elements.

In (Tangelder et al., 1999) we presented a pixel based fitting method using CSG primitives for the measurement of objects
in images. In this paper that method is extended to object models consisting of CSG trees with constraints as well as
to sets of object models sharing constraints. Further, to the fitting procedure an edge-model based fitting stage is added,
that estimates the standard deviations of the measured parameters. The companion paper (Ermes, 2000) focuses on the
mathematical formulation of the different constraints within and between CSG models. The fitting procedure is discussed
in this paper.

Piping installations are generally very complex and images of these installations can show many piping elements. Mea-
surement problems may arise when piping elements are occluded by other elements or when reflections and shadows
are disturbing the boundaries of the piping elements. These characteristics of the piping application do not allow a high
degree of automation of the measurement process. Therefore, based on photogrammetry and CAD we have implemented
a semi-automatic procedure to measure the pose and the shape of a piping element from a collection of images. The
images are taken with a calibrated camera. In addition, the exterior orientations of the images are assumed to be known
approximately. The measurement procedure consists of the following two steps.
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1. Selection of an appropriate object model from the library by the image analyst. In each image a projection of the wire
frame of this object model is displayed. The image analyst aligns the edges of these projections with the boundaries
of the object in the images. For this purpose the image analyst selects a number of points on the edges in the images
and drags these points to the object boundary. For each measured point a linearized observation equation is set up
with a user defined weight (Ermes et al., 1999). Also, the exterior orientations of the images are estimated precisely
by a bundle adjustment procedure using the obtained object models.

2. Computation of the pose and the shape of the object by fitting the edges of the object model to the boundary pixels in
the images. The fitting procedure consists of apixel based fitting stage and anedge-model based fittingstage. In
the pixel based fitting stage the pose and the shape of the object is computed by fitting the edges of the object model
to pixels with high grey value gradients using an iterative least-squares estimation. For each pixel in a buffer around
the projected model edges a linearized observation equation is set up weighted by the squared grey value gradient at
the pixel (Tangelder et al., 1999). In the edge-model based fitting stage the grey values in the buffer are matched with
the grey values predicted by a Gaussian smoothed step edge and the standard deviations of the measured parameter
values are estimated. Again for each pixel in the buffer a linearized observation equation is set up as described later
in this paper.

To reduce the complexity of the measurement process the image analyst measures piping elements like straight pipes,
flanged pipes, T-junctions, flanged curved pipes, etc. one by one. After the first piping element is measured, the image
analyst selects a neighboring piping element next. Then, the selected piping element is measured taking into account
its internal constraints and the external constraints with its neighbors. The measurements by the image analysts, the
constraints, and the fitting measurements are all formulated as weighted observation equations.

The organization of the paper is as follows. In the next section related work is discussed. In section 3 the fitting procedure
is outlined. In section 4 we focus on the implementation of the fitting procedure. Practical results are presented in section
5. We conclude in section 6.

2 RELATED WORK

In order to reconstruct a 3D model from a collection of 2D images of an object, (Rockwood and Winget, 1997) define an
energy function between the object’s images and corresponding images of an articulated mesh representing the 3D object.
Then the 3D model is reconstructed by repeated adjustment of the mesh using simulated annealing to minimize the energy
function. (Fua, 1996) uses an energy function to fit a polyhedral object model to a collection of 2D images of an object.
The energy function is defined as the negative sum of the absolute grey value gradients along the edges of the object in
the images. With a steepest gradient method the positions of the corners of the polyhedral model are adapted such that
the value of the energy function is minimized. (Lowe, 1991) describes a least-squares algorithm that fits the projected
edges to edge pixels. These edge pixels are defined as the pixels with a grey value gradient above some preset threshold.
The errors in the approximate alignment of the object model are quantified by the perpendicular distances of the edge
pixels to the nearest edge. The fitting algorithm estimates the changes to the values of the pose and shape parameters,
that minimize the square sum of these distances. (Sester and Förstner, 1989) describe a clustering algorithm followed
by a robust estimation of pose and shape parameters. Their approach is based on correspondences between the edges
projected in the images and straight edges that are extracted from the image. (Vosselman and Veldhuis, 1999) compared
the performance of Fua’s and Lowe’s approach and found that the latter approach is much faster due to the comparatively
large number of iterations required by the former method. Therefore, we selected also a least-squares approach for our
object reconstruction method. (Debevec et al., 1996) describe a system for modeling and rendering architecture from
photographs. The image analyst instantiates parameterized geometric primitives such as boxes, prisms, and surfaces
of revolution. Measurements are done by marking edges in the images and corresponding edges in the images to the
model. Compared to Debevec’s approach our approach includes curved object models like curved pipes. (Löcherbach,
1994) describes a fitting approach to reconstruct agricultural land-use areas from remotely sensed images. Based upon a
smoothed edge model the boundaries of the land-use units are reconstructed by an iterative least-squares approach.

3 FITTING

After the shape and the pose of an object have been approximated by the measurements of the image analyst, the fitting
procedure is invoked to measure the object precisely as well as to estimate the standard deviation of the measured parame-
ter values. Both for the pixel based fitting stage and the edge-model based fitting stage observation equations are set up as
described below. Since these observation equations are nonlinear the observation equations are solved using an iterative
weighted least-squares approach.
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Figure 1: The transition h(x) in (2) between an object and the background (right) is modeled by a step edge (left) smoothed
with a Gaussian (middle).

3.1 Pixel Based Fitting

A direct relationship between the estimation of the pose and shape parameters and the gradients of the pixels can be
achieved by modifying the approach by (Lowe, 1991). Lowe introduces an observation equation for each pixel which
fulfills two conditions: (1) the grey value gradient should be above some threshold and (2) the pixel should be within
some range of a projected edge. We follow (Vosselman and Veldhuis, 1999) in dropping the first condition: i.e., for all
pixels within some range of a projected edge, the observation equation is introduced. In order to ensure that the pixels
with the higher gradients dominate the parameter estimation, the squared grey value gradients of the pixels are used as
weights to the observation equations: i.e.,
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where �uj (1 � j � m) is the signed distance from the jth pixel to the projected model edge and (@g=@u)j is the grey
value gradient at the pixel perpendicular to the model edge.

Note, that in the pixel based approach�uj is not stochastic. Therefore, it is not possible to estimate the standard deviations
of the obtained parameter values by propagation of the standard deviation of the observations. In the edge-model based
fitting approach presented next, the standard deviation of the observations is propagated to the parameter values. Practical
experience showed that the edge-model based approach requires better approximate positioning by the image analyst
than the pixel based approach. Therefore, we decided not to replace the pixel based approach but to apply both. In our
implementation first the model edges are shifted to the object boundaries in the images by pixel based fitting. Then by
edge-model based fitting the model edges are shifted to their final position according to the Gaussian smoothed step edge
model described below. Also, the standard deviations of the obtained parameter values are estimated.

3.2 Edge-Model Based Fitting

The edge-model based fitting approach compares the grey values predicted by the Gaussian smoothed step edge with the
grey values in the actual image. We apply the principle of differential matching described by (Förstner, 1993) to estimate
a shift of the model edges and to propagate the standard deviation in the grey values to the standard deviation of the
obtained parameter values.

The edge-model based fitting procedurematches the grey values in a buffer around the projected edges of an object model
with the grey values predicted by a Gaussian smoothed step edge. A Gaussian smoothed step edge predicts the grey value
at a pixel depending on its signed distance x to the transition between the object and the background. We denote the
Gaussian smoothed step edge by the function h and the grey values by the function g.

At the transition between the object and the background there is a discontinuous change of the grey value, that can be
described by a step function. Due to the image formation process this transition looses its sharpness in the images. This is
modeled by smoothing the step edge with a Gaussian as illustrated by Fig. 1. The obtained Gaussian step edge h predicts
the grey values at the pixel by

h(x) = hstart + (hend � hstart) I(x); (2)

where x is the signed distance of the pixel to the transition between the object and the background. hend and hstart denote
the grey values of the object and the background. The Gaussian integral I is defined by
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As I(x) ranges from 0 to 1, h(x) ranges from hstart to hend. The parameter controlling the amount of smoothing is �s.

For each pixel within some range of the projected model edges an observation equation is set up as follows.

First, the shift�xj between the projected model edge and the transition between the object and the background is related
to the difference of the observed grey value and the predicted grey value at the pixels divided by the first derivative of the
smoothed step edge, i.e.

�xj = (h(xj)� g(xj))=h
0(xj); (4)

where xj (1 � j � m) is the signed distance at the jth pixel to the projected model edge and g(xj) is the grey value at
the pixel.

The linearized equation

�xj =
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�
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�
j

�pi; (5)

relates this shift �xj to the adjustments to the parameter values �pi. In this equation (@x=@pi)j is the partial derivative
of the signed distance at the jth pixel to the projected edge with respect to the parameter pi. (Ermes et al., 1999) describes
an analytical approach to compute these partial derivatives efficiently. By combining the last two equations we obtain the
observation equation

Ef�gjg = Efh(xj)� g(xj)g =
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�
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j

h0(xj) �pi; (6)

that directly relates the difference of the actual and predicted grey value at a pixel with the adaptations of the parameter
values. After each iteration step the standard deviation �g of �gj is estimated from the residuals of the least-squares fit
by

�̂g =

sP
m

j=1
(h(xj)� g(xj))2

m� n
(7)

For each pixel within some range of the projected model edges an observation equation (6) is set up with weight 1=�̂2
g
,

where �̂g is computed at the previous iteration step. Further, the constraints are included in the adjustment as weighted
linearized observation equations (Ermes, 2000). All the parameters (pose and shape) are directly related to primitives in
the CSG tree.

The parameter values are adjusted with the weighted least-squares estimates of �pi. The projections of the model edges
are updated and the weighted least-squares adjustment described above is repeated until the adjustment of each parameter
value divided by its estimated standard deviation is smaller than a predefined error bound or the relative improvement of
the estimated standard variation �̂g is below a predefined threshold.

4 IMPLEMENTATION ASPECTS

The software is developed in C++ on a Silicon Graphics Workstation using the ACIS kernel. ACIS is an object-oriented
software library with CAD functionality, such as CSG object modeling and hidden-line analysis. For the visualization
of the images and the CAD models OpenGL is used. OpenGL is a software interface for the graphics hardware on a
computer. It allows the fast and interactive viewing of the image data and the CAD models.

After an object model is aligned approximately to an object in the images by the image analyst, it is measured precisely
by the fitting procedure. First the iterative pixel based fitting stage is started. A grid, that consists of a number of profiles
perpendicular to a projected model edge, is defined in this buffer. After each iteration the profile length is halved. The
profiles are shrunk until each profile contains three points at a distance of one pixel as shown in Fig. 2. (Tangelder et al.,
1999) provides a more detailed description of the implementation of the pixel based fitting stage. Then the final iteration
of the pixel based fitting stage is executed. Next, the iterative edge-model based fitting stage is started. An iteration
consists of the following steps:
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Figure 2: The fitting algorithm shrinks the buffer around the projected edges of the cylindrical model while keeping the
number of grid points equal. Only if the direction of the grey value gradient is approximately perpendicular to the nearest
projected edge of the cylinder (black grid point) an observation equation is set up. The grid points, at which no observation
equation is set up, are white. This has the advantage that non-perpendicular gradients caused by background objects will
not interfere the fitting procedure.

Figure 3: Digital images of an installation at a production cluster of the Groningen gas field.

1. Given the approximate pose and shape parameters of the object and the pose parameters for each image, the wire
frames of the visible model edges are projected in the images. ACIS computes these visible model edges by a hidden
line analysis based on the perspective projection.

2. Observation equations are set up for the pixels in a buffer around the projected model edges. All profiles have a
length of 2.0 pixels. On the profile the signed distance to the projected model edge ranges from -1.0 pixel to 1.0
pixel. With each profile a smoothed step edge is associated based upon equation (2). In this smoothed step edge
function H 9 has a predefined constant value (currently set to 1.0). In the first iteration the values� 9 4�:<;�4 and � @ �BAare set to the grey values at signed distance -2.0 and 2.0 pixel, respectively. In the remainder of the procedure for
each profile its step edge model is fixed, i.e. the values of��9 4�:<;�4 and �%@ �5A are not changed. For the signed distance� � C *5p q , � � q p q and � � *5p q pixel observation equations are set up as described in the previous section.

3. Finally, the observation equations are solved and convergence of the iteration process is tested as described in the
previous section.

5 PRACTICAL RESULTS

For the evaluation of the developed measurement method a pilot project was carried at a production cluster of the Gronin-
gen gas field, which is exploited by the Nederlandse Aardolie Maatschappij (NAM). A dataset consisting of 100 pho-
tographs of this cluster has been obtained in half a day using a digital camera (Kodak DCS 420). Each image comprises
1524x1012 pixels. A length of 1 pixel corresponds with 2 to 20 mm in reality. Fig. 3 shows an installation that is part
of this cluster. In this section we focus on the measurement of the curved pipe connected to the horizontal and vertical
straight pipe enclosed by the rectangle in Fig. 3. Using four images, we measured these pipes with the fitting procedure.
Also, we investigated the effect of the use of constraints on the pipe models on the standard deviations of the obtained
parameter values. In the remainder of this paper we express coordinates, lengths and radii in millimeters and angles
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Figure 4: Measurement of pipes. The left two images show the pose and the shape of the pipes before the fitting procedure
starts. The middle two images show the result using no constraints and the right two images show the result using
constraints.

in degrees. We measured the two straight pipes and the curved pipe with the parameterized cylinder and torus models
described below.

A straight piping element is modeled by a cylinder that is rotation symmetric around its axis. Hence, the orientation
of the cylinder is defined by the direction of its axis. This direction is specified by a normalized vector� ]sr � ] � � ] ( �relatively to a reference coordinate system. Hence, the pose and the shape of the cylinder is described singularity-free by
three parameters� , t and u denoting its position, three parameters]sr , ] � and ] ( denoting its orientation, and two shape
parametersv and w denoting its length and radius, respectively.

A curved piping element is not symmetric around an axis and therefore its orientation is defined by a normalized quater-
nion vector ��x r � x � � x ( � x'yz� providing a singularity-free representation of rotation (Ermes et al., 1999). A curved piping
element has the shape of a torus. The center line of the pipe is a circle with a major radius{ . A torus is obtained by
sweeping the center of a smaller circle with a minor radiusw}|R{ along the center line of the piping element. The bound-
ary of the torus is the surface swept out by the circle. An angle denotes the part of the center line of the piping element
that is followed. For instance a curved pipe between two perpendicular straight pipes is described by a torus with an angle
of 90 degrees. Therefore, we model this piping element by a torus described by three parameters� , t and u denoting its
position, four normalized quaternion parametersx r , x � , x ( and x~y denoting its orientation, and two shape parametersw
and { denoting its minor and major radii, and a shape parameter� denoting the torus angle.

One end of the curved pipe is connected to the horizontal straight pipe and the other end is connected to the vertical
straight pipe. Therefore, for each curved pipe end the image analyst has to add a position constraint and a direction
constraint both with a high weight. These constraints ensure that the curve pipe ends meet with the straight pipe ends and
have identical orientations.

Fig. 4 shows the three pipes after the measurements by the image analyst, after fitting without constraints and fitting with
constraints. In the test the predefined error bound and the predefined threshold described at the end of section 4 have been
set to 0.01 and 0.001, respectively. In the test the fitting procedure takes about 30 seconds CPU time.

Table 1 compares fitting with and without constraints. The differences between the obtained parameter values, and the
standard deviations in both cases are shown. The standard deviations above 0.5 are printed bold. Also, the adjustment of
the parameter values by the edge-model based fitting stage is shown. For fitting without constraints a lot of parameters
are difficult to estimate, because the transitions at the pipe ends are smooth. Therefore, in the case of fitting using no
constraints the differences between the positions of the pipe ends are rather high: (-6.15, 3.86, -12.32) for the horizontal
and the curved pipe and (-0.95, -34.58, 0.85) for the vertical and the curved pipe. Since the pipes are physically connected,
these positions should be identical. Therefore, using a high weight on the position constraints described above is justified.
The difference between the normalized direction vectors for the horizontal and the end of the curved pipe is
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difference �p �p difference
by using using using by edge-model
constr. no constr. constr. based fitting

H
x 22.66 1.35 0.24 0.14
y -29.63 2.62 0.93 -0.87
z 4.04 0.29 0.22 1.89
t0 38.4 10�3 1.2 10�3 0.3 10�3 -5.8 10�3

t1 -0.7 10�3 0.01 10�3 0.007 10�3 0.2 10�3

t2 -2.7 10�3 0.2 10�3 0.2 10�3 1.4 10�3

l -18.69 3.10 1.29 -6.11
r -1.57 0.15 0.16 -1.67
C
x -7.5 0.67 0.19 2.01
y 3.94 0.47 0.16 -0.84
z -28.32 2.23 0.91 1.59
q0 -21.1 10�3 3.9 10�3 0.1 10�3 2.9 10�3

q1 20.8 10�3 3.2 10�3 0.06 10�3 0.5 10�3

q2 28.6 10�3 3.4 10�3 0.05 10�3 -0.2 10�3

q3 0.4 10�3 0.1 10�3 0.009 10�3 0.1 10�3

R 9.74 1.53 0.96 0.47
r -8.15 0.17 0.22 -0.09
! 1.56 0.44 0.01 -0.10
V
x 0.79 0.23 0.22 -0.71
y 0.07 0.18 0.18 0.21
z 0.30 3.27 3.40 1.32
t0 -0.7 10�3 0.1 10�3 0.1 10�3 0.9 10�3

t1 0.1 10�3 0.1 10�3 0.1 10�3 0.3 10�3

t2 0.002 10�3 0.007 10�3 0.007 10�3 0.005 10�3

l -14.1 4.20 3.52 0.25
r 0.22 0.08 0.07 0.05

Table 1: Comparison of fitting with and without constraints for the curved (C) pipe connected to the horizontal (H) and
vertical (V) straight pipe. The first column shows the differences of the obtained parameter values for fitting with and
without constraints. The second and third column compare the standard deviation (�p) for using no constraints and using
constraints. The fourth column shows the difference of the parameter values by the edge-model based fitting stage.

(3.6 10�3, -0.5 10�3, 32.8 10�3). Between the vertical and the curved pipe it is (-42.3 10�3, -57.0 10�3, -2.3 10�3).
Hence, we assume that the physically connected pipes have the same direction and we use a high weight on the direction
constraints, also. Checking the trustworthiness of the constraints as described above is rather cumbersome. A tool based
on statistical analysis should be developed to assist the image analyst with this task. Applying the constraints reduces
the standard deviations of most of the parameter values. For the horizontal pipe only, the position y and the length l still
cannot be estimated very well. Since the position of a pipe end depends on y, y is correlated strongly with the length
of the pipe l. Similar, for the vertical pipe z and l cannot be estimated very well and are also correlated strongly. For
the curved pipe the same is true for z and R. In all these cases this is due to the smooth transitions between the pipes.
Compared to the difference in parameter values caused by using constraints the adjustment of the parameter values by the
edge-model based fitting stage is small.

6 CONCLUSIONS

In this paper we presented a new approach for precise fitting of parameterized object models to objects in images. A direct
relationship between the pose and shape parameters and the grey values at the object boundaries has been formulated
using a smoothed step edge model. A fitting procedure using a weighted iterative least-squares method to estimate the
parameter values and their standard deviations has been developed and implemented. The practical application of this
fitting technique has been demonstrated using object models with constraints. The use of constraints reduced the standard
deviation of most of the estimated parameter values significantly.

In the current implementation checking the trustworthiness of the constraints is rather cumbersome. Therefore, further
research focuses on the development of a tool based on statistical analysis to assist the image analyst with this task.
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