
IMAGE ORIENTATION AND OBJECT RECONSTRUCTION VIA POINTS ON COUNTOURS 

Dietmar LEGENSTEIN1 
Vienna University of Technology, Austria 

Institute of Photogrammetry and Remote Sensing 
dl@ipf.tuwien.ac.at 

 
Working Group III/2 

 
 

KEY WORDS: Surface reconstruction, Orientation, Mathematical models. 
 
 
ABSTRACT 
 
The main task in photogrammetry is the reconstruction of three-dimensional objects - size, shape, position or geometric 
distance - from analog or digital images. In a first step the camera position and the orientation parameters are calculated 
from known objects within the image. The widespread procedure for solving the problem of image orientation and 
object reconstruction uses control points or free-form features. In the present paper object reconstruction and object 
orientation via contours are discussed. Points on the contour are used if a limited number of control points are 
accessible and measurements of additional control points lead to prohibitive efforts. For object reconstruction digital 
photogrammetry can be used, because lines detected automatically have to be identified with contours. 
In the first part of the paper the necessary mathematical and photogrammetric methods for the solution of the tasks are 
developed. The second part deals with the strong dependency between the goodness of the approximation for the points 
on the contour and the convergence. 
 
 
KURZFASSUNG 
 
Die Hauptaufgabe der Photogrammetrie ist es, aus analogen oder digitalen Bildern dreidimensionale Objekte - Größe, 
Form, Lage oder geometrische Abstände - zu rekonstruieren. Dazu werden zunächst aus Photos mit Hilfe von 
bekannten „Gebilden“ die Aufnahmeorte und die Orientierungsparameter bestimmt. In erster Linie werden 
Bildorientierung und Objektrekonstruktion mittels Paßpunkten - oder auch über kurvenförmige Merkmale - gelöst. In 
dieser Arbeit hingegen sollen die Objektorientierung und Objektrekonstruktion über Umrißlinien diskutiert werden. Die 
Einbeziehung von Umrißpunkten bei der Bildorientierung ist dann von Bedeutung, wenn am Objekt nur wenige 
Paßpunkte gemessen werden können und das Einmessen eines jeden weiteren Paßpunktes mit erheblichem 
Mehraufwand verbunden wäre. Für die Objektrekonstruktion bietet sich die digitale Photogrammetrie an, bei der zwar 
Linien automatisch detektiert werden können, die aber mit Umrissen identifiziert werden müssen. 
Im ersten Teil der Arbeit wird das mathematische und photogrammetrische Gebäude, das für die Lösung dieser Aufgabe 
nötig ist, entwickelt; der zweite Teil beschäftigt sich mit der starken Abhängigkeit zwischen der Genauigkeit der 
Näherungswerte und dem Konvergenzverhalten. 
 

                                                           
1 This work is partly supported by the Austrian Science Foundation (FWF) under grant P13167-MAT, PORTIME II. 

1 INTRODUCTION 

The main task in photogrammetry is the reconstruction of the object from analog or digital images [Kraus, 1994, c 3.4]. 
Applications stretch from short-range images of work-pieces or facades to images of the surface of the earth taken from 
space.  
In any case the process of reconstructing the object from the image depends on the knowledge of the outer orientation. 
In the present paper points on contours are used to determine object orientation as well as surface parameters provided 
outer orientation. These points on contours form the boundary between the object and the background in the image.  
Points on contours can be divided into two categories: 
(a) the tangent plane in the point of the object is projecting (e.g. sphere)  
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(b) the tangent plane lies on an edge of the object forming the 
boundary of the image of the object (e.g. cube). 
Case (b) has already been solved, so in the present work points 
of contours satisfying condition (a) are the only concern. From 
this property the condition of contour is derived: the vector s 
from the camera position X0 to the point on the contour X is 
perpendicular to the normal vector n of the surface Φ (Figure 
1).   
In general, a point on a given surface can be described by its 
image: the three unknown space co-ordinates can be 
determined using the two co-ordinates in the image together 
with the condition, that the point is on the surface. Therefore 
the three unknowns can be calculated from three equations. In 
the case of a point on the contour, the additional information of 
the condition of contour leads to an over-determined system of 
equations. In the case of a full control point three additional 
equations are given whereas in the present case only one 
additional condition leads to the overdetermination.  
 

2 MATHEMATICAL PRELIMINARIES 

The following conventions are used for the notation of points and vectors: In general points and vectors are printed in 
bold letters. For algebraic treatment in calculations tensor-notation is used. If indices are used for scalar components of 
the elements they are printed in non-bold letters. Einstein summation convention is used for all formulas. 
 
2.1 The Condition of Contour  

A point X on a surface Φ is on a contour from the projection centre X0 if and only if the normal vector n of the surface 
Φ is perpendicular to vector s from the camera position to the point on the contour. This condition can be expressed 
with the inner product of the two vectors: 
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As mentioned above this leads to an overdetermined system of equations that can be solved using least squares 
approximation. Due to overdetermination discrepancies, which have to be minimised, from (2.1-1) i.e. from 0 will 
occur. The inner product nisi = 0 does not allow a vivid geometric interpretation; Therefore further conditions can be 
used: 
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In case of (2.1-2) the normal distance from the projection ray to the surface will be minimised, in case of (2.1-3) the 
discrepancy of the angle between n and s and a right angle will be minimised. By using one of these alternatives to (2.1-
1) the user can select a suitable criterion for his application.  
In photogrammetry several co-ordinate systems are used. Surfaces are often described in local co-ordinates because a 
suitable choice of the system can lead to a simple description. Therefore n is given in the model co-ordinate system 
(index M); on the other hand the vector s is determined in the image co-ordinate system (index B). For the conditions 
(2.1-1, 2.1-2, 2.1-3) both co-ordinate systems are transformed in a global reference system (without index). To 

Figure 1: Condition of contour between surface, 
projection ray and point on contour. 
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distinguish these indices from the tensor indices they are written in capital letters on the left-hand side of the symbols. 
The basic equation for the co-ordinate transformation is the spatial similarity transformation. 
The transformation of the projection ray from the image co-ordinate system to the reference system is given by, where si 
is the vector in the reference system, Bsj

 is the vector in the image system and BRi
j is the rotation tensor of the similarity 

transformation: 
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The normal vector is transformed from the model co-ordinate system to the reference system. Instead of the rotation 
tensor BRi

j the tensor MRi
j of the model system has to be used, where ni

  is the vector in the reference system, Mnj
  is the 

vector in the model system and MRi
j is the rotation tensor of the similarity transformation 
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The direction of the vector Bs in the image system is given by the difference of the centre of projection BX0 and the 
image co-ordinates: 
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The direction of the surface normal vector Mn in the model system, in the case of an implicitly given surface Φ is given 
by, where MΦ = MΦ (MX) = 0 
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Mn is a function of MX and has to be evaluated at the approximation for MX. In the next step the two vectors are 
transformed to the reference system according to (2.1-4, 2.1-5). 
 
2.2 Linearisation of the Condition of Contour 

The overdetermined system can be solved using least squares approximation [Kraus, 1994 p382ff]. Here the necessary 
linearisation is presented because of its importance in chapter 2.3: 
Observations, e.g. image co-ordinates or conditions of contour, are functions of the unknowns:  
 
 

( )nii xxxxfl ...,, 321=           (2.2-1) 

 
 
where li are the observations and xi the unknowns. Observation equations like (2.2-1), cannot be used for the 
approximation right away because they have to be linearised beforehand. In the process of linearisation at the point x0

i 
the approximate functions li, that in general are non-linear, are substituted by linear ones. In the case of n unknowns this 
leads to an n-dimensional hyper-plane. 
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The linearisation coefficients can be combined in the tensor 
j

iA : 
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The contradictions wi are given by the difference of the observation li and the evaluation of the function at the 
approximate values: 
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The linearised equation can now be written as:  
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Every row of the system of equations (2.2-5) describes a differential geometric locus. In chapter 2.3 these loci are 
discussed in detail. 
The condition of equations (2.1-1, 2.1-2) is special cases of equation (2.1-3), and therefore the linearisation coefficients 
of the general equation are calculated. The coefficients for the other equations can then be derived easily. In the next 
step the differentials for the unknown point X on the contour and for the surface-parameters ai will be calculated.  
 
Differentials for the point X on contour with coordinates xi: Equation (2.1-3) has to be differentiated with respect to 
xi. Due to the fact that the vector s can be written directly as the difference of the unknown point X on the contour and 
the centre of projection X0 in the reference system, the transformation of the image system to the reference system is not 
necessary. 
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Unfortunately the vector n cannot be written as a function of X right away. Therefore the transformation cannot be 
avoided in this case. Equations (2.1-7) and (2.1-5) have to be combined. 
The differentiation of (2.1-3) with the product- and chain-rule leads to: 
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curvature.  
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The differential 
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 according to (2.2-6) is simply the Kronecker-delta. 
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Using all these parts with equation (2.2-7) leads to the differential, where further abbreviations are used: 
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In the differentials for the variants of the condition of contour (2.1-1, 2.1-2) the tensors degenerate to the one-element, 
leading to the following differentials: 
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Differentials for the surface parameter ai: According to (2.2-6) the vector s does not depend on the surface-
parameters. Therefore the derivative of s with respect to ai is zero. 
The differentiation of (2.1-3) with the chain-rule leads to: 
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∂=  is a double indexed tensor. Due to the strong dependency on the equation for the surface, 

a further calculation is pointless: 
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The differentials for the variants of the condition of contour   (2.1-1, 2.1-2) are analogous to (2.2-16, 2.2-17): 
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The differentials with respect to the rotation tensors and the centre of projection are not quoted explicitly but can be 
found in [Legenstein 1997]. 
 
2.3 Rate of Convergence for the Different Conditions of Contour 

The first testruns with ellipsoids have shown that the different conditions of contour lead to completely different rates of 
convergence. For too inaccurate approximations – greater than the radius of convergence – one of the equations leads to 
divergence while the others converge. The clue to the understanding of this behaviour can be found in the examination 
of the differential geometric loci (cf. 2.2-5).  The mathematical argument can be found in the tensors Γ and Ψ. These 
tensors represent normal projections, orthogonal projecting a vector onto the normal planes in the direction of n in case 
of Γ, in the direction of s in case of Ψ. Vector fields of the normal vector of the geometric loci in the different centres of 
initialisation (for selected values) were plotted. If points with zero normal vectors or curls in the vector field are 
detected, this explains the different rate of convergence. The following images show normal vectors for differential loci. 
The ellipse on the left-hand side Φ represents the curve, the right one Θ the points satisfying the condition of contour. 
The left main vertex of the ellipse Θ is the centre of the surface, the right one the centre of projection X0. 
 
 

            
 
 
 
 
Figure 3 shows a curl-free (conservative) vector field. There is only one point with zero normal vector. This point is the 
middle of the centre of the surface and the centre of projection. In figure 4 a curl around the centre of the ellipsoid can 
be seen. In addition the normal vector is zero in this centre. This curl causes a big change in the direction of the 
geometric locus in these areas. This is especially disturbing because the point of contour is in that area. In figure 5 there 
are two curls. One of them is in the centre of the ellipsoid, the other one in the centre of projection. The normal vector is 
zero on the line from the centre of projection to the centre of the surface. 
To determine the areas of convergence the differential loci of the contour condition are intersected with the surface 
condition. Both conditions have to be fulfilled for the observation of a point on contour. In addition no measurements 
are needed because both observations are fictitious. The intersection point is used as the next approximation value for 
the linearisation. In the favourable case the intersection point converges to the point of contour.  
The equations for the geometric loci for the conditions of contour (2.1-1, 2.1-2, 2.1-3) can be derived from (2.2-5) in a 
straightforward manner using the differentials calculated above (2.2-14, 2.2-16, 2.2-17): 
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Figure 3: Normal vector field 
for the condition (2.1-1) 

Figure 4: Normal vector field 
for the condition (2.1-2) 

Figure 5: Normal vector field 
for the condition (2.1-3) 
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The figures 6 and 7 show the surprisingly small area of convergence for the equation (2.1-3) in contrast to the one 
according to (2.1-1). The circled grid points can be used as approximate values for linearisation. The figure for equation 
(2.1-2) was omitted because the behaviour is very similar to figure 7. Special notice should be taken of the non-
connected area of convergence in the figure for the condition (2.1-3).  
This method gives very precise figures for the necessary accuracy.  
 

3 IMPLEMENTATION 

For a first test of the theory the procedure was implemented in the adjustment-software ORIENT used for 
photogrammetric purposes. The algorithm is designed to apply the condition of contour for points on algebraic implicit 
surfaces up to the 9th degree or to surfaces that can be described implicitly with a maximum of four parameters [Kager 
2000]. In certain cases multiple iterations with one equation have to be carried out to achieve convergence with the 
desired condition. A suitable combination or a changing selection of one or more of the above criteria leads to the 
desired convergence. 
 

4 TESTS 

Testruns with numerous objects like quadrics, tori and rotation-symmetric free-form surfaces lead to the expected 
results: the additional over-determination lead to an increased reliability and accuracy of the desired parameters. In case 
of ellipsoids of revolution a special increase in the accuracy for the parameters of symmetry could be detected. 
Unfortunately, no results from industrial applications can be presented yet because they are just being planned for at the 
present time.  
 

5 CONCLUSION AND OUTLOOK 

The aim of image orientation and object reconstruction using points on contours was achieved. The theory was adapted 
to different representations for the surface and translated into algorithms for practical purposes. The first major 
application is the measurement of a pipeline-system where the advantages of a limited number of control points and the 
automatic detection of points on contours are especially applicable. 
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Figure 6: Area of convergence for 
the condition (2.1-1) 

Figure 7: Area of convergence for 
the condition (2.1-3) 
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