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ABSTRACT

Rigorous sensor and dynamic modeling techniques arerequired if spatial information isto be accuratdly extracted from
video imagery. First, amath model for an uncalibrated video camera and a description of a bundle adjustment with
added parameters, for purposes of general block triangulation, is presented. The next topic involves the application of
invariance-based techniques, with constraints, to deriveinitial approximations for the camera parameters. Finally,
dynamic modding using the Kalman Filter is discussed.

1 INTRODUCTION

Unmanned aircraft vehicles (UAV's) with video cameras on board are becoming a popular reconnaissance toal,
particularly for military applications. Video cameras are generally uncalibrated and inherently contain significant lens
distortionsthat require careful mathematical modeling. Unlike metric cameras, there are no fiducial marks visible on
video imagery to allow the precise location of image coordinates with respect to the principal point. Firg, the
application of a bundle adjustment with added parameters to perform simultaneous photogrammetric georegistration of
agenera block of video framesis presented. Next, invariance-based techniquesto compute initial estimates for camera
parameters are given. Finally, dynamic modeling of video sequences using the Kalman Filter is discussed.

2 SIMULTANEOUSPHOTOGRAMMETRIC GEOREGISTRATION

2.1 Rigorous Sensor M odel
o

Rigorous sensor modeling of a video sequence consists of o p
three major parts: 1) object-to-image transformation from
the ground-space coordinate system (X,Y,Z) to the
image-space coordinate system (x,y,z2) modeled by
collinearity as a function of six exterior orientation (EO) 2 P
parameters, 2) the transformation from raw observed line :
and sample image coordinatesin a 2D pixel array to the
image-space coordinate system (X,y,z) using interior 4 I
orientation (I0) parameters to model severa types of
systematic errors, and 3) platform modeling which

=l

Xy

Ay

320 samples

considers the stochastic relationship among camera . computed location
parameters of adjacent frames, the focus of Section 4. image of point P of Pina planc after
adjusting for systematic
errors from self—calibration
The collinearity condition equations are a function of the Figure 1. Videointerior orientation

following parameters (see Figure 1):

XoYoC  are the elements of interior orientation, the principal point offsets (X,,Y,) and the camera principal
distance,

XpsYb observed image coordinates,

X,Y,Z  ground coordinates corresponding to the image points,
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M camera orientation matrix (function of these angles, o, ¢, x),
X.,Y.,Z, cameralocation,
Ac principal distance correction parameter,

K1,K2Ks threeradial lensdistortion parameters,
P1, P2 two decentering lens digtortion parameters, and
by, b, two in-plane distortion parameters (skew and sca e difference).

2.2 Bundle-Block Adjustment Algorithm

For each image point that appears in a video frame, we write two collinearity condition equations of the form F(l, x)=0,
where| isthe vector of observables (image point coordinates, xy, Yy, for each image point) and x is the vector of all
unknown parameters (10 elements and EO dements for each camera, and object point ground coordinates, X, Y, Z, for
each ground point). Thelinearized set of collinearity equations takes the general form Av + BA =f (Mikhail 1976).

A unified least squares technique is implemented in order to accommodate the recovery of different sets of unknown
parameters, thus allowing for the solution of various photogrammetric problems. The unified technique allows for the
incorporation of a priori information about the parameters, x; i.e, it treats the parameters as observations with a priori
covariance matrix, X,,. Implementation of the unified least squares adjustment technique with the general least squares
model can also be found in (Mikhail 1976).

The parameter, c, is fixed and taken as a constant in the adjustment. The variables x, and y, are considered observables
in the adjustment. The ground point parameters, X,Y,Z, are considered free adjustable parameters with very large
covariances for the unknown pass points. The X)Y,Z for contral points however have associated covariances that
represent the degree of accuracy to which they are known. All of the Sx exterior orientation (EO) parameters, X, Y,
Z, o, @, x, are free adjustable parameters with associated high a priori covariances. Only a subset of the interior
orientation (10) parameters, X, Yo, 4AC, Ky, Kz, Ka, p1, P2, b1, b2, can actually be recovered in the adjustment since the
normal equations become unstable due to high correlations among them and between them and the EO parameters. The
IO parameters to be recovered are free adjustable parameters with associated apriori covariances.

2.3 Experiments

The (VA Hospital) data set was used: H =900 m, GSD (nadir) = 3 m, t = 30°, f = 7.4 mm, format 320x240 pixels,
pixel = 20UM, Geoniro = 0.15 M, Gimage = 0.5 pixel. The three cases were: 1) single frame resection, 2) three frames from
the same strip overlapping approximately 60%, 3) ablock of six frames, three from each of two convergent strips.

Experiment 1
Photogrammetric resection for a single video frame, Frame 41. Severa different sets of recovered interior orientation

(10) parameters are tested for comparison. The first ten cases are with 33 control points and 8 check points, while the
last two cases are with only 6 control points and 35 check points. The control and check point RMS are tabulated in
Table 1. In check point computation, note that the Z coordinate is fixed to its known value, while the X and Y
coordinates are computed using the inverse form of the collinearity equations.

Case: |10 Parameters No. No. Control Point RMS (m) Check Point RMS (m)
Control | Check
Points Points X Y plan. X Y plan.
0 Xo, Yo, A C 33 8 2.01 231 3.06 2.03 1.93 2.80
1 %o, Vo Ka 33 8 1.38 1.37 1.95 141 1.82 2.30
2. Xo, Yo, A CKq 33 8 1.28 1.39 1.89 131 1.83 2.25
3. Xo, Yo, A C,K1, P1, P2 33 8 1.30 1.33 1.86 1.34 1.89 231
4: Xo, Yo, A C,Ky, by, by 33 8 1.30 1.36 1.88 1.37 1.87 231
5 Xo, Yo, A C,K1, P1, P2, b1, b2 33 8 1.30 1.33 1.87 1.33 1.85 2.28
6: Xo, Yo A C,K1,K> 33 8 1.28 1.39 1.89 1.30 1.83 224
7: Xo, Yo A C,K1,K5,K3 33 8 1.27 1.39 1.88 1.25 177 2.17
8 Xo, Yo, A C,K1,Kp, 1, P2, b1, b2 33 8 1.27 1.37 1.87 1.28 2.07 244
9: Xo, Yo, A C,K1,K2,K3, P1,p2, b1,b; 33 8 1.32 1.30 1.85 151 240 2.83
1 %o, Vo Ka 6 35 0.36 0.21 0.42 1.97 2.19 2.95
2. Xo, Yo, A CKq 6 35 0.19 0.18 0.26 1.88 213 2.84

Table 1. Resection Resultsfor Single Uncalibrated Video Frame
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Comments: 1) adding IO parameters improves the control point RMS, but not for check points; 2) recovering aradia
lens distortion parameter, Ky, isnecessary for resection with an uncalibrated video camera (compare case 1 to case 0);
3) recovering Ac improves the resection results (compare case 2 to case 1); 4) estimating py, p2, by, b, does not improve
check point RMS (compare cases 3-5 to case 2); and 5) recovering K, and K; improved the results a little.  For a
practical number of control points, it isnot feasible to use more parameters than those in case 2.

Experiment 2:

The second experiment involved the triangulation of three video frames with approximately 60% forward overlap.
Since the geometry of the intersection of rays was poor for this case, the value of the Z coordinate was fixed while the X
and Y coordinates of check points were computed. Six cases of recovered 10 parameters were tested and the RMS
results are tabulated in Table 2. For this experiment, the best and most practical choice of sensor model parameters
appearsto be case 2, which recovers X,, Yo, Ac, and Kj.

Case: |10 Parameters | Control Point RMS (m) Check Point RMS (m)

X Y plan. X Y plan.
1 %o, Vo Ka 139 | 1.06 1.74 2.82 2.70 3.91
2. Xo, Yo, A CKg 091 | 0.78 1.20 1.72 243 297

3 Xo, Yo, ACKy, p1, P2 | 0.88 | 0.52 1.02 2.83 271 391
4: Xo, Yo A CKy, by, b, | 090 | 0.48 101 254 2.67 3.69
6: Xo, Yo, A C,K1,K> 090 | 0.79 1.20 1.72 243 297
7: Xo, Yo A C,K1,K5,K3 0.90 | 0.80 1.20 171 243 297
Table 2. Triangulation Results: 3 Frames (1 strip), 31 pass points, 7 control points, 15 check points

Experiment 3:

A block of six video frames, with 60% overlap and 100% sSdelap, is used in a smultaneous triangulation. This
experiment compares the use of arelatively large number of pass points, 19, to the use of only 5 pass points. Note that
results from these two point configurations are shown in different columns of the same Table 3. Therefore, only check
point results are shown. For this relatively large block, check point RMS results are consigent for different
parameterization cases. Note that the check point RMS results become significantly worse, especially in the Z
direction, when using relatively much fewer pass points.

Check Point RMS (m)
Case 10 Parameters 19 Pass Points 5 Pass Points

X Y Z radial X Y Z Radial
1 Xo, Yo K1 1.21 2.18 2.44 3.49 1.17 2.64 3.82 4,79
2! Xo, Yor A C,Ky 1.05 2.17 2.58 3.53 1.01 2.52 3.53 4.45
3: Xoy Yor 4 C,Ky, P1, P2 1.04 2.16 2.56 3.50 1.01 2.46 3.43 4.34
4’ Xo, Yo A CKy, by, by 1.04 2.16 2.58 3.52 1.04 2.50 3.86 471
5 Xo, Yo, A C,K1, P1, P2, b1, b2 1.04 2.16 2.48 3.45 1.06 2.47 3.96 4,79
6: Xo, Yor 4 C,K1, K> 1.05 2.17 2.58 3.53 1.03 2.53 3.51 4.45
7: %o, Yor A4 C,K1,K2, K3 1.06 2.22 2.51 3.51 Did not converge.
8 Xo, Yo, A C,K1,Kp, 1, P2, b4, b2 1.06 2.16 2.59 3.53 Did not converge.

Table 3. Triangulation Results: 6 Frame Video Block (2 convergent strips); 7 control points, 14 check points

3 INVARIANCE-ASSISTED VIDEO TRIANGULATION

Since the techniques in Section 2 are non-linear and require good parameter initial approximations, the invariance
techniques to be described in this section are practical, and can be applied as a first step in any photogrammetry-based
georegistration algorithm. The purpose of invariance is to develop functional relationships such that the equations are
linear with respect to the parameters. Unlike photogrammetry, however, the parameters used in an invariance
formulation do not usually have a one to one correspondence with the physical characterigtics of the camera being
modeled or of the camera's | ocation and orientation.

International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B5. Amsterdam 2000. 819



Theiss, Henry J.

3.1 Linear Formulation — The P Matrix

Thefirst step in recovering the camera parameters from a single video frameis to estimate 11 of the 12 elements of the
3x4 camera transformation matrix, P, which projectively relates ground coordinates to image coordinates as
[x y ' =P[X Y Z 1] in which (xy) are image point coordinates, and (X,Y,Z) are ground point
coordinates. The "=" implies equality up to a scale factor. To cancel out the scale factor, we can divide the first and
second equations by the third equation, respectively, noting that ps, = 1.

RIX, v, z, 1 PIX, v, Z, 1
Fy =X, — X Y 2, ]T:O, Fy=VY, - X Y, 2, ]T:O (1)
RIX, Y z 1T RIX, Y z 1f

where: misthe number of points used in the adjustment, M= 6 |
j isthepointnumber,j=1,2,..., m,
P: isthei™ 1x4 row vector of the P matrix, i = 1, 2, 3, and
(%, y;) arethe observed image coordinates.

A linear pseudo least squares solution can be applied to Equations (1) to solve for the p;;, by minimizing errorsin the
linear equations obtained by clearing fractions. If arigorous refinement is desired, then least squares is applied directly
to Equations (1). Since Equations (1) are nonlinear with respect to the unknowns, linearization in the form v + BA =f
(Mikhail, 1976) isrequired using the estimates obtained from the linear least squares solution asinitial approximations.
3.2 Estimation of Photogrammetric Camera Parametersfrom P

It can be shown that the camera transformation matrix, P, can be partitioned as follows (Barakat and Mikhail, 1998):

Xy 1 -b, (b))
P:k[AM | —AMT:I T=|V, S @
>3 I zo | A=|0 1+b (b
-1
0 0 b

where M isthe orthogonal camera orientation matrix (function of o, @, x) ,
X0 Yo  aetheprincipa point offset parameters,
c isthe principal distance, and
b, b, arethetwo in-planedistortion parameters; i.e., scale difference and skew, respectively.

The matrices M and A are obtained applying the QR decomposition, which decomposes a square matrix into an upper
triangular matrix and an orthogonal matrix. The five interior orientation e ements can be extracted from A, the camera
location can be extracted from T, and the orientation angles can be extracted from M as shown in (Barakat and Mikhail,
1998).

3.3 Congtraints Among Elements of P

In cases when it is known that, for all practical purposes, the pixels are square and the x and y axes intersect at a right
angle, we can write two constraint equations to reduce the number of independent unknowns from 11 to 9. Enforcing
the fact that the M matrix must be orthogonal, and b,=b,=0 in Equation (2) leads us to arrive at two such constraint
equations, G; and G,. If, in addition to the former two constraints, we have good estimates of the principal point offsets
or principal distance such asfrom camera calibration, then up to three additional constraints may be written, Gs, G, and
Gs; i.e, one for each of the three known congants X,, Yo, and c. These three constraints would reduce the number of
independent unknowns further, to 6. The five constraint equations, whose detailed derivation can be found in a
technical report, (Theiss and Mikhail, 1999), are:
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G, = (RiR3 )(RyR3 ) — (RiR] )(ReR3 ) =0 (33)
G, =(RRI)(RsR3 ) - (RiR3 )* - (R,R] )(RgR3 ) + (RyR3 ) =0 (30)
Gz =(RiR3 )~ (RsR3 )(%,°) =0 (30)
Gy =(RyR3) = (RgR3 )(y,") =0 (3d)
Gs = (RiR! )(RsR3 ) — (RiR3)? — (c°)*(RyR3 ) * =0 (39)

where x,°, ¥, and ¢ are the apriori values of the principa point offsets and principal distance, respectively. Note that
any combination of the constraints (Equations 3a-€) may be enforced depending on the photogrammetric implications
of the problem.

3.4 Fundamental Matrix (F) Relationship for a Pair of Video Frames

The fundamental matrix directly relates the image coordinates of 3D object points that appear on two images. The 3 by
3 F matrix has eight unknown parameters since it is determinable up to a scale factor, and its (3,3) element is set equal
to unity. In fact there are seven independent parameters, since F is of rank two and its determinant must be zero. Once
solved for, the F matrix can be factorized into two relative camera matrices, P,; and P, (Barakat and Mikhail, 1998).
Then the projective modd coordinates, (X,Y,Z,1),, can be computed as a function of the image coordinates of a point on
two images and their associated relative camera transformation matrices.

For uncalibrated cameras, the model coordinates computed using relative camera transformation matrices are in a 3D
non-conformal system. Given the 3D mode coordinates, the 15 elements of a non-singular 4x4 projective
transformation matrix, H, are computed. Since three eguations per point can be written, a minimum of 5 points is
required to solve for the 15 elements of H. (Note that the (4,4) element of H is set to unity.) With more than 5 points, a
linear least squares solution is applied. The 3D projective transformation H is from projective ground space to
projective model space. Once solved for, the H matrix may be used to compute either absolute ground coordinates, or
the absolute camera transformation matrices. Finally, the photogrammetric camera parameters can be extracted from
the camera transformation matrix, P, using the techniques discussed in Section 3.2.

3.5 Experiments

3.5.1 Single Video Frame Camera Parameter Recovery. Experimentswererun on two different video frames to test
the ability to estimate camera parameters, as a function of image and ground coordinates only, to be used as initial
approximations for rigorous photogrammetry. Both frames came from the VA Hospital data set. The first frame,
5800_17, wastaken at 760 meters above mean terrain elevation with estimated principal distance and GSD (at nadir) of
16.7 mm and 1.3 meters, respectively. The second frame, 6100-68, was taken at 950 meters above terrain with
estimated principal distance and GSD of 19.2 mm and 1.4 meters, respectively. Both frames had nomina side-look
angles of 45 degrees from nadir.

The stepsinvolved are; 1) compute the 11 eements of the P matrix using linear least squares, as described in Section
3.1; 2) apply thenon-linear least squares with the first two constraints on the 11 elements of P, using the results of Step
1 asinitia approximations, as described in Section 3.3; 3) estimate the real photogrammetric camera parameters from
the P matrix, i.e., the physical 6 exterior orientation and 3 interior orientation e ements, as described in Section 3.2; 4)
use these 9 camera parameters as initia approximations in a rigorous photogrammetric resection; 5) use the principal
distance estimated from Step 4 and the fair assumption that X, = y, = 0 and 3 additional congtraints (a total of 5
congtraints) to estimate only the 6 exterior orientation parameters; and 6) Compute the RM S values using some check
pointsfor each method to assess the performance.

The check point results for each of the video frames are tabulated in Table 4. The X, Y, and Z ground coordinates of
control points were manually extracted from a triangulated stereopair of frame images on the digital photogrammetric
workstation.

3.5.2 Two-Frame Video Camera Parameter Recovery. The pair has nearly 100% overlap, taken from different
flight lines. The F-matrix technique was applied as described in Section 3.4. The resulting camera transformation
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matrices, P, for each video frame which were used together to compute the X, Y, and Z ground coordinates of known
check points; the RMSresults are shown in thefirst line of Table 5.

No. Check Point RMS (m)
of Frame 5800-17, 8 contral, 7 check Frame 6100-68, 8 contral, 8 check
Method Unkn. X Y Planim. X Y Planim.
Inv 11 0.70 1.10 1.28 2.90 1.58 3.29
Inv 9 0.67 0.94 1.16 3.51 1.95 3.99
Photog. 9 0.67 0.94 1.16 3.51 1.95 4.02
Inv 6 1.16 0.70 134 3.60 2.90 4.63
Table 4. VA Hospital: Single Video Frame RMS
The camera parameters recovered from the P's were then
Check Point RMS (m) used as input in a rigorous photogrammetric adjustment, and
Case check point ground coordinates were computed for the same
X Y Z points. Ten camera parameters were recovered for each
. video frame, including 4 interior orientation (10 ameters
F-Matrix 179 | 478 172 in addition to the 6 ex%erior orientation para‘rfeteaspa;he four
Rigorous Photogr. 0.84 294 262 IO parameters included the principal point offsets, x, and ys,
the principal distance, ¢, and a radial lens distortion

Table5. VA Hospital, Frames 7430_75

i parameter, K;. Although invariance provides good camera
and 7030_70; Check Point RMS

parameter initial approximations as input to the rigorous
solution, rigorous photogrammetry with an additiona
parameter for lens distortion provides better results.

4 DYNAMIC MODELING
4.1 Kalman Filter Estimation

Information obtained from the processing of previous video frames can be used to essentialy constrain the solution of a
current frame to have reasonable parameter estimates that are consistent with its neighboring frames. In other words,
there is a stochastic relationship and high correlation between at least some of the sensor model parameters of the
current and neighboring video frames. The Gauss-Markov (GM) process is an example of such a stochastic model. A
random process is a collection of functions of time. More specifically, a firs order Markov process is a continuous
random process that satisfies the criterion that the current state is dependent only on the state at the previous point in
time.

Kalman Filtering is a useful technique that allows implementation of sequential least squares adjustment while
simultaneoudly allowing the enforcement of a stochastic process. It does this in the form of a state transition matrix,
and will be described in more detail in this section.

The Kalman Filter equations can be written as follows for the i frame in a sequence of video images (Brown and
Hwang 1997),

A=A +K(f-BAT), K =Q,B (BQ,B +Q,)" (4a,0)

where K isthe Kalman Gain, and A~ and Qx, aretheapriori A and Qux respectively, computed at the end of
processing the previous frame.

The following equations are for the covariance matrix of the updated state vector estimate, and estimates (projected
ahead to the next frame) for the state vector e ements and associated covariance matrix:

Qxxi =(l- KiBi)Q;xi v A =904, Qq

i+l

= ¢i (?xxi ¢iT + wa (5a'C)
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where ¢, isthe(u x U) state transition matrix that transforms the current camera parameter state vector of framei toits
predicted state vector of frame (i+1). If this sequential approach isto be modeled as afirst order GM process, then ¢i

is a diagonal matrix that contains e ¥on each diagonal element, where s, is a correlation factor unique to each
parameter q (note 0< S, < 1). Thevalue of s is closeto O for parametersthat are highly correlated with their values at

the previous frame, while for the contrary s, is close to unity (Lee, 1999).

These Kalman Filtering equations provide the optimal parameter estimates for frame i, given al information from the

first frame through the current frame, written Ajji . Therefore, the only frame whose parameters are estimated based on
observations from all frames isthe last frame, n. In order to obtain the optimal parameter estimate at an intermediate

framei based on measurements from all n frames, Aijjn , we need to apply a backward smoothing process following the
Kaman Filtering.

If smoothing isto be applied later, then for each frame in the Kalman Filtering algorithm it is necessary to save the a
priori and a posteriori parameter estimates and their associated covariance matrices. At the completion of the forward

sweep, the final computations of Equations (4a) and (5a) result in Apjn and Qxx,, , respectively. Proceeding with the

backward sweep, updated estimates, the smoothing gain, and the associated covariance matrix can be computed as
follows,

_ T
Ai|n = Ai|i + Kq (AH]Jn _AHJJi )’ Kq = Qxx‘“ ¢i1]li >°:+1u ’ (?xx”n = Qxx Kq (Qxx _Qxx,ﬂ‘, )Ks (6a-c)

ifi i+1n

4.2 Experiments

Video sequence 7430 from the VA Hospital was used to test the developed Kalman Filtering agorithm. The flying
height for srip 7430 was approximately 853 meters above ground level and the side-look angle was 30 degrees from
nadir. The principa distance and ground sample distance (GSD) a nadir were estimated to be 354 pixes
(approximately 7 mm) and 2.8 meters, respectively. The unknown camera parameters for each frame include the 6 EO
parameters and 4 10 parameters. The 1O parameters are the principal distance, principal point offsets, and one radial
lensdistortion coefficient; i.e., ¢, X, Yo, and K.

Since there was no GPS data available, known ground points were used to control the triangulation of the video
sequence. The coordinates of the ground control points and check points were extracted from a controlled reference
image base (CRIB), which consists of an orthophoto and its co-registered digital elevation model (DEM). This
experiment uses 60 consecutive frames, 1 through 60, of
strip 7430. There are 15 manually measured pass points
with as many as possible measured on each frame. Control
consists of 17 known ground points on frames 1 and 60
only; Figure 2 shows Frame 1. Since the geometric
intersection between any two intermediate frames of the 60
frame strip would be poor for computing check points, the
ground coordinates of the pass points themselves were
evaluated simultaneously with thetriangulation. Therefore,
the check point differences for this experiment consist of
the differences between the computed and the known
coordinates of thel5 pass points.

For al cases in this experiment, Q was filled using the
following a priori standard deviations. 100 meters for X,
Y., Z. andthe X, Y, Z ground coordinates of all pass points;
0.1 meters for al ground coordinates of control points;, 90
degreesfor w, ¢, x; 10 pixels for the principal point offset and principal distance; and 0.01 pixel for K;. The standard
deviations for the white noise, or square root of the diagona elements of Q,, corresponding to the EO camera
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parameters only, started with 100 metersfor X, Y, Z. and 90 degrees for o, ¢, k and were decreased by a factor of 10
for each of the eight cases from (2a) through (2h). Thus, the standard deviations for X, Y., Z, and for o, ¢, x were:
100m and 90deg for case (2a), 10m and 9deg for (2b), 1m and 0.9deg for (2c), 0.1m and 0.09deg for (2d), 1cm and
30sec for (2€), Imm and 3sec for (2f), 0.1mm and 0.3sec for (2g), and 0.01mm and 0.03sec for (2h). The check point
results for cases (24) through (2h) are tabulated in Table 6.

Case RMS (m) Bias (m) Standard Deviation (m)

X Y Z radial X Y z radial X Y z radial
2a 3.55 241 910 | 10.06 | -201 | -1.15 | -6.20 | 6.62 | 293 | 212 | 665 | 7.57
2b 3.55 2.42 916 | 1011 | -204 | -1.17 | -628 | 6.71 | 291 | 212 | 6.66 | 7.57
2c 3.32 2.37 830 | 925 | -198 | -1.27 | -599 | 644 | 267 | 199 | 575 | 6.64
2d 2.92 2.44 713 | 808 | -1.76 | -153 | -538 | 587 | 233 | 191 | 468 | 556
2e 2.94 2.62 698 | 802 | -154 | -162 | -5.06 | 553 | 251 | 2.06 | 480 | 5.80
2f 3.21 3.17 832 | 947 | -157 | -1.34 | -695 | 725 | 280 | 2.88 | 457 | 6.08
2g 3.42 3.34 871 | 994 | -162 | -1.30 | -733 | 762 | 302 | 3.08 | 471 | 6.39
2h 3.43 3.34 872 | 994 | -162 | -1.30 | -733 | 762 | 3.02 | 3.08 | 471 | 6.39

Table6. VA Hospital Check Point Results

To evaluate the triangulation accuracy, the root mean square (RMS), bias (signed mean), and standard deviation in X, Y,
and Z of the check point differences was computed. The rdationship between these three measures for each of X, Y,
and Z can be written as follows:

s=ve” -b* 'where s=standard deviation, e= RMSerror, and b = bias.
As the standard deviations of the white noise are decreased from case (2a) through (2d) the RMS of the check points
generally decreases. However, asthey are decreased further from case (2€) through (2h), the RMS'sincrease, especially

inthe, or flight, direction. Theresults suggest that the optimum choice of standard deviations of white noise to modd
the aircraft'strajectory for this sequence of framesis 0.1 meter for X, Y, Z and 0.09 degrees for o, ¢, «.

5 CONCLUSIONS

Bundle adjustment with added parameters is effective for modeling video imagery, but care must be taken to recover
the appropriate number and type of parameters depending on the geometry of the scene, and point configuration.
Invariance-based solutions are helpful in obtaining initia approximations for camera parameters, however rigorous
photogrammetry is superior with respect to accuracy. Dynamic modeling provides a means for real-time processing of
video sequences, and incorporates the stochastic relationship among parameters of adjacent frames.
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