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ABSTRACT

Introduction: In order to minimize radiation exposure to patients, surgeons are examining the use of magnetic resonance
(MR) images for computer assisted spinal surgery. This paper will present a method for assessing the use and accuracy
of magnetic resonance imaging (MRI) for computer assisted surgery of the spine. A secondary objective is to compare
absolute orientation methods for use in the Iterative Closest Point (ICP) algorithm.
Methods: Titanium screws were placed in a cadaver spine, which was subsequently imaged using MRI, CT, and digital
photos. The digital photos were processed using a photogrammetric bundle adjustment to establish ground truth. As a first
approximation, registrations were performed using the nine titanium fiducials. A three dimensional model was formed
from the CT images using the fully automatic Marching Cubes algorithm. A dense set of surface points were extracted
from the surface of the MR after performing a correction for the non-linear attenuation. These images are to be registered
using an iterative closest point algorithm. Accuracy is to be assessed using the magnitude and direction of the resulting
residuals, as well as visual examination of fused CT and MR images.
Results: Registration using only titanium fiducials gave an RMS error of 2.90 mm for CT-MR registration. Further results
on registration using the ICP algorithm are pending.

1 INTRODUCTION

Current production systems use X-ray CT scans for pre-operative planning and guidance of surgical instruments in com-
puter assisted insertion of pedicle screws. The use of these systems has led to a dramatic reduction in misplaced pedicle
screws by allowing surgeons to visualize hidden anatomy and track the positions of surgical instruments with precision.
CT, however, exposes patients to potentially high levels of harmful radiation that could otherwise be avoided. Further-
more, patients generally undergo MRI scans as part of their diagnostic examinations. If a single scan mode could be used
for both diagnosis and guidance of surgical instruments, hospital costs and patient waiting time could be reduced. It is for
these reasons that surgeons at the Foothills hospital in Calgary asked us to assist them in examining the potential for MRI
in computer assisted surgery of the spine.

The two primary factors limiting the use of MR for computer assisted spinal surgery are the poor radiometric and ge-
ometric properties of the images. While MR images soft tissues very well, MR images of bone are poor because bone
does not generate any significant signal. Intensity values for bone are not unique across the image and may not even be
unique across bone in the image. MR images are also subject to intensity inhomogeneities caused by a loss of signal
strength for parts of the anatomy farther away from the detector. These properties make segmentation from bone in MR
images problematic. In contrast, bone in CT images corresponds to the highest intensity values in the image with excellent
contrast with the surrounding tissue. Thus, fully and semi-automatic threshold based methods work very well (Herring et
al., 1998). Furthermore, geometrically, CT images are free of severe spatial distortion. MR images, however, are subject
to non-linear distortions from various sources that in many cases cannot be corrected (Sumanaweera et al., 1994).

1.1 Magnetic Resonance image distortions

As mentioned previously, MR images are subject to several forms of geometric distortions, some of which may not be
calibrated. Geometric distortions relevant to computer assisted spinal surgery are outlined here. For a complete discussion
of causes of distortion see (Sumanaweera et al., 1994). With respect to computer assisted spinal surgery, the most serious
errors are resonance offsets caused by chemical shifts and magnetic field inhomogeneities attributed to differences in the
magnetic susceptibility of the materials being imaged.
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Figure 1: Voids created by titanium fiducials in T1 MR scan

If 2D MR is used, spatial distortions are more serious as out of plane warping (the “potato chip” effect) and varying slice
thickness (the “bow-tie” effect) can cause distortions as large as 2-4 mm. The magnitude of these distortions are relative
to the voxel dimensions. By reducing the field of view, these distortions can be proportionally reduced. These distortions
are not present in 3D MRI. (Sumanaweera et al., 1994)

Chemical shift artifacts are caused by differences in the way hydrogen is imaged in fat and water. Since hydrogen in
water and fat resonate at different frequencies, and MR uses frequency to encode spatial information, MR interprets the
frequency shift as a spatial difference causing fat/tissue interfaces to shift from their true locations along the frequency
encoding direction of the image. The magnitude of this effect varies with the strength of magnetic field and the read-out
bandwidth. Chemical shift artifacts are a serious problem for CASS as fatty areas occur close to the bone (Martel et al.,
1998).

Magnetic susceptibility artifacts are also dependent of the shape and material of the object being imaged. Variations in
the magnetic susceptibility of different materials causes variations in the magnetic field in the vicinity of that material.
The resonant frequency of hydrogen is dependent on the strength of the magnetic field. This will cause a spatial shift in
the frequency encoding direction at boundaries between two materials with different magnetic suceptibilities. The effect
is greatest where magnetic susceptibility differences are greatest, such as at air/tissue boundaries, and should theoretically
be minimal at bone/tissue boundaries. (Sumanaweera et al., 1994)

Correction methods for these distortions have been shown to significantly at improving registration (Dean, 1998), (Maurer
et al., 1994), (Martel et al., 1998). However, correction methods suffer from long computation times and an increase of
scanning time due to the need to acquire a second scan. Again, these effects are relative to voxel dimensions. Therefore,
the absolute magnitude of these errors can be reduced by reducing the field of view.

As magnetic field inhomogeneities manifest themselves only in the frequency encoding (read-out) direction of the image,
the direction of the residuals from the resulting registration will be examined in order to determine if the errors are from
MR distortion or from other sources (such as errors in segmentation).

1.2 Description of the Data Sets

Prior to scanning, three titanium screws were placed in the spinous and transverse processes of three vertebrae of the
lumbar spine to serve as fiducials in the registration process. Unfortunately, the fiducials imaged poorly and could not
be localized sufficiently for an accuracy assessment of the MR images. Though titanium in a non-ferrous metal, it does
affect the surrounding magnetic field and the titanium screws appear as “voids” in the images (see Figure 1).

Data sets were acquired of the five vertebrae of the lumbar spine from the cadaver using three different imaging devices.
CT images were acquired with a General Electric CT scanner. Image resolution was 0.5 x 0.5 x 1 mm. The data set con-
sisted of 82 images enclosing a volume of 256 x 256 x 246 mm. MR images were acquired with a GE Genesis Sigma scan-
ner using T1 and T2 weighted 2D MR with a 1.5 Tesla magnetic field, and an image resolution of 0.625 x 0.625 x 3 mm.
Each data set consisted of 76 images, enclosing a volume of 160 x 160 x 228 mm. The T1 weighted data sets used a spin
echo imaging sequence, 125 Hz/pixel read-out bandwidth, a flip angle of 900, a 9 ms echo time, and a 500 ms repetition
time. The T2 imaging sequence used a 244 Hz/pixel bandwidth, 900 flip angle, a 105 ms echo time, and a 5950 ms
repetition time.

In addition, digital photos were taken of the spine exposing the nine fiducials using Kodak DCS420 and DC260 digital
cameras. These images were processed using a photogrammetric bundle adjustment giving a root mean square (RMS)
error of 0.36 mm for the screw head locations.
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2 SEGMENTATION

2.1 Surface extraction in CT

The CT images were segmented using the fully automatic Marching Cubes algorithm as implemented by the freely
available Visualization Toolkit (VTK) (Schroeder et al., 1992). The output of this algorithm is a triangulated surface. The
algorithm uses an intensity value as its only input, and may be subject to partial volume effects due to tissue and bone
simultaneously occupying a single voxel (Herring et al., 1998). To the authors knowledge, no comprehensive study has
examined the effect on registration accuracy for spinal images.

Figure 2: 3D model constructed from CT image Data

2.2 Non-linear attenuation correction in MR

Before a dense set of surface points could be extracted from the MR images, a correction had to be made to remove the
non-linear attenuation distortion. The non-linear attenuation distortion is caused by an exponential decrease in signal
strength as one moves away from the coil used to detect the magnetic signal. Parts of the anatomy that are closer to the
detector generate a stronger signal than those farther away. While high level methods exist to perform this correction
(see for example, (Wells et al., 1995)) most algorithms make assumptions about the tissue classes present in the image
and require a pre-segmentation step for training the data. For our purposes, a very simple correction was performed to
improve edge detection in the images. A scaling factor based on the distance from a horizontal line below the image was
used to correct the attenuation:

g′(x, y) = S · g(x, y) + y0 (1)

where g(x, y) and g′(x, y) are the original and corrected intensities, S is a scale factor, and y0 is an offset term representing
the line y = y0. The scale and offset parameters were solved for using a least squares model where the minimization
function was chosen to be:

Σ2 =‖ g′(x, y) − G ‖2 (2)

where G represents the average intensity in the image. An attempt was made to use a radial distance from a point (x0, y0)
to eliminate the darkening that appears in the corners of the image (see Figure 3). However the radial model was dominated
by the ∆x component of the radial distance and, in fact, degraded the image.

2.3 Surface point extraction

After attenuation correction, surface points from the MR images were extracted using an edge detection operator with
manual correction.
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Figure 3: T2 weighted MR image before and after attenuation correction.

3 REGISTRATION

Registration is the process of determining the spatial alignment between two modalities. Registrations can be extrinsic,
based on implanted objects to serve as fiducials, or intrinsic, based solely on information generated by the patient’s
anatomy.

Initial registrations of the CT-MR, digital photos-CT, and digital photos-MR were performed using the absolute orientation
methods described in Section 3.4. Due poor localization of the fiducials in the MR, and movement between different
vertebrae between image acquisitions, the fiducials gave only an approximate solution to the registration problem. For a
more accurate registration, the images were segmented and registered to one another using an independent implementation
of the Iterative Closest Point (ICP) algorithm by Besl and McKay (Besl and McKay, 1992). The ICP algorithm is a
popular method for performing surface based registration due to its simplicity, ease of implementation, and potential for
optimization (Maintz and Viergever, 1998), (Simon et al., 1995), (Herring and Dawant, 1999).

3.1 Extrinsic registration

As a first approximation, a registration was performed using the nine titanium fiducials. CT-MR, digital photo-CT, and
digital photo-MR registrations were performed using the absolute orientation methods described in Section 3.4 (all gave
equivalent results). Registration using this method gave a CT-MR registration accuracy of only 2.90 mm, which is insuf-
ficient for this application. There are two causes for the large error. First, localization of the fiducials in the MR images
were extremely difficult as the titanium screws were imaged poorly in the MR as demonstrated in Figure 1. Second,
movement of the vertebrae relative to one another is possible, meaning that a rigid body registration of the three vertebrae
is not appropriate. Therefore, a new method based on intrinsic registration of segmented data sets is being used.

3.2 Intrinsic registration

While gray level methods, such as correlation and mutual information methods, appear to be more accurate (Maintz
and Viergever, 1998), a surface based registration method was chosen for several reasons. First, gray level methods
are generally “full image content” methods (Maintz and Viergever, 1998), using information from outside the region of
interest, which may be adversely affected by geometrical distortions (such as at the air/skin boundaries) (van den Elsen
et al., 1994). Second, there lacks a gold standard in this study with which to compare our registration results and gray
value methods do not give a quantitative indication of registration performance. Surface based methods give the average
error, the distance between every point on the model and its corresponding closest point on the surface, as a byproduct of
the registration procedure. Third, point matching methods such as the ICP algorithm are used in intra-operative surgical
systems to register patients in surgical space to pre-operative models, and we would like to simulate as closely as possible
intra-operative conditions. The primary disadvantage of segmentation-based methods is that the registration accuracy is
limited to the accuracy of the segmentation step (Maintz and Viergever, 1998).
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3.3 The Iterative Closest Point Algorithm

The goal in surface-based registration is to determine the best possible alignment between two corresponding modalities.
The ICP algorithm is a general algorithm suitable for determining the pose between data set of many different representa-
tions. It works by decomposing one set (the “data”) into a point set (unless it is already in point form) and estimates the
pose between it and another set (the “model”) which may consist of points, lines, polygons, or implicit surfaces. So long
as a disparity function can be defined between a data point and a corresponding point on the model surface the solution
will always converge to a minimum. This may or may not be the desired global minimum (Besl and McKay, 1992).
The terminology “data” and “model” which is used in Besl and McKay’s original paper, and comes from the algorithm’s
initial use in industrial applications. (Besl and McKay, 1992). The ICP algorithm solves the registration problem using
the following algorithm:

1. For each data point pi, find the closest point on the model, p′i.

2. Compute the absolute orientation.

3. Transform the data points using the parameters found in 2.

4. Repeat until the difference between successive iterations is less than some stopping criteria τ .

The resulting transformation is the product of transformations computed at each iteration. In this study, the “data” set
is defined as the set of points extracted from the surface of the vertebrae in the MR images. The “model” set is the
triangulated surface extracted from the CT images. The disparity function is, therefore, defined as the shortest distance
between a 3-D point and a triangle. In order to minimize the chance that the solution will fall into a local minimum, the
parameters derived from the extrinsic registration are used as an initial approximate in the registration process. Because
of the likelihood of motion between vertebrae, registration will be performed on individual vertebrae.

3.3.1 Finding the closest points. The most computationally expensive part of the algorithm is finding the correspond-
ing closest points. While many optimizations are possible (Simon et al., 1995), only an improved search criteria to speed
up computation time was used. Several useful properties of the model set can be used to our advantage. First, find the
closest triangle vertex on the model surface. The triangle containing the closest point will be on a surface adjacent to this
point (this is not strictly true, in degenerate cases this may not be the actual closest point, it has been demonstrated that
this technique is valid 99.5% of the time and does not affect registration accuracy (Maurer et al., 1996)). The triangles
adjacent to this vertex are then searched for the closest corresponding point.

3.4 Absolute orientation

The problem of estimating the pose between two corresponding 3-D point sets is called the “absolute orientation” problem
in photogrammetry. The absolute orientation is the rigid body transformation (rotations and translations) that relates the
positions in the data set to their corresponding positions in the model set. In this study, four different algorithms, each
giving equivalent solutions were used and tested to determine the most appropriate for use with the ICP algorithm. Space
precludes a complete discussion of the solutions and their derivations, interested readers are referred to the papers in ques-
tion. Three closed form solutions were used. Horn’s method (Horn et al., 1988) finds the best fit 3x3 orthonormal rotation
matrix by decomposing the cross-correlation matrix of the two center of gravity reduced point sets into an orthogonal
matrix and a positive definitive symmetric matrix (US reduction). The best fit orthonormal matrix is the transpose of the
orthogonal matrix (U t). A similar method derived by (Arun et al., 1987) using a singular value decomposition (SVD)
of the cross-correlation matrix in Section 3.4.3. Both methods may give a reflection if the data is severely corrupted or
coplanar. A third closed form method using unit quaternions to represent rotations was tested (Horn, 1987). The method
uses eigenvalue/eigenvector decomposition of a 4x4 symmetric matrix to solve for the absolute orientation. Finally, an
iterative solution was tested. The iterative solution used is the Space-M method (Blais, 1979). The method is typical of
iterative methods familiar to photogrammetrists, based on the linearized least-squares solution of rotation. The method is
very stable, however it may require many iterations to converge if an initial approximate is not provided. For small angles,
the solution will often converge in one iteration.

While closed form solutions are desirable in many cases, computation time in the ICP algorithm could be reduced if the
iterative solution converges in one or two iterations. In later iterations of the ICP algorithm, very slight refinements are
made to the pose estimation.
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3.4.1 Computing the absolute orientation. While iterative methods for computing the absolute orientation should
be well known to most photogrmmetrists, the closed form solution using singular value decomposition is presented here
without proof (Arun et al., 1987).

Given two 3-D point sets, {p, p′}, where pi and p′i are 3x1 columns vectors representing points in the data and model sets,
we wish to estimate the rigid body transformation parameters between the two 3D point sets:

p′i = Rpi + T (3)

We seek a solution for the 3x3 orthonormal rotation matrix R and the 3x1 translation vector T that minimizes:

Σ2 =
N∑

i=1

‖ p′i − (Rpi + T ) ‖2 (4)

3.4.2 Centroids of Measurements. By reducing the point sets to their centroids, we can decouple rotation and trans-
lation components:

ri = pi − p̄ and r′i = p′i − p̄′

where p̄ and p̄′ represent the mean of point sets {p} and {p′} respectively. Now the least squares error function to minimize
is dependent solely on the rotation R:

Σ2 =
N∑

i=1

‖ r′i − (Rri) ‖2 (5)

The optimal translation T is found by:
T = p̄′ − Rp̄ (6)

3.4.3 Singular Value Decomposition. The closed form solution of the rotation by singular value decomposition is
presented here without proof. Calculate the cross-covariance matrix:

C =
N∑

i=1

ri(r′i)
t (7)

where C is a square, positive semi-definite matrix. Find the SVD of C:

C = UDV t (8)

where U and V are 3x3 orthogonal matrices and D is a diagonal matrix with non-zero elements. The optimal rotation is
given by:

R = V U t (9)

As noted in Section 3.4, both the SVD solution and Horn’s method can give a reflection in degenerate cases. This has not
been a problem in this study.

4 RESULTS

Final results are pending, however preliminary results based on registration of the titanium fiducials are presented in
Table 1.

Modality RMS (mm)
CT-MR 2.90
Digital Photos-CT 0.72
Digital Photos-MR 2.54

Table 1: Results from extrinsic registration of titanium fiducials.

Using the absolute orientation parameters derived from the CT-MR registration using the titanium fiducials, the MR
images were resliced using a nearest neighbor interpolation. Contours were extracting from the CT images using the
intensity of bone as the threshold value and overlain on the MR images to produce a fused (Figure 4).
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Figure 4: MR image overlain with boundary extracted from CT.

5 DISCUSSION

In a previous study, Martel et al. performed phantom and cadaver studies to assess the suitability of using MRI for
computer assisted surgery of the spine (Martel et al., 1998). They imaged a series of cadavers using CT, 2D and 3D MR,
and performed image to patient registration using a 3D localizer. In their study they concluded that 2D MR images were
not sufficiently accurate for computer assisted surgery of the spine. However, 3D MR images acquired using what they
call a FLASH (Fast Low Angle SHot) imaging sequence generated images of sufficient accuracy.

Our study differs from theirs in several important ways. The resolution of our 2D MR images is higher than theirs
(0.625 x 0.625 x 3 mm as opposed to 1 x 1 x 3 mm). Since the magnitude of chemical shift artifacts and magnetic field
inhomogeneities are dependent on the resolution of the images, higher resolution images might be sufficiently accurate
for computer assisted surgery of the spine. Their study used an extrinsic marker based system for registration with fiducials
placed along the length of the spine while this study focuses on using anatomical fiducials.
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