
OPERATORS FOR CELL TUPLE-BASED  
SPATIOTEMPORAL DATA MODEL 

 
Ale Raza 

 
ESRI 

380 New York Street, Redlands, California 92373-8100, USA 
Tel.:  +1-909-793-2853 (ext. 2009) 

Fax:  +1-909-307-3067 
araza@esri.com 

 
Commission IV, WG IV/1 

 
 
KEY WORDS:  Spatial, Temporal, Mathematics, Data Structures, Design, Modeling, GIS 
 
ABSTRACT: 
 
A spatiotemporal data model consists of attributes or classes, operations, and consistency constraints. Various models have been 
proposed by the geographic information system (GIS) community. These models could not be implemented because of various 
reasons. One of the reasons is that these models lack completeness and remain limited to the classes. This paper discusses the 
dynamic operators for the object-oriented cell tuple-based spatiotemporal data model (CTSTDM). The CTSTDM and its application 
in urban planning were published earlier by the author. Three main classes are defined in CTSTDM (i.e., spatial, attribute, and 
temporal). A spatiotemporal class is the aggregation of spatial and temporal classes. A spatiotemporal class is a super class of three 
classes (i.e., ZeroTCellClass, OneTCellClass, and TwoTCellClass). Operators pertaining to the object of these subclasses are 
elaborated in this paper. Emphasis is given to TwoTCellClass. Two types of operators can be defined as the objects of these classes:  
static and dynamic operators. Static operators do not affect the system's state (e.g., query operators). Dynamic operators change the 
state of the system (e.g., create, update, or delete operators). Unlike atemporal GIS, in a temporal GIS, objects may die or be killed, 
but they remain in the database with a valid time stamp indicating their life span. Therefore, four dynamic operators can be 
distinguished in spatiotemporal databases (i.e., Create, Kill, Reincarnate, and Delete). In spatiotemporal databases, the Kill operation 
is different from the Delete operation, as the latter is merely a purge operation. Updating a spatiotemporal object is a complex 
operation. Therefore, Kill is a protected operation, while the others are public or private. An object-oriented approach and a notion of 
point set topology are employed to design these operators in a systematic manner. Designing these operators in this fashion may 
pave the way to fill the gap between concepts, design, and implementation of a generic and functional temporal GIS. 
 
 

1. INTRODUCTION 

A data model consists of data members (classes or attributes), 
member functions (operations), and consistency constraints. 
Many spatiotemporal data models have been proposed in the 
past two decades. One main impediment for the 
implementation of these models has been the lack of 
completeness of these proposed data models.  This problem is 
rooted in the inherent complexity of spatiotemporal data 
models. Most models are restricted to the classes or conceptual 
schema—one of the three main components of any data model. 
These classes are the first abstraction level for data modeling. 
The second component is the operation. Operations define the 
behavior of the model and act as an engine to run these models. 
The engines are guided by consistency rules—the third 
component of any data model.  
 
These three components have been defined by the author in the 
object-oriented CTSTDM. The CTSTDM's classes, some 
operations, and consistency rules have been published (Raza 
and Kainz, 1999; Raza and Kainz, 2000a). The application of 
CTSTDM in urban planning was published later (Raza and 
Kainz, 2002; Raza and Kainz, 2000b). This model has been 
implemented by Jefferson County, Colorado, USA, for keeping 
track of the county's parcels system (Bochner, 2003). 
 
Three main classes are defined in CTSTDM (spatial, attribute, 
and temporal). A spatiotemporal class is the aggregation of 

spatial and temporal classes. A spatiotemporal class is a super 
class of three classes (i.e., ZeroTCellClass, OneTCellClass, and 
TwoTCellClass). ZTC, OTC, and TTC are the objects of these 
three classes. The spatiotemporal class and TwoTCellClass are 
defined in §2. The spatiotemporal topology is preserved in a 
cell tuple structure. This cell tuple structure is discussed in §3. 
 
Operations in spatial databases can be categorized as static 
(e.g., calculating area, length, orientation) and dynamic (e.g., 
adding new node, arc, polygon). Normally in atemporal GIS, 
three fundamental dynamic operations are applied (i.e., insert, 
delete, and update). Unlike atemporal GIS, in spatiotemporal 
databases (TGIS) objects may die or be killed, but they remain 
in the database with a certain time stamp indicating their life 
span. The fundamental dynamic operators are discussed in §4. 
How these operators are applied to TwoTCellClass is discussed 
in §5. The paper is concluded in §6. 
 

2. SPATIOTEMPORAL CLASSES 

The object of this class is defined in a space at time t. Formally, 
we can define these objects as follows: 
An (open) m-tcell is a topological space homeomorphic to an 
open ball Em of Rn (Euclidean n-space). A finite collection k of 
m-tcells is a TemporalCellComplex (TCC) if 

• Different elements of k have disjoint interiors. 
• For each m-tcell in k, the boundary of m is a union of 

elements of k. 



• If a, b ∈ k, and a∩b ≠ ∅, then a∩b is a tcell and a 
union of elements of k, where tcell is either a or b (of 
different dimension) or a common face. 

 
The discussion is restricted to n = 2 (2D space–time), where m 
∈ {0,1,2}. Therefore, Rm,n represents the object in Em at time t, 
where m is the dimension of the object and n is the dimension 
of space where the object is located at time t, such that n ≥ m. 
 
As defined earlier, ZeroTCellClass, OneTCellClass, and 
TwoTCellClass are the subclasses of SpatioTemporalClass. In 
this paper we shall focus on TwoTCellClass. The object of this 
class is a TTC. A TTC is a two-dimensional object bounded by 
a closed cycle of ZTCs and OTCs. Any j-th TTC  = set{OTC1, 
OTC2, …..OTCi, ….OTCn}, where i = {1,2,… n}. When i = 1, 
the first and last point object and the start and end ZTC are 
identical. 
 
The data members of TwoTCellClass are a set of onetcells, 1-T 
(systemtime), area, perimeter, and parent (TwoTCell). The life 
of each TTC is depicted by 1-T [TFrom, TUntil]. Like OTC, this 
object too can either be born or die. The birth and death times 
are represented by two point times, TFrom and TUntil, 
respectively. A TTC must have one or more OTCs, and an 
OTC may have zero or two TTCs. Each TTC object may have 
one or more children, and each child (TTC) must have a parent 
(TTC). 
 
When an n-tcell can be born or can die is an important decision. 
It is logical to investigate the situations where an n-tcell is 
changed as a result of the updating (insert or destroy) process in 
the spatiotemporal database. These operations are necessary for 
designing the algorithms of various operators.  
 
While updating the data, an object (n-tcell) can intersect with 
another object. In the unified spatiotemporal data model, when 
a ZTC, OTC, or TTC is inserted, the following scenario can be 
expected:   
• A ZTC may intersect with ZTC, OTC, or TTC. 
• An OTC may intersect with ZTC, OTC, or TTC. 
• A TTC may intersect with ZTC, OTC, or TTC. 
 
There are nine possibilities when an n-tcell at time T1 may 
intersect with an n-tcell at time T2. In each case, there are 
various possibilities (e.g., ZTC may intersect at the boundary of 
OTC or the interior of OTC). Cases in which a TTC intersects 
with a TTC are discussed in the paper. The three topological 
invariants of spatial objects (n-tcells) are boundary, interior, 
and exterior. 
 
This point-set topology approach is employed to analyze these 
intersections. Only the boundary (∂) and interior (°) of OTC 
and TTC are considered in order to investigate these 
intersections. The intersection at the exterior of any n-tcell is 
straightforward. The boundary of ZTC is empty (∅). A similar 
approach (i.e., point-set topology) has been employed by 
Egenhofer et al. (1994) to identify and/or compare topological 
relationships between n-dimensional objects embedded in Rn.  
 

3. TEMPORALCELLTUPLECLASS 

Because the object is defined as a spatiotemporal object, the 
topological relations could be defined as spatiotemporal 
topological relations (i.e., the spatial relations that are valid 
over time). In the temporal cell complex, Intra cell complex 
relations (i.e., relations between the cells in the cell complex) 

can be described using boundary and co-boundary relations. 
The boundary (∂) of an n-tcell is its (n-1) faces at time t. The 
co-boundary (Φ) of an n-tcell produces the (n+1) cells incident 
with n-tcell at time t. The boundary and co-boundary relations 
capture two types of topological relationships (i.e., adjacency 
and containment). Relations between spatial objects can be 
found based on boundary/co-boundary relations between cells. 
The boundary and co-boundary relations are encapsulated in a 
simple temporal cell tuple structure, which is an extension of 
the cell tuple structure of Brisson (1990). A cell tuple T is an 
(n+1)-tuple of cells {c0, c1, c2,....,cn}, where any i-cell is 
incident with a (i+1)-cell.  
 
The object of TemporalCellTupleClass has a unique tuple-ID 
and a unique combination of ZTC, OTC, and TTC. Each tuple 
must have a ZTC, zero or one OTC, and zero or one TTC. 
Therefore, a temporal cell tuple structure encapsulates the 
spatiotemporal topology of each spatiotemporal object. A 
temporal cell tuple (TCT) is a set of C and T. 
 

TCT = {C, T} 
where C is a set of cells  
C = {c0, c1, c2,....,cn | ci ∈ TCC} and  
T is a time interval (1-T) 
T = {TFrom,TUntil | (TFrom < TUntil) ∧ (TFrom,TUntil ∈ ST)}  
and 
TCC = TemporalCellComplex 
 
Therefore,  
TCT = {c0, c1, c2,....,cn, TFrom,TUntil} 
 
The process of assigning the cell tuples to a ZTC is 
illustrated in Figure 1. 

 
4. OPERATORS 

Two types of operators can be defined (i.e., static and 
dynamic). Static operators do not affect the system's state or the 
status of spatiotemporal objects (e.g., query operators calculate 
the length, area, time period, boundary, or co-boundary). These 
operators are associated with TemporalCellTupleClass. On the 
other hand, dynamic operators change the state of the system or 
the status of the spatiotemporal objects (e.g., creating, deleting, 
or updating an n-tcell). Normally in atemporal GIS, three 
fundamental dynamic operations are performed (i.e., create, 
delete, and update). These operators are associated with 
PointClass, ZeroTCellClass, OneTCellClass, and 

c (n,0,0,1-T)

n

c1 (n1,a1,0,1-T)

 c2 (n2,a1,0,1-T)

a1
n1

n2

n2

n3

A
n1

a1

a2

c1c3 c2
c4

c5

c6 c7
c8

c9

c1 (n1, 0, A, 1-T)
c2 (n2, a1, A, 1-T)
c3 (n2, a1, 0, 1-T)
c4 (n3, a1, A, 1-T)
c5 (n3, a1, 0, 1-T)
c6 (n3, a2, A, 1-T)
c7 (n3, a2, 0, 1-T)
c8 (n2, a2, A, 1-T)
c9 (n2, a2, 0, 1-T)

[a]

[b] [c]

0

0
0

 
Figure 1. Process of assigning temporal cell tuples to 

spatiotemporal cells of dimensions (0 ≤ n ≤ 2). 



TwoTCellClass. Unlike in atemporal GIS, in a TGIS objects 
may die or be killed, but they remain in the database with a 
certain time stamp indicating their life span. As mentioned 
earlier, any n-tcell object can be born or can die. Therefore, 
four fundamental dynamic operators can be distinguished in 
spatiotemporal databases (i.e., Create, Kill, Reincarnate, or 
Delete [Destroy]). These operators are associated with objects 
(ZTC, OTC, or TTC). In spatiotemporal databases, the Kill 
operation is different from the Delete operation, as the latter is 
merely a purge operation. Updating spatiotemporal objects is 
complex; any update operation affects the other objects, 
particularly in the unified approach. Any spatial change is the 
result of the creation (birth) and/or destruction (death) of an  
n-tcell. Kill is a protected operation, while the others are public 
or private. 

• The Create operator is equivalent to the usual insert 
operators. The task of this operator is to create a new 
object and/or update an existing object. This operator 
specifies the time stamp [start, *] of each spatial 
object, where the upper bound of the time interval is 
undefined (*). All objects with [start, *] time stamps 
are called active objects.  

• The Kill operator kills the spatiotemporal objects by 
defining the upper bound of the time interval. After 
being killed, objects are called inactive objects. These 
objects remain in the database only for the query 
purpose or Reincarnate operator. Therefore, the upper 
bound (*) is replaced by current system time.  

• The Delete operator permanently deletes the 
spatiotemporal objects from the database. Therefore, 
they are no longer available for any type of operation 
(static or dynamic).  

• The Reincarnate operator turns an inactive object 
into an active object by replacing the upper bound of 
the time interval to (*). 

 
5. OPERATORS FOR TWOTCELLCLASS 

The aforementioned operators (Create, Kill, Delete, and 
Reincarnate) are discussed and applied to the TTC in the 
following section. 
 

5.1 Operation Create (Insertion of TTC) 

The Create operation for TTC is a recursive operation, starting 
from the insertion (creation) of the boundary of TTC (i.e., OTC 
and boundary of OTC, which is ZTC). This operation can be 
viewed from three perspectives (i.e., a TTC can intersect with 
ZTC, OTC, and TTC).  The cases in which TTC intersects with 
TTC are discussed here; the other two cases (TTC–OTC and 
TTC–ZTC) are semisymmetric (because the geometry is the 
same, while the spatiotemporal topology is different) to the 
OTC–TTC and ZTC–TTC intersections. These cases are 
discussed earlier (Raza and Kainz, 2000a). 
 
Let TTC (A) and TTC' (B) be a TTC at time T1 and T2, 
respectively. Using the point-set approach, a 2 x 2 intersection 
matrix can be constructed: 
 

��
�

�
��
�

�

°∩°∂∩°
°∩∂∂∩∂

=
BABA
BAB'A

TTI4  

Out of 16 possible intersections, only seven (TT 1, 7, 9, 10, 11, 
13, and 14) are valid, while the last one (16) is a 
nonintersection case and TT 11 and 12 are symmetric. 
 
1]  ∂A intersects with ∂B 
7] °A intersects with ∂°B 
9] °B intersects with ∂°A 
10] ∂°A intersects with ∂°B  
11]  ∂A intersects with ∂°B and °A intersects with ∂B 
13]  ∂B intersects with ∂°A and °A intersects with °B 
14] ∂A intersects with ∂°B and °A intersects with °B 
 
Egenhofer (1993) derived binary topological relations between 
two regions using this approach. Figure 5 is a general 
illustration of TTC–TTC intersections; each intersection may 
have various combinations, some of which are associated with 
valid intersections and are discussed in the following sections.  
 
5.1.1 Boundary of TTC Intersects With Boundary of 
TTC' (TT-1):  Five combinations can be realized in this 
intersection. 

 

 
 

 

 
 

n1

c1

c2

a1

1

c1
2c3

c4 a2

c1 (1, 1, 1, T1, *)
c2 (1, 1, 0, T1, *)
c3 (1, 2, 2, T2, *)
c4 (1, 2, 0, T3, *)

n1

c1
c4

a2

2

c3

3

c5

c6

a4

n2

a3

c7

c8

c1 (1, 1, 1, T1, T2)
c2 (1, 1, 0, T1, T2)
c3 (1, 2, 2, T2, *)
c4 (1, 2, 0, T2, *)
c5 (2, 2, 2, T2, *)
c6 (2, 2, 0, T2, *)
c7 (2, 4, 3, T2, *)
c8 (2, 4, 0, T2, *)

c9   (2, 3, 2, T2, *)
c10 (2, 3, 0, T2, *)
c11 (1, 3, 2, T2, *)
c12 (1, 3, 0, T2, *)

c9 c10

c11
c12

3

n1

c1

c4

a2

2

c3

n2
c5
c6

c9 c10

c7 c8 c11
c12

c14
c13

c1 (1, 1, 1, T1, T2)
c2 (1, 1, 0, T1, T2)
c3 (1, 2, 2, T2, *)
c4 (1, 2, 0, T2, *)
c5 (2, 2, 2, T2, *)
c6 (2, 2, 0, T2, *)
c7 (2, 3, 2, T2, *)
c8 (2, 3, 3, T2, *)

a3 a4

c9   (1, 3, 2, T2, *)
c10 (1, 3, 3, T2, *)
c11 (2, 4, 3, T2, *)
c12 (2, 4, 0, T2, *)
c13 (1, 4, 3, T2, *)
c14 (1, 4, 0, T2, *)

n1

c1

c4

a2

2

c3

c5
c6

c9

c7

c1 (1, 1, 1, T1, T2)
c2 (1, 1, 0, T1, T2)
c3 (1, 2, 2, T2, *)
c4 (1, 2, 0, T2, *)
c5 (2, 2, 2, T2, *)
c6 (2, 2, 0, T2, *)
c7 (2, 3, 2, T2, *)
c8 (2, 3, 3, T2, *)

a3

c9   (3, 3, 2, T2, *)
c10 (3, 3, 3, T2, *)
c11 (2, 5, 3, T2, *)
c12 (2, 5, 0, T2, *)
c13 (3, 5, 3, T2, *)
c14 (3, 5, 0, T2, *)
c15 (3, 4, 2, T2, *)
c16 (3, 4, 0, T2, *)
c17 (1, 4, 2, T2, *)
c18 (1, 4, 0, T2, *)

3

n2

c10

c8 c11
c12

c14
c13

a4

a5

c15 c16

c17 c18

n3

3

n1

c1

c4

a2

2

c3

n2

c5
c6

c9 c10

c7 c8
c11
c12

c14
c13

c1 (1, 1, 1, T1, T2)
c2 (1, 1, 0, T1, T2)
c3 (1, 2, 2, T2, *)
c4 (1, 2, 0, T2, *)
c5 (2, 2, 2, T2, *)
c6 (2, 2, 0, T2, *)
c7 (2, 3, 2, T2, *)
c8 (2, 3, 3, T2, *)

a3 a4

c9   (1, 3, 2, T2, *)
c10 (1, 3, 3, T2, *)
c11 (2, 4, 3, T2, *)
c12 (2, 4, 0, T2, *)
c13 (1, 4, 3, T2, *)
c14 (1, 4, 0, T2, *)

[a] [b] [c] [d] [e]

a1

T2
c1 (1, 1, 1, T1, *)
c2 (1, 1, 0, T1, *)

T1
n1

c1

c2

1

c1

 
Figure 2. Create TTC:  Boundary of TTC intersects with boundary of TTC. 



[a] Both TTCs intersect at ZTC (Figure 2[a]): 
 Create OTC (a2), TTC (2), and TCTs (c3 and c4). 
 
 [b] OTC of TTC (1) intersects with ZTC of TTC (2) (Figure 

2[b]): 
 Kill OTC (a1), TTC (1), and TCTs (c1 and c2). Create ZTC 

(n2), OTCs (a2, a3, and a4), TTCs (2 and 3), and TCTs 
(c3, c4,….,c12). 

 
[c] ZTC and OTC of TTC (1 and 2) intersect (Figure 2[c]): 
 Kill OTC (a1), TTC (1), and TCTs (c1 and c2). Create ZTC 

(n2), OTCs (a2, a3, and a4), TTCs (2 and 3), and TCTs 
(c2, c3,….,c14). 

 
[d] OTC of TTCs (1 and 2) intersects (Figure 2[d]): 
 Kill OTC (a1), TTC (1), and TCTs (c1 and c2). Create 

ZTCs (n2 and n3), OTCs (a2, a3, a4, and a5), TTCs (2 and 
3), and TCTs (c2, c3,….,c18). 

 
[e] ZTC and OTC of TTCs (1 and 2) intersect (Figure 2[e]):   
 Kill OTC (a1), TTC (1), and TCTs (c1 and c2). Create ZTC 

(n2), OTCs (a2, a3, and a4), TTCs (2 and 3), and TCTs 
(c2, c3,….,c14). 

 
The configuration formed in Figure 2[a], [b], [c], [d], and [e] is 
called a 2-temporal complex (2-TC) or 2D spatiotemporal 
object (TSTO). A 2-TC is a collection such that each TTC in 
2-TC is connected through a common face. 
 
5.1.2 Interior of TTC Intersects With Boundary–Interior 
of TTC' (TT-7):  When the interior of TTC (1) intersects with 
the boundary of TTC (2), then the following actions are taken 
(Figure 3): 
 
 Kill TTC (1) and TCT (c2). Create ZTC (n2), OTC (a2), 

and TCTs (c3, c4, and c5). 
  
TCT c2 is replaced by c3, because the co-boundary of OTC 
(a1) is changed while the OTC (a1) remains unchanged. At 
time T1, the co-boundary of a1 was <0,1> and at time T2 it was 
changed to <0,2>. This is one of the advantages of the implicit 
topology storage approach. If the topology is stored in an 
implicit fashion, then the object also has to be updated in order 
to update the topology, because topology is associated with the 
spatial object (e.g., in ArcGIS® the co-boundary [left and right 
polygon] information is associated with arc).   
 

 
 
 

5.1.3 Interior of TTC' Intersects With Boundary–
Interior of TTC (TT-9):  When the boundary–interior of TTC 
(1) intersects with the interior of TTC (2), then the following 
actions are taken (Figure 4): 
 
 Kill TCT (c2). Create ZTC (n2), OTC (a2), and TCTs (c3, 

c4, and c5).  
 

T2
c1 (1, 1, 1, T1, *)
c2 (1, 1, 0, T1, *)

T1

c1 (1, 1, 1, T1, *)
c2 (1, 1, 0, T1, T2)
c3 (1, 1, 2, T2, *)
c4 (2, 2, 2, T2, *)
c5 (2, 2, 0, T2, *)

2

n1

c1
1 c2

a1

n1
c1 c31 c1

a1

n2

a2

c5
c4

c1

 
 

Figure 4. Create TTC:  Interior of TTC' intersectS with 
boundary–interior of TTC. 

 
In this case, TTC (1) remains unchanged but its spatiotemporal 
topology is adjusted (i.e., TCT c2 is replaced by c3). 
 
5.1.4 Boundary–Interior of TTC Intersects With 
Boundary–Interior of TTC' (TT-10):  The operation rejects 
the TTC (2) because this cell is identical or the same as 
TTC (1). 
 
5.1.5 Boundary of TTC Intersects With Boundary–
Interior of TTC', and Interior of TTC Intersects With 
Boundary of TTC' (TT-11): 
 
 Kill TTC (1), OTC (a1), and TCT (c1 and c2). Create ZTCs 

(n2, n3, and n4), OTCs (a2, a3, a4, a5, a6, and a7), TTCs 
(2, 3, and 4), and TCTs (c3, c4,....,c26). 

 
The process is shown in Figure 5. 

 
 

1

T2
c1 (1, 1, 0, T1, *)
c2 (1, 1, 1, T1, *)

T1
n1

c1

1
c1

n1

c1 c1

3

c3

2

2
c5
c4n2

a1

a2

c1 (1, 1, 0, T1, *)
c2 (1, 1, 1, T1, T2)
c3 (1, 1, 3, T2, *)
c4 (2, 2, 3, T2, *)
c5 (2, 2, 2, T2, *)

a1

c2

 
 Figure 3. Create TTC:  Interior of TTC intersects with 

boundary–interior of TTC'. 

T2
c1 (1, 1, 1, T1, *)
c2 (1, 1, 0, T1, *)

T1
n1

c1

c2

1

c1

c1
c4

c3

a1 c7  (3, 5, 3, T2, *)
c8  (3, 5, 4, T2, *)
c9  (2, 5, 3, T2, *)
c10(2, 5, 4, T2, *)
c11(3, 4, 2, T2, *)
c12(3, 4, 3, T2, *)
c13 (2, 4, 2, T2, *)
c14 (2, 4, 3, T2, *)
c15 (2, 3, 2, T2, *)
c16 (2, 3, 0, T2, *)
c17 (1, 3, 2, T2, *)
c18 (1, 3, 0, T2, *)
c19 (3, 7, 4, T2, *)
c20 (3, 7, 0, T2, *)
c21 (4, 7, 4, T2, *)
c22 (4, 7, 0, T2, *)
c23 (4, 6, 4, T2, *)
c24 (4, 6, 0, T2, *)
c25 (2, 6, 4, T2, *)
c26 (2, 6, 0, T2, *)

a2

4

3

2

c3
a3

a4

a5

a7

a6

n2

n3
c7
c8

c13
c14

c5
c6

c20 c19

c21
c22

c23 c24

c26
c25

c11 c12 c9 c10

c15 c16
c17 c18

n4

1

n1

c1 (1, 1, 1, T1, T2)
c2 (1, 1, 0, T1, T2)
c3 (1, 2, 2, T2, *)
c4 (1, 2, 0, T2, *)
c5 (3, 2, 2, T2, *)
c6 (3, 2, 0, T2, *)

 
Figure 5. Create TTC:  Boundary of TTC intersects with 
boundary–interior of TTC', and interior of TTC intersects 

with boundary of TTC'. 



5.1.6 Interior of TTC Intersects With Boundary–Interior 
of TTC', and Boundary of TTC Intersects With Boundary 
of TTC' (TT-13):  The boundaries of TTC 1 and 2 are their 
OTC. This can be considered as OTC–OTC intersections, 
where OTCs can intersect in many ways.  Three cases are 
illustrated here.  
 
[a] Boundary of OTC intersects with interior of OTC (Figure 

6[a]). 
   
 Kill TTC (1) and TCT (c2). Create OTC (a2), TTCs (2 and 

3), and TCTs (c3, c4, and c5).  
 
TCT c2 is replaced by c3 because the co-boundary of OTC (a1) 
is changed to 2 (at time T2) from 1 (at time T1). 
 
[b] Interior of OTC intersects with interior of OTC (Figure 

6[b]). 
 
 Kill TTC (1), OTC (a1), and TCTs (c1 and c2). Create ZTC 

(n2), OTCs (a2, a3, and a4), TTCs (2 and 3), and TCTs 
(c3, c4,....,c12). 

 
[c] Both boundary and interior of OTC intersect each other 

(Figure 6[c]). 
 
 Kill TTC (1), OTC (a1), and TCTs (c1 and c2). Create ZTC 

(n2 and n3), OTCs (a2, a3, a4, and a5), TTCs (2 and 3), 
and TCTs (c3, c4,....,c18).  

 
These examples show that a different number of TCTs are 
generated depending on the geometric configurations of the 
temporal cells, although topologically they are all the same. 
 

 
5.1.7 Boundary of TTC Intersects With Boundary–
Interior of TTC, and Interior of TTC Intersects Interior of 
TTC' (TT-14):  This is similar to the previous case (TT-13), 
except the TTC at time T1 is not killed (Figure 7). 
 

2

n1

c1

c5

2

c6

1

a2

c1 (1, 1, 0, T1,T2)
c2 (1, 1, 1, T1, T2)
c3 (1, 1, 2, T2, *)
c4 (1, 1, 1, T2, *)
c5 (1, 2, 0, T2, *)
c6 (1, 2, 2, T2, *)

n2

c10

n1

c1 (1, 1, 0, T1, T2)
c2 (1, 1, 1, T1, T2)
c3 (1, 1, 2, T2, *)
c4 (1, 1, 1, T2, *)
c5 (1, 3, 0, T2, *)
c6 (1, 3, 2, T2, *)
c7 (2, 3, 0, T2, *)
c8 (2, 3, 2, T2, *)

[a] [b]

c5

a3

a2

c3
c4

a1
1

a1

c3
c4

c6
c7
c8

c9

c11
c12

c9   (2, 2, 0, T2, *)
c10 (2, 2, 2, T2, *)
c11 (1, 2, 0, T2, *)
c12 (1, 2, 2, T2, *)

c1 (1, 1, 0, T1, *)
c2 (1, 1, 1, T1, *)

a1

T2

1

T1
n1

c1

c2

 
 

Figure 7. Create TTC:  Boundary of TTC intersects with 
boundary–interior of TTC, and interior of TTC intersects 

interior of TTC'. 
 
 
5.2 TTC Kill Operator (↓)↓)↓)↓) 

While applying Kill operators to TTC, two scenarios can be 
realized. 
 
[a] The face of TTC is not shared by other TTCs or isolated 

TTCs (Figure 8[a]): 
 Kill ZTC (n1), OTC (a1), TTC (1), and TCTs (c1 and c2). 
 
All the faces and TTC itself are killed. 
 
[b] The face of TTC is shared by another TTC (Figure 8[b]): 

Kill OTC (a1), TCT (1), and TCTs (c5, c6, c7, c8, c10, and 
c12). 

 
All the faces are killed except common face(s). 
 

 
5.3 Delete (����) and Reincarnate (↑↑↑↑) Operators 

The Delete operator is based on the Kill operator (i.e., the same 
algorithm is applied to the Delete operator as applied to the Kill 
operator). Once the objects (n-tcells) are killed, they can be 
purged from the database. The Delete operator purges the 
database by permanently deleting n-tcells instead of making 
them inactive. Therefore, these cells are no longer available for 
the Reincarnate operator. The Reincarnate operator turns an 
inactive cell into an active cell by replacing the upper bound 
(ST_Until) of the time interval with a null value. One example 
is considered here to demonstrate the function of the 
Reincarnate operator. This operator is pragmatic in retroactive 
changes. For example, at time T1, there was one TTC (A); at 
time T2, two new TTCs (B and C) were created. The TTC (A) 
has been killed because of the Create operation at time T2. 
Scenario 1 is shown in Figure 9. At time T3, it was realized that 
the TTCs (B and C) had been wrongly created (wrong 
configuration). Actually they have to be created in the fashion 
shown in scenario 2, which is the actual configuration (Figure 

n1

c1

c3

a1

2

c4

3c6 c5

a2

c1 (1, 1, 1, T1,T2*)
c2 (1, 1, 0, T1, T2)
c3 (1, 1, 0, T2, *)
c4 (1, 1, 2, T3, *)
c5 (1, 2, 3, T2, *)
c6 (1, 2, 2, T3, *)

n1

c1c3

c5

n2

a3

c1 (1, 1, 1, T1, T2)
c2 (1, 1, 0, T1, T2)
c3 (1, 2, 0, T2, *)
c4 (1, 2, 2, T2, *)
c5 (2, 3, 0, T2, *)
c6 (2, 3, 2, T2, *)
c7 (2, 4, 2, T2, *)
c8 (2, 4, 3, T2, *)

c9

c11 (3, 5, 0, T2, *)
c12 (3, 5, 2, T2, *)
c13 (2, 5, 0, T2, *)
c14 (2, 5, 2, T2, *)
c15 (2, 4, 3, T2, *)
c16 (2, 4, 2, T2, *)
c17 (3, 4, 3, T2, *)
c18 (3, 4, 2, T2, *)

[a] [b]

c1 (1, 1, 1, T1, *)
c2 (1, 1, 0, T1, *)

23

c3

c4

a4

c5 c6
c7

c8

a3

a2

2

n1

c1

a5

n2

c1 (1, 1, 1, T1, T2)
c2 (1, 1, 0, T1, T2)
c3 (2, 2, 0, T2, *)
c4 (2, 2, 3, T2, *)
c5 (1, 2, 0, T2, *)
c6 (1, 2, 3, T2, *)
c7 (1, 3, 0, T2, *)
c8 (1, 3, 3, T2, *)
c9   (3, 3, 0, T2, *)
c10 (3, 3, 3, T2, *)

[c]

3

n3

c5
c6

c3
c4 c7

c8

c9
c10

c12 c11

c13

c14

a2

a3
a4

c16 c15

c17
c18

a1

T2T1
n1

c1

c1

1

c2

1 1 1

 
Figure 6. Create TTC:  Interior of TTC intersects with 

boundary–interior of TTC', and boundary of TTC intersects 
with boundary of TTC'. 

↓ ↓1 1

1 1 2

n1

a1

c1

c2

n1

n2

c1

c2

c4

c3

c6

c5

c7

c8

a1 a2 a3

1 1 2

n1

a1

c1

c2

n1

n2

c1

c2

c4

c3

c6

c5

c7

c8

a1 a2 a3

c1 (1, 1, 0, T1, *)
c2 (1, 1, 1, T1, *)

c1 (1, 3, 0, T1, *)
c2 (1, 3, 2, T1, *)
c3 (2, 3, 0, T1, *)
c4 (2, 3, 2, T1, *)
c5 (2, 1, 0, T1, *)
c6 (2, 1, 1, T1, *)

c10 c9

c12 c11

c7 (1, 1, 0, T1, *)
c8 (1, 1, 1, T1, *)
c9  (1, 2, 2, T1, *)
c10 (1, 2, 1, T1, *)
c11 (2, 2, 2, T1, *)
c12 (2, 2, 1, T1, *)

[a] [b]

c1 (1, 3, 0, T1, *)
c2 (1, 3, 2, T1, *)
c3 (2, 3, 0, T1, *)
c4 (2, 3, 2, T1, *)
c5 (2, 1, 0, T1, T2)
c6 (2, 1, 1, T1, T2)

c7 (1, 1, 0, T1, T2)
c8 (1, 1, 1, T1, T2)
c9  (1, 2, 2, T1, *)
c10 (1, 2, 1, T1, T2)
c11 (2, 2, 2, T1, *)
c12 (2, 2, 1, T1, T2)

c10 c9

c12 c11

c1 (1, 1, 0, T1, T2)
c2 (1, 1, 1, T1, T2)

 
Figure 8. Kill TTC:  [a] Isolated TTC and [b] face shared by 

another TTC. 



10). In scenario 1, at time T3, the configuration of B and C 
(scenario 2) could not be achieved because the TTC (A) is no 
longer an active object. Prior to achieving the scenario 2 
configuration as shown at time T2 in scenario 1, TTCs B and C 
have to be killed and TTC A must be reincarnated. These steps 
are explained as follows and demonstrated in Figure 11. 
 
At time T2: 
[a] Wrong configuration, which needs to be corrected. 
 
At time T3: 
[b] Delete (�) TTCs (B and C) and corresponding faces and 

TCT (not shown in the figure for simplification reasons). 
[c] Reincarnate (↑) TTC (A), which includes the reincarnations 

of TCTs (not shown for simplification reasons). 
[d] Create TTC (B) to achieve desired temporal cell complex 

configuration. 
 
The example shown here for TTC can be applied for ZTC and 
OTC. However, more work is needed to analyze the scenario 
when applying/designing the Reincarnate operators for ZTC 
and OTC. 
 

 

 
 

 
 

6. CONCLUSION 

Designing a spatiotemporal data model is a complex process. In 
this paper, four fundamental dynamic operators (Create, Kill, 
Delete, and Reincarnate) are identified and applied to the 
TwoTCellClass of CTSTDM. It has been demonstrated that by 
employing object-oriented concepts and mathematical theory of 
point-set approach, the complexity can be diluted. The Create 
operator has been applied to the cases in which TTC intersects 

with TTC. Based on empty and nonempty combinations, seven 
valid cases are discussed. The Kill operator has been applied 
for shared-face and isolated TTC. It has been demonstrated 
how the TTC can be killed and reincarnated. In all operations 
the spatiotemporal topology is preserved in the cell tuple 
structure. Designing operators in this fashion may pave the way 
to fill the gap between concepts, design, and implementation of 
a functional temporal GIS. 
 
 

7. REFERENCES 

Bochner, P., 2003. ADT (Application Development Trends) 
2003 Innovator Awards Component-based Development 
Winner, "Objects Keep Track of County Addresses", USA. 
http://www.adtmag.com/article.asp?id=7448 (accessed 13 April 
2004). 

Brisson, E., 1990. Representation of d-dimensional geometric 
object, Ph.D. thesis, University of Washington. 

Egenhofer, J.M., E. Clementini, and P. Felice, 1994. 
Topological relations between regions with holes, IJGIS 
(International Journal of Geographical Information Science), 
Vol. 8, No. 2, pp. 129-142. 

Egenhofer, J.M., 1993. A model for detailed binary topological 
relationships, Geomatica, Vol. 47, No. 3 and 4, pp. 261-273. 

Raza, A., and W. Kainz, 2002. An object-oriented approach for 
modeling urban land use changes. Journal of the Urban and 
Regional Information Systems Association (URISA), Vol. 14, 
No. 1, pp 37-55. 

Raza, A., and W. Kainz, 2000a. Designing operators for object-
oriented spatio-temporal data model. The International Society 
for Photogrammetry and Remote Sensing (ISPRS), Amsterdam, 
the Netherlands, Vol. XXXIII, Part B4, pp. 863-870. 

Raza, A., and W. Kainz, 2000b. An object-oriented approach 
for modeling urban land use changes. In:  The Proceedings of 
the Urban and Regional Information Systems Association, 
Florida, USA, pp. 20-25. 

Raza, A., and W. Kainz, 1999. Cell tuple based spatio-temporal 
data model:  an object oriented approach. In:  The Proceedings 
of the Eighth ACM Conference on Information and Knowledge 
Management (CIKM'99) and Symposium on Geographic 
Information Systems (GIS'99), Kansas City, Missouri, USA, 
pp. 20-25. 

B/A

n1

a1

a3

A

C/A

a2

a4
a5

T1 T2

A

 
Figure 9. Scenario 1:  Wrong 
configuration of TTCs (B and 

C) at time T2. 

B/A

n1

a1

a3

A

C/A

a2

a5

T1 T2

A

a4

 
Figure 10. Scenario 2:  Actual 
configuration of TTCs (B and 

C) at time T2. 

n1

a1

a3

A

a2

T1 T2

A

T3

B C�

ATemporal
Cell
Complex

↑ A

A B/A
a3

C/A

a2

a5

a4

A
B/A

C/A

a4
a5

Wrong configuration
[a] [c][b] [d]

Desired configuration  
Figure 11. Reincarnate (↑) operator:  Demonstration of 

retroactive change 


