
REPRESENTATION OF A 3-D CITY MODEL IN SPATIAL
OBJECT-RELATIONAL DATABASES

G. Gröger a,* , M. Reuter b, L. Plümer a

a Institute for Cartography and Geoinformation, University of Bonn, Meckenheimer Allee 172, 53115 Bonn, Germany -

(groeger, pluemer)@ikg.uni-bonn.de
b AED-SICAD, Mallwitzstr. 1-3, 53177 Bonn, Germany - reuter@aed-sicad.de

Commission IV, WG IV/1

KEY WORDS: Databases, GIS, Modeling, Three-dimensional, Performance, Query, Data Structures

ABSTRACT:

Three-dimensional city models become more and more important in many GIS applications. Examples are, apart from simple
visualization, city and land use planning as well as telecommunication planning and disaster management. Currently, there are no
3-D GIS available, which are suitable for these applications. For managing large spatial data sets in an efficient and sustainable way,
spatial databases are suitable, but in general restricted to two dimensions. The paper answers the questions how to represent a 3-D
city model in an object-relational spatial database, and to what degree the modeling, analysis and query mechanism of the database
can be used for 3-D models and applications. Our geometrical-topological 3-D city model is based on existing standards of the ISO
and the Open GIS Consortium to ensure interoperability with other systems and data providers. Recent 'object-relational' databases
support sophisticated object models closing the gap between relational databases and object-oriented models. Furthermore, spatial
extensions are available for database systems. Based on the widespread commercial database system Oracle 9.2i Spatial, the
functionality and efficiency of analysis, access and queries is examined. In our paper we will demonstrate which kind of 3-D spatial
queries are feasible using Oracle Spatial, and how exact the query results are with respect to geometry, especially when using three-
dimensional spatial indices. Likewise, the system's performance is considered by means of miscellaneous benchmarks and their
dependency on individual factors such as the recursive aggregation of objects.

1. INTRODUCTION

Three-dimensional city models are important in many
applications of geographic information systems (GIS).
Examples are telecommunications planning, disaster manage-
ment, or urban planning (Köninger & Bartel; 1998, Zlatanova,
2000; Zlatanova & Holweg, 2004). On one hand, most GIS
currently available, however, cope only with two or two and a
half dimensional data. Most systems from Computer Aided
Design (CAD) or Computer Graphics (Foley et al., 1995) can
handle 3-D data, but are limited since they do not handle
topology and semantic properties adequately and do not offer
the GIS functionality required for the applications mentioned.

Relational databases are, on the other hand, suitable for storing
and managing data in an efficient and sustainable way (Ullman,
1988). Transaction mechanisms enable consistent updates of the
database, and powerful access structures guarantee efficient
execution of queries. Object-relational extensions close the gap
between conceptual models and their implementation in a
database. Add-ons to handle spatial data are available for the
most commercial databases, for example the Spatial Extender
for IBM’s DB/2, PostGIS for PostgreSQL, Spatial Data Blade
for Informix, or Spatial for Oracle. Most of these extensions are
restricted to 2-D or 2.5-D data and offer only a few
functionalities to handle 3-D data.

This paper addresses the question how to store, manage and
query 3-D city models in object-relational spatial databases and
to which degree the required 3-D functionalities are supported.
In addition, the performance of 3-D queries is analyzed. The

focus is on a widespread commercial system, Oracle 9i Spatial
(Oracle, 2002a; Oracle, 2002b).

The 3-D city model on which the implementation is based
(Kolbe & Gröger, 2003) is a multifunctional model, which may
be used for analysis and simulation purposes as well as for
visualization. To reach this objective, the model has explicit
topologic relations between its geometric components, and a
hierarchical structure to model aggregated thematic objects
recursively. To support interoperability, it is based on
international GIS standards, for example ISO 19107 ‘Spatial
Schema’ (Herring, 2001). It can easily be interchanged using
the Geography Markup Language (GML 3) (Cox et al, 2003),
which will be one of the most important GIS transfer formats in
the future.

The implemented 3-D city model was developed based on
discussions within the “Special Interest Group 3D” (SIG 3D) of
the initiative “Spatial Data Infrastructure North Rhine-
Westphalia” (GDI NRW). In this group, municipalities,
scientists and software developers cooperate to develop a
unified approach for 3-D city models.

In the last decade, the suitability of databases for 3-D GIS
models has been studied several times. (Molenaar, 1992;
Rikkers et al., 1994) employ a database to implement a 3-D
formal data structure. A pure relational model without spatial
extensions is used. A similar approach is the prototype SOMAS
(Pfund, 2002), which focuses on the thematic aspects and, in
particular, 3-D city models. In contrast to our approach,
recursive aggregates are not considered in both prototypes.
(Arens et al., 2003) analyze the suitability of Oracle Spatial 9i

and propose the extension of this database by a 3-D primitive.
Its topology, however, is only internal; there are no topological
relations between primitives. (Stoter & van Oosterom, 2002)
propose an implementation which is similar to ours, but they
consider two different models: one using oracle spatial data
types for Geometry, and another with topological relations. Our
approach combines both in a single model. In addition, (Stoter
& van Oosterom, 2002) do not deal with recursive aggregates.

This paper is organized as follows: In the second section, the
spatial and object-relational properties of the database system
Oracle 9i are discussed. The representation of a 3-D city model
in this spatial object-relational database is the topic of the third
section. The next section discusses how this model may be
queried and to what extend these queries are suitable to
consider the third dimension, including performance issues. The
paper ends with some concluding remarks and a discussion of
open questions.

2. SPATIAL OBJECT-RELATIONAL DATABASES -
ORACLE 9I

Oracle 9i is a sophisticated, widespread commercial database
system, which provides a spatial extension, called Oracle
Spatial, and object-relational properties. Both are discussed in
this section, which is based on (Oracle, 2002a) and (Oracle,
2002b).

2.1 Geometric properties

Oracle Spatial provides a data type, called SDO_GEOMETRY,
for representing spatial data, and associated operators and
functions, which allow storing, editing, updating and querying
these data. Two mechanisms for indexing spatial data are used,
Quadtrees and R-trees (Guttman, 1984). For querying 3-D data
by Oracle Spatial, however, only R-trees may be employed.

The geometry types supported by Oracle Spatial are based on
the ‘OGC Simple Features Specification for SQL’ issued by the
Open GIS Consortium (Open GIS Consortium, 1999).
According to this standard, a geometry may be a point or a
multi point, i.e. a point cluster, a line string or a multi line
string, a polygon or a multi polygon. In addition to the Simple
Feature specification, arc line strings, arc polygons, and
collections of arbitrary geometries are offered. A geometry is
defined in a spatial coordinate reference system. According to
the Simple Features specification, the explicit representation of
topological relations between geometric objects is not provided.
The coordinates of the geometric objects may be two or three
dimensional, thus allowing polygons and lines positioned
arbitrarily in 3-D space. The polygon boundaries may be non-
planar, but the specification of interpolation rules for their
interiors is not provided. For the representation of 3-D solids
according to the Boundary Representation (B-Rep) (Foley et al.,
1995; Mäntylä, 1988), no data type is offered by Oracle Spatial.

A database table may contain more than one column of type
SDO_GEOMETRY. Thus it is possible, for example, to assign
different levels of detail to a single object. This property is
crucial for managing 3-D city models.

For manipulating and querying spatial data, two mechanisms
are offered, which differ in particular in their 3-D properties:
operators and functions.

Operators retrieve spatial data from the database according to
geometrical criteria, using the R-tree index. One specific
operator, called SDO_FILTER, selects geometries, which
interact with a given fixed geometry, or pairs of geometries,
which interact pair-wise. The first case is called window-query,
while the second is a join-query. The operator does not consider
the exact geometry of objects, but approximates it by a minimal
bounding rectangle or a minimal bounding box, depending on
the dimension of the geometries. The rectangles and boxes are
parallel to the x-, y-, and z-axis of the coordinate reference
system.

The approximation of geometries by bounding boxes, however,
yields inexact results. Consider, for example, the two
geometries in Figure 1b), which are disjoint. The bounding
boxes overlap, thus the operator SDO_FILTER recognizes that
both are not disjoint. In Figure 1a), the operator SDO_FILTER
is able to identify the two geometries’ bounding boxes as
disjoint.

 b) a)

Figure 1: Approximation of geometries by minimal bounding

boxes, yielding inexact results. In Figure a), both
objects can be distinguished from each other, while
in b), the two geometries do not touch each other,
but their bounding boxes do so.

The other operators apart from SDO_FILTER select geometries
within a given distance, nearest neighbor geometries, or
geometries with topological relations according to the well-
known 4-intersection model (Egenhofer & Herring, 1990).
These operators are evaluated using a so-called ‘two-tier
model’, which applies SDO_FILTER first, and the more exact
operator to the result afterwards. All operators apart from
SDO_FILTER may not be applied to data with more than two
dimensions, and thus are not discussed any further.

In contrast to operators, functions do not use a filter step and a
spatial index, and are applicable to 3-D data, but they ignore the
z-coordinate. Oracle Spatial provides functions to select
geometries according to the 4-intersection model, to compute
areas, distances, or to construct convex hulls, centroids, buffers,
and so on. In addition, the union, difference or intersection of a
pair of geometries may be derived.

Figure 2 depicts the different spatial relations distinguished by
the function SDO_GEOM.RELATE, which implements the 4-

intersection model. Note that the z-coordinate is ignored by the
function. If, for example, one geometry A is above a geometry
B and both are disjoint, then the operator SDO_GEOM.
RELATE recognizes erroneously that A and B are not disjoint.

A
B

A

B

A
B

A
B

A

B

B A A B

A Contains B
B Inside A

A Covers B
B Coveredby A

A Touch B
B Touch A

A OverlapBdyIntersect B
B OverlapBdyIntersect A

A OverlapBdyDisjoint B
B OverlapBdyDisjoint A

A Equal B
B Equal A

A Disjoint B
B Disjoint A

Figure 2: Topological relations differentiated by the function

SDO_GEOM.RELATE, which implements the 4-
intersection model (Oracle, 2002b).

Although functions do not use the R-tree index, both concepts
may be combined in a 3-D query. The operator SDO_FILTER
is employed first to pre-select a superset of the desired
geometries in an efficient way, using the R-tree index and
bounding boxes. This set is further refined by a 2-D function
afterwards. In this way, a two-tier query model may be realized.
An example of such a query will be given in section 4.1.

2.2 Object-relational properties

The database Oracle offers an object-relational extension of the
relational data model, closing the gap between the object-
oriented conceptual model, which often is formulated using the
Unified Modeling Language UML (Booch et al., 1997), and the
database. Object-relational features in Oracle are object types
and object views, which specify attributes and methods. They
are implemented using one or more object tables, being similar
to relational tables. Object methods, which can be used to
manipulate the data, are stored with the table definition. The
concept of inheritance allows the specification of super- and
subtypes, which will be mapped on relational tables by the
database management system. An object table may have
references to other object types, allowing navigational access
and replacing the relational concept of foreign keys.

In the relational data model, the columns of tables are restricted
to contain simple data types. In contrast, the columns object
tables may be whole objects or whole tables, which are called
nested tables. Nested tables provide a convenient means to
represent m:n-relations between object tables. In relational
tables, the representation of these relations requires an
additional table, too. But a nested table is embedded into an
object table, simplifying the handling of the relation. An
example for a nested table embedded in an object table is
depicted in Figure 3. The first row of the object table has

relations to three objects, which are identified by A11, A12 and
A13.

The efficiency of nested tables may be improved by using
indices. The database arranges the order of the rows according
to the order of the corresponding rows in the superior object
table.

Figure 3: Example for a nested table, embedded in an object

table. Each row of this object table corresponds to
several rows in the nested table, representing a m:n-
relation The figure is taken from (Oracle, 2002a).

3. REPRESENTING 3-D CITY MODELS

This section describes how the multi-functional 3-D city model
presented in (Kolbe & Gröger, 2003) was implemented in
Oracle 9i Spatial and which difficulties occurred due to some
deficiencies of this database. First, the geometry data types of
Oracle Spatial do not provide explicit topological relations
between geometric components, which are crucial for
representing 3-D city models. Thus topology had to be modeled
using standard object-relational, non-spatial tables. To get
benefit from the efficient spatial index structure, the spatial data
types are used in addition, obtaining a double representation of
spatial properties, which is redundant to a certain degree. In the
following, the topological level of the database schema is
discussed first, the aggregation level afterwards, and finally the
representation of the geometry using the Spatial extension of
Oracle. The complete database scheme is depicted in Figure 4.

At the bottom of Figure 4, the primitives vertex, edge, face and
solid as well as their topological relations are represented,
according to the well-known Boundary Representation (Foley
et al., 1995; Herring, 2001). Each primitive is stored in a single
table. Rings are employed to differentiate outer boundaries
from inner boundaries of faces, i.e. holes. The various m:n-
relations between the topological primitives are implemented
by the object-relational concept of nested tables. For example, a
solid is bounded by several faces. Thus one column of the solid
table is a nested table called FaceListNestedTab, each row of
which contains a reference to a bounding face of the solid. In a
similar way, the relations between a face and its interior rings

EgdeRef
RingRef

FaceRef

SurfaceGeometryRef
SolidGeometryRef

Side2

Side1

SurfaceAggregateNestedTab

FaceRef

SolidAggregateNestedTab

SolidRef

FaceListNestedTab

ExteriorRef

InteriorNestedTab

EdgeListNestedTab

StartRef

EndRef

SurfaceSolid

EdgeTab

-IDEdge:NUMBER

RingTab

-IDRing:NUMBER

FaceTab

-IDFace:NUMBER
-Orientation:VARRAY

VertexTab

-IDVertex:NUMBER
-x:NUMBER
-y:NUMBER
-z:NUMBER

SolidTab

-IDSolid:NUMBER

Material

SolidGeometryTab

-IDSolidGeometry:NUMBER

RGB

-red:NUMBER
-green:NUMBER
-blue:NUMBER

Texture

-Bitmap:BLOB
-Transformation:VARRAY

SurfaceGeometryTab

-IDSurfaceGeometry:NUMBERSolidAggregateNestedTab SurfaceAggregateNestedTab

FaceListNestedTab RingListNestedTab

EdgeListNestedTab

-SortVar:NUMBER

GeoTab

-IDGeo:NUMBER
-world:mdsys.sdo_geometry

Figure 4. Object-relational database schema for the 3-D city model

and between a ring and its edges are realized, using the nested
tables RingListNestedTab and EdgeListNestedTab.

Based on the topological primitives, aggregates can be build
recursively. This enables the representation of arbitrarily nested
building structures. An example is one university campus,
which consist of several complex buildings. One complex
building consists of parts, and these parts again are a
composition of a main part, chimneys and balconies, and so on.
An aggregate is represented by a row in the SolidGeometry
table in Figure 4. The relations to the parts of the aggregate are
defined by the nested table SolidAggregateNestedTab, which
references several rows in the SolidGeometry table. Since these
rows in the SolidGeometry table may have parts on their own, a
nesting of arbitrary depth may be achieved. Finally, the
SolidGeometry rows, which have no parts, are related to a Solid
defining the geometry and topology of the SolidGeometry row.

Faces may be aggregated to SurfaceGeometries analogously. In
particular, this is necessary to map textures on surfaces, which
is very important for the visualization of 3-D city models.
Attaching textures to aggregated SurfaceGeometries provides
more flexibility than relating it to a face, since often textures
correspond to whole walls covering more than a face of a single
building. Textures are represented by a row in the Material
table, which may alternatively be just a color value when no
texture is available.

On the top level of the database schema in Figure 4, the GeoTab
table represents the geometry of objects by a value of Oracle
Spatial’s SDO_GEOMETRY type, which was already
discussed in section 2. A row in the GeoTab table may be
related to a SolidGeometry or to a SurfaceGeometry, but not to
both. In both cases, the SDO_GEOMETRY value is a collection
of polygons. It must form a closed solid, if it is related to a
SolidGeometry. The database, however, provides no standard
mechanisms to check this property.

Using a collection of polygons to represent a solid is only an
approximation. This is due to the fact, that Oracle Spatial does
not offer geometry types for solids. The semantics of a solid is
different to the semantics of a collection of polygons forming a
closed solid. For example, the question whether a point is
completely inside a solid may be answered by a solid model,
but not by a polygon approximation of a solid. In such a

polygon model, the notions of ‘inside’ and ‘outside’ are not
defined.

Note that a solid may not be approximated by a multi-polygon.
According to the ‘Simple Feature Specification’ (Open GIS
Consortium, 1999), two polygons being part of one multi
polygon may touch only in a finite number of points. In a solid
boundary, two polygons meet in a common edge and thus touch
in an infinite number of points.

The database schema for the 3-D city model is accompanied by
a set of integrity constraints, which express relevant properties
of the model explicitly, and which are important for many
applications using the model. One constraint, for example,
states that two solids must be disjoint and may touch at least at
their boundaries. In this case, the area where both solids touch
must be a face, which is contained in the boundary of both
solids. More details about integrity constraints may be found in
(Kolbe & Gröger, 2003).

4. QUERYING 3-D CITY MODELS

Based on the analysis of the 3-D query capabilities in the
second section, now it is discussed how the 3-D city model
presented in the last section may be queried.

4.1 3-D Queries

As discussed in the second section, Oracle Spatial’s operators
apart from SDO_FILTER are not applicable to 3-D data, while
functions neglect the z-coordinate and treat them as zero,
respectively. To obtain a efficient two-tier query model, the
SDO_FILTER operator, which is suitable for 3-D bounding
boxes, may be combined with 2-D functions, enabling a few
standard applications for 3D city models. This combination is
achieved by a nested SQL command; SQL is the standard query
language for relational databases (Ullman, 1988).

An example for a nested query is given in Figure 5. It selects
the identifiers of those objects, which are related to solids
having the relation ‘inside’ (see Figure 2) to the bounding
rectangle or window given by the two coordinate pairs
(3446733.79, 5549996.27) and (3445133.79, 5539196.27). In
the nested select-from-where-statement, which is included in
the from-part of the outer query, the SDO_FILTER operator is
applied. It selects all geometries interacting with the 3-D

bounding box given by the two coordinate triplets, using the R-
tree index. The result of this sub-query is passed to the outer
from-part, where the exact relate function is applied. Note that
the x- and y-coordinates are considered only. The query is
illustrated in Figure 6.

SELECT s.IDGeo
FROM (
 SELECT r.IDGeo, r.world
 FROM GeoTab r
 WHERE MDSYS.SDO_FILTER(
 r.world, MDSYS.SDO_GEOMETRY(
 3003, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3),
 MDSYS.SDO_ORDINATE_ARRAY(
 3446733.79, 5549996.27, 142.8,
 3445133.79, 5539196.27, 104.8)
),'querytype=window'
) = 'TRUE'
) S, SolidGeometryTab v
WHERE MDSYS.SDO_GEOM.RELATE(
 S.world, 'INSIDE', MDSYS.SDO_GEOMETRY(
 3003, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3),
 MDSYS.SDO_ORDINATE_ARRAY(
 3446733.79, 5549996.27, NULL,
 3445133.79, 5539196.27, NULL)
)
),0.5
) = 'TRUE' AND
v.IDSolidGeometry = S.IDGeo;

Figure 5. Nested SQL query, which applies the SDO_FILTER

operator first and then refines the resulting set by
applying an exact 2-D function, selecting those
geometries inside a given rectangle.

To summarize the query, the filter operates in 3-D, but yields
no exact results (see Figure 1). The relate function provides
exact results regarding two dimensions, but neglects the z-
coordinate.

These query capabilities offered by Oracle Spatial are sufficient
for many 3-D city model applications, where the vertical
relation between objects is not relevant. But other queries, in
particular those which implement consistency constraints, are
not supported by Oracle Spatial. For example, such a constraint
states that solids must be pair-wise disjoint. To cope with these
queries, special functions must be implemented, which analyze
the result of the filter operator exactly and includes the third
dimension.

4.2 Performance

Due to the R-tree index, 3-D spatial queries using the filter
operator are very efficient. As an example, the diagram in
Figure 7 shows the query time of the query given in Figure 5.
The database contains 9934 buildings. The query time is
depicted for several queries, differing in the number of
buildings in the result set. For a small result set, the time is less
than a second. This analysis was performed using an AMD
Athlon XP 2100+ PC, with 1.800 GHz and 512 MB DDR-
RAM. The operating system was Windows XP.

A

B C

D

Figure 6. Example for an application of the query in Figure 5.

The objects A, B and C interact with the bounding
box and pass the filter, while D does not. The
projections of A and C onto the x-/y-plane are inside
the projection of the bounding box, thus both
constitute the final result set. Note that only C is
inside the bounding box.

The query time increases significantly, when the result set
grows. But the most important observation is, that the query
time does not increase significantly when the database size
grows. This scalability is an important property of spatial
databases.

1
6

10

1 9
3 7

75

92

0

20

40

60

80

100

120

50 500 1000 2 0 0 0 4 0 0 0 8 0 00 9943

Number of buildings in query result

sec

Figure 7. Query time of the spatial window filter in seconds

for selected numbers of buildings in the result set.
The database contains 9934 buildings.

5. CONCLUSIONS AND FURTHER WORK

This paper presents an approach to store, manage and query 3-D
city models using a spatial object-relational database. Thus
applications can benefit from the efficiency, consistency and
sustainability of databases. Topology is represented explicitly,
providing efficient access to neighboring objects and geometric
consistency. In addition, the build-in functionality of the spatial
extension of the database enables efficient geometric access to
large 3-D data sets.

Some deficiencies of the database regarding its 3-D capabilities
were identified. Topology is not modeled explicitly by the
spatial data types, resulting in a redundant representation of

spatial properties. Furthermore, a spatial data type for the
specification of solids is missing. Spatial queries are restricted
to two dimensions, apart from the efficient filter operator,
which considers three dimensions. These 3-D queries are
sufficient for many applications of 3-D city models, but too
restricted for other relevant queries, for example for checking
the consistency of the model.

The next step is the extension of the model by a variety of
thematic objects relevant for 3D city models, including the
corresponding attributes as well as aggregation and
generalization hierarchies. Efficient visualization and analyses
will be obtained by allowing multiple representations of a
single thematic object in different levels of detail (Kolbe &
Gröger 2003). A further extension will be the integration of the
relief structure using Triangulated Irregular Networks.

The long-term objective of the database is to extend it to a 3-D
GIS prototype, which is a platform for various 3-D research
projects. In the context of spatial data infrastructures, the
database will provide services to get access to data in an
interoperable way. An example is the provision of GML 3 data,
thus extending OGC’s Web Feature Service (Open GIS
Consortium, 2002), which is limited to 2-D data currently.

REFERENCES

Arens, C., Stoter, J. & van Oosterom, P.J.M., 2003. Modelling
3D spatial objects in a GEO-DBMS using a 3D primitive,
AGILE conference, April 2003, Lyon, France.

Booch, G., Rumbaugh, J. & Jacobson, I., 1997: Unified
Modeling Language User Guide. Addison-Wesley.

Cox, S., Daisy, P., Lake, R., Portele, C. & Whiteside, A., 2003:
OpenGIS Geography Markup Language (GML3), Imple-
mentation Specification Version 3.00, OGC Doc. No. 02-023r4.

Egenhofer, M.J. & Herring, J.R., 1990. Categorizing Binary
Topological Relations Between Regions, Lines, and Points in
Geographic Databases. Technical report, Department of
Surveying Engineering, University of Maine.

Foley, J., van Dam, A., Feiner, S. & Hughes, J., 1995: Compu-
ter Graphics: Principles and Practice. Addison Wesley, 2nd
Ed.

Guttman, A., 1984. R-trees: a dynamic index structure for
spatial searching. SIGMOD Record (ACM Special Interest
Group on Management of Data), 14(2):47-57(1984).

Herring, J., 2001: The OpenGIS Abstract Specification, Topic
1: Feature Geometry (ISO 19107 Spatial Schema), Version 5.
OGC Document Number 01-101.

Kolbe, T. H. & Gröger, G., 2003: Towards Unified 3D-City-
Models. In: Proc. of. ISPRS Commission IV Joint Workshop on
Challenges in Geospatial Analysis, Integration and
Visualization II, September 8 - 9, Stuttgart, Germany.

Köninger, A. & Bartel, S., 1998: 3D-GIS for Urban Purposes,
Geoinformatica, 2(1):79-103(1998).

Mäntylä, M., 1988, An Introduction to Solid Modeling,
Rockville, Maryland: Computer Science Press.

Molenaar, M., 1992: A topology for 3D vector maps. ITC
Journal 1992-1, The International Institute for Aerospace Sur-
vey and Earth Sciences, The Netherlands.

Open GIS Consortium, 1999. OpenGIS Simple Features Speci-
fication for SQL, Revision 1.1, OpenGIS Doc. No. 99-049.

OpenGIS Consortium, 2002. Web Feature Service Implemen-
tation Specification. Version: 1.0.0, OpenGIS Doc. No. 02-058

Oracle, 2002a. Oracle 9i Application Developer’s Guide –
Object-relational Features, Release 2 (9.2).

Oracle, 2002b. Oracle Spatial – User’s Guide and Reference,
Release 9.2.

Pfund, M., 2002. 3D GIS Architecture, A Topological Data
Structure, GIM International, Vol 16. Feb. 2002.

Reuter, M., 2003. Implementierung eines 3D-Stadtmodells in
einer objekt-relationalen Datenbank am Beispiel von Oracle
Spatial (Implementation of a 3-D city model in a object-rela-
tional database, considering Oracle Spatial as example).
Diploma Thesis. Institute for Cartography and Geoinformation,
University of Bonn, Germany (in German).

Rikkers, R., Molenaar, M. & Stuiver, J., 1994. A query
orientated implementation of a topologic data structure for 3-
dimensional vector maps, Int. J. Geographical Information
Systems, 8(3):243-260(1994).

Stoter, J.E. & van Oosterom, P.J.M., 2002. 3D Data Modelling
in a Geo-DBMS In: Proceedings GIScience, Boulder, Colorado,
USA.

Ullman, J.D., 1988: Principles of Database and Knowledge-
Base Systems, Vol. 1, Computer Science Press.

Zlatanova, S., 2000: 3D GIS for Urban Development. PhD
Thesis, ITC Dissertation Series No. 69, The International Insti-
tute for Aerospace Survey and Earth Sciences, The Netherlands.

Zlatanova, S. & Holweg, D., 2004: 3D Geo-information in
emergency response: a framework. In: Proceedings of the
Fourth International Symposium on Mobile Mapping
Technology (MMT'2004), March 29-31, Kunming, China.

ACKNOWLEDGEMENTS

We thank Thomas H. Kolbe, Viktor Stroh and Ingo Petzold for
discussions, which helped to generate and clarify the ideas
described here.

	INTRODUCTION
	SPATIAL OBJECT-RELATIONAL DATABASES - ORACLE 9I
	Geometric properties
	Object-relational properties

	REPRESENTING 3-D CITY MODELS
	QUERYING 3-D CITY MODELS
	3-D Queries
	Performance

	CONCLUSIONS AND FURTHER WORK
	REFERENCES
	ACKNOWLEDGEMENTS

