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ABSTRACT: 
 
Efficient modelling of spatiotemporal change as it is depicted in multitemporal imagery is an important step towards the efficient 
analysis and management of large motion imagery (MI) datasets. Furthermore, the development of concise representation schemes 
of MI content is essential for the search, retrieval, interchange, query, and visualization of the information included in MI datasets. 
Towards this goal this paper deals with the concise modelling of spatiotemporal change as it is captured in collections of MI data, 
and the development of spatiotemporal similarity metrics to compare the evolution of different objects.  Helixes represent both 
movement and deformation in a single concise model, and are therefore highly suitable to communicate the evolution of phenomena 
as they are captured e.g. in sequences of imagery. This integration of movement and deformation information in a single model is an 
extension of existing solutions, and is highly suitable for the summarization of motion imagery datasets, especially within the 
context of geospatial applications. In this paper we present the spatiotemporal helix model, its use to support spatiotemporal queries, 
and spatiotemporal similarity metrics for the comparison of helixes. These metrics allow us to compare the behavior of different 
objects over time, and express the degree of their similarity. To support these comparisons we have developed a set of mobility state 
transition (MST) cost metrics that express dissimilarity as a function of differences in state. In the full paper we present these models 
in detail, and proceed with experimental results to demonstrate their use in spatiotemporal analysis.  
 
 

1. INTRODUCTION 

The image processing community has been dealing with issues 
of object representation for many years. Of particular interest 
are techniques that model the changes that an object undergoes 
over time. Motion Imagery (MI) analysis makes use of video 
feeds or multitemporal sequences of static images, and thus is 
typically addressing object tracking over time. Storing such 
spatiotemporal information imposes obvious challenges related 
to the involved amount of data, and the complexity of 
spatiotemporal variations. Lifelines (Plaisant, Milash et al. 
1996; Hornsby and Egenhofer 2002) and video summarization 
programs (Pope, Kumar et al. 1998; Zhou, Ong et al. 2000) 
represent some approaches developed in the GIS database and 
image processing communities to model spatiotemporal 
information.  
 
In order to accommodate the particularities of motion imagery 
databases we have recently introduced the spatiotemporal (ST) 
helix as a modelling and generalization tool for spatiotemporal 
information handling (Stefanidis, Agouris et al. 2002; Agouris 
and Stefanidis 2003). Helixes differ from other approaches in 
that they not only capture the movement of an object’s center of 
mass, but also incorporate information about changes in its 
outline. Furthermore, they allow us to identify critical instances 
in an object’s history, and support metric analysis. Thus they 
are more than just a visualization mechanism, and incorporate 
databases and data storage techniques that allow the user to 
query for particular object behaviours. In this paper we provide 
an overview of our spatiotemporal helix model, and the ST 
comparison metrics we developed.  
 

The paper is organized as follows. Section 2 of this paper 
details the spatiotemporal helix itself, and section 3 presents 
metrics for comparing multiple helixes. Helix aggregation is 
discussed in section 4. In Section 5 we demonstrate the 
implementation of the algorithms discussed in previous 
sections, and present experiments on noise removal, boundary 
reconstruction, and computational time for similarity queries. 
We conclude with our future plans.  
 
 

2. THE SPATIOTEMPORAL HELIX 

Spatiotemporal (ST) helixes are models of spatiotemporal 
variations. A spatiotemporal helix comprises a central spine and 
annotated prongs (Figure 1). More specifically: 

− 

− 

The central spine models the spatiotemporal trajectory 
(movement) described by the center of the object as it 
moves during a temporal interval.  

The protruding prongs express expansion or collapse 
(deformation) of the object’s outline at a specific time 
instance.  

 
 



 

 
  

Figure 2:  Comparison of reference helix (right) to candidate 
(left) 

Figure 1: A spatiotemporal helix (left) and a detail showing the 
azimuth of a prong (right). 

  
3.1 Abstract Comparisons As a spatiotemporal trajectory, a spine is a sequence of (x,y,t) 

coordinates. It is expressed in a concise manner as a sequence 
of spatiotemporal nodes S(n1,…nn). These nodes correspond to 
breakpoints along this trajectory, namely points where the 
object accelerated/decelerated and/or changed its orientation. 
Thus, each node ni is modelled as ni(x,y,t,q), where:  

In abstract comparisons we are only considering the presence or 
absence of specific node and prong qualifiers.  Two helixes are 
compared at each node in order to evaluate whether they exhibit 
similar behaviors. We proceed by assigning cost values to each 
nodal comparison. If both the reference and candidate helixes 
accelerate or decelerate at a given instant, then a cost value of 0 
is given to that pair.  If one is accelerating and the other is 
decelerating, a value of 2 is assigned (Table 1). Thus the 
comparison of highly dissimilar helixes produces high 
comparison results, while the comparison of two perfectly 
similar helixes produces a result of 0. 

− (x,y,t) are the node spatiotemporal coordinates, and  
− q is a qualifier classifying the node as an acceleration 
(qa), deceleration (qd), or rotation (qr) node.  

 
Each prong models the local expansion or collapse of the 
outline at the specific temporal instance when this event is 
detected, and is a horizontal arrow pointing away from or 
towards the spine. It is modelled as pi(t,r,a1,a2) where:  

 

Helix 1 ↓      Helix  2 → Accel. Cons. Decel. 
Acceleration 0 1 2 
Constant 1 0 1 
Deceleration 2 1 0 

− t is the corresponding temporal instance (intersection of 
the prong and the spine in Fig. 2 left),  
− r is the magnitude of this outline modification, expressed 
as a percentage of the distance between the center of the 
object and the outline, with positive numbers expressing 
expansion (arrows pointing away from the spine) and negative 
numbers indicating collapse (arrows pointing towards the 
spine),    

 
Table 1.  MST Cost metrics for comparing qualifier attributes of 

acceleration and deceleration 
 
Similarly we can produce cost metrics for rotation attributes. Of 
interest in this abstract comparison is whether rotations are 
clockwise or counterclockwise. The corresponding mobility 
states in this context are clockwise rotation, counterclockwise 
rotation, and no rotation. The latter is indicated by the lack of a 
rotation node over a search interval. The corresponding metrics 
are shown in table 2, and follow a rationale similar to the one 
used in the cost metrics of table 1.  

− a1, a2 is the range of azimuths where this modification 
occurs; with each azimuth measured as a left-handle angle 
from the North (y) axis (Figure 1 right).   

 
 

3. SIMILARITY METRICS  

While a single helix conveys valuable information on the 
behavior of an object, it is the comparison of object behaviors 
that typically leads to knowledge discovery in typical geospatial 
applications. For example, comparing how two phenomena 
evolve may lead to the establishment of causality relationships. 
In order to support such applications we have developed metrics 
that support the comparison of ST helixes, to support the 
discovery of similarities or differences in object behaviours 
(Stefanidis et al., 2003). 

 
Helix 1 ↓      Helix  2 → Clockw. No Counter. 
Clockwise rotation 0 1 2 
No rotation 1 0 1 
Counterclockwise rotat. 2 1 0 

 
Table 2.  MST Cost metrics for comparing qualifier attributes of 

rotation 
  
We have developed abstract and qualitative metrics for helix 
comparisons. In such comparisons, one helix serves as reference 
and the second is a matching candidate (Figure 2). When 
examining a node on the reference helix, we do not simply look 
for a match at the same time instance on the candidate helix, but 
expand our time window to account for variations that may 
have occurred while obtaining the dataset. Thus we are not 
looking solely at time t2 for a match, but rather in an interval 
(t1,t3) (Fig. 2). 

Regarding prong information we have a similar situation, where 
there may be expansion, contraction, or no change in an 
object’s outline. This last option is indicated by the lack of a 
prong over a search interval. The corresponding metrics are 
shown in table 3, and follow a rationale similar to the ones used 
to form the cost metrics of tables 1 and 2.  
 

Helix 1 ↓      Helix  2 → Expand No Contract 
Expansion 0 1 2 
No change 1 0 1 
Contraction 2 1 0 

 
 

 
Table 3.  MST Cost metrics for comparing prong magnitudes 



 

 (rr
i-rc

j) expresses the difference in deformation 
magnitude among corresponding prongs, aggregated 
across all prongs, 

 
Combined, the above three metrics allow us to perform abstract 
comparisons of helixes. It should be mentioned again that 
during this stage of abstract comparisons we do not make use of 
information on the angular extent and magnitude of 
deformations, but save this information for the more detailed 
quantitative comparisons. 

 (ar
i-ac

j) expresses the difference in deformation angle 
among corresponding prongs, aggregated across all 
prongs, 

 an, ap, aq, ar, aa are the corresponding relative weights 
for each component, with an+ap+aq+ar+aa=1  

 The above three cost metrics are combined in an integrated 
index Simr

c to express the similarity between a reference (Hr) 
and a matching candidate (Hc) helix as:  

We normalize all quantities by dividing their actual values by 
their range, so that in this case, a value of 1 is assigned to the 
most dissimilar pairs and a value of 0 is given to pairs that are 
exactly the same.  Once a degree of similarity has been 
determined, whether by abstract or quantitative methods, we 
can decide whether these helixes belong in a group or should 
remain as separate entities.  Papers on similarity that address 
relevant issues include (Stefanidis, Agouris et al. 2002; 
Vlachos, Gunopulos et al. 2002; Stefanidis, Eickhorst et al. 
2003). 

 

Simr
c =

av cos tvelocity + ar cos trotation +∑ ad costdeformation∑∑

(number _ of _ nodes + number _ of _ prongs)
 (1) 

 
where: 

costvelocity are the cost metrics referring to table 1, 
aggregated over all nodes,  
costrotation are the cost metrics referring to table 2, 
aggregated over all nodes,   

4. GROUPING HELIXES costdeformation are the cost metrics referring to table 3, 
aggregated over all prongs, If the helixes in question are sufficiently similar, then it may be 

useful to group them together into a single entity and to express 
the behavior of their component objects with an “aggregate 
helix.”  The aggregate helix that is created could then be used 
for predictions about the future behavior of all polygons that 
begin in a similar way to the first few nodes and prongs of the 
aggregate (Figure 3).  The user can select the level of similarity 
that must be reached in order to justify this decision, with more 
detailed applications needing helixes with comparison values 
approaching zero.   

av, ar, ad, are the corresponding relative weights for 
each component, with av+ar+ad=1.  
  

In general, all types of MST cost metrics receive equal weight 
(av = ar = ad = 1/3).  It is possible for certain applications to put 
more emphasis on certain aspects than others (e.g. focusing on 
velocity variations more than rotations), and we can easily 
accommodate this by modifying the corresponding coefficients. 
The combined index Simr

c ranges between 0 and 2, with 0 
corresponding to a perfect match and 2 reflecting the highest 
possible dissimilarity. Lower values reflect better matches to a 
reference helix, and this information is used to rank the 
matching candidates according to their similarity to a reference 
helix. 

 

 

 
 
3.2 Quantitative Comparisons 

The other type of comparison is quantitative, with specific 
differences computed between the values of nodes and prongs.  
In this case, instead of a somewhat arbitrary value of “2” 
assigned to a pair of dissimilar nodes, the angle of acceleration 
and the angle of deceleration are compared by taking the 
absolute value of the difference between them.  Similar 
differences are found between angles of rotation and the 
magnitudes of expansion or contraction.  In this type of 
comparison, the following equation is utilized: 

Figure 3:  Aggregate helix as formed from individual helixes 
 

 

     (2) 

Simr
c = an (nr

i −∑ nc
j ) + ap ( pr

i −∑ pc
j ) + aq (qr

i −∑ qc
j ) +

+ar (rr
i −∑ rc

j ) + aa (ar
i −∑ ac

j )

When sufficiently low values are found, node and prong 
locations of the individual helixes can be averaged so that the 
new aggregate helix is a composite of the original helixes. 
Attributes that are associated with each node and prong can be 
calculated in a variety of ways, including averaging all values 
for each instance, looking for minimum or maximum value, or 
using categorical rules in order to choose the best value for a 
given application.  
  
When dealing with the aggregate helix that has been 
constructed, there may be instances when component helixes 
become sufficiently different over time and should be split from 
each other.  We can discover such instances by computing 
deviations of node/prong values from the aggregate average and 
splitting the helixes when a user specified threshold is crossed.  

where (nr
i-nc

j) expresses the Euclidean spatiotemporal 
distance among a reference and a corresponding 
candidate node, aggregated across all nodes, 

 (pr
i-pc

j) expresses the Euclidean spatiotemporal 
distance among a reference and a corresponding 
candidate prong, aggregated across all prongs, 

  (qr
i-qc

j) expresses the difference in velocity gradient 
or rotation among corresponding nodes, aggregated 
across all nodes, 

 



 

  5. HELIX GENERATION 

 

The spatiotemporal helix model is constructed in a four-step 
process, which will be detailed in this section: 1) find the center 
of mass for the object at each time instance, 2) detect changes 
in the object’s outline in each cardinality quadrant, 3) construct 
a self-organizing map (SOM) that picks out only those nodes 
which are necessary to generalize the object’s behavior and 
forms a “spine” for the helix, and 4) add information about 
outline changes to the spine with  “prongs” that show expansion 
or contraction.   
 
A 400x400 pixel grid has been utilized to create a synthetic 
dataset of five polygons, one in each frame.  The polygons in 
these frames represent snapshots in the evolution of an object or 
phenomenon over time.  Before reaching this stage, an object 
extraction procedure would need to be performed on our real-
world data, but this is outside the scope of the current paper.  
For more information on our relevant activities in object 
extraction, the reader is referred to (Agouris, Beard et al. 2000; 
Agouris, Stefanidis et al. 2001; Doucette, Agouris et al. 2001). 

Figure 7:  Object trajectories from initial (solid) 
and cleaned (dotted line) frames 

 
When a 9x9 median filter was applied to the noisy image, the 
number of erroneous DN=0 pixels was reduced dramatically 
(Figure 6 right).  Most of the pixels that are left are located 
around the edges of the frame, due to algorithm limitations.  In 
order to determine how the few remaining noisy pixels will 
effect the center of mass calculations, we mapped the initial 
trajectory of the object’s center of mass, and compared it to the 
center of mass after the noise removal procedure.  We found 
that there is nearly a one-to-one correspondence between these 
trajectories (Figure 7).  These results indicate that the procedure 
has been successful in removing noise. 

 

 
Figure 4: Five sample frames used for input in helix extraction 

 
 

 5.1 Center of Mass Extraction  
5.2 Cardinality Changes 

In the first stage of helix construction, the object’s center of 
mass is extracted and plotted on a three-dimensional grid.  Each 
asterisk indicates the location of the object at a given time 
instance.  In this example dataset, we assume that each of the 
frames used in this example was taken after a ten-minute delay.  
The first frame is thus linked to time t=10 and the fifth frame is 
linked to t=50.  In this first stage, a trajectory is also 
constructed by linking the centers of mass for each frame 
(Figure 5). 

The second stage divides the object into four quadrants, based 
on the cardinal directions of north, south, east, and west 
(assuming an orientation where north is towards the top of the 
frame). This is done for each frame, and the center of mass 
found in the first step is used as the origin for each division 
(Figure 8).  The object in frame n is then compared to the same 
object in frame n+1 in order to discover whether there has been 
an expansion or contraction during each time interval.  For 
instance, the object grows significantly between frames 2 and 3, 
and this leads to an increase in area for all four quadrants. This 
change will be quantified in the final step of helix construction, 
which is discussed later in this section. 

 

 

 

 
 

Figure 5:  Object’s center of mass and rough trajectory   
Figure 8:  Object divided into cardinality quadrants In order to test the robustness of this method under more 

realistic conditions, we added random noise to our images using 
Matlab’s “randerr” function, which introduces a user-selected 
number of nonzero elements into each row of a matrix.  We 
multiplied our original frames by these new matrices in order to 
create new noisy images (Figure 6 left). 

 
 
5.3 Self-Organizing Map Construction 

The third stage is concerned with construction of a Self-
Organizing Map (SOM) that generalizes the trajectory of the 
helix by picking out locations where changes such as rapid 
acceleration, deceleration, or rotation occur and marking them 
with nodes. A SOM is a neural network solution that organizes 
nodes into an ordered sequence through competitive learning 
(Kohonen 1997). In this example, the object is moving at a 
fairly uniform pace, so it does not experience much acceleration 
or deceleration. The major change is rotation, occurring most 
notably at frame 3, the apex of the object’s trajectory.   

 

   

Figure 6: Frame #5 before and after noise removal 



 

When we ask for a generalized picture of the spine with 4 nodes 
we can see that the nodes for frames 1 and 2 from Figure 5 are 
merged into a single intermediate node to save space (Figure 9).  
When we ask for 3 nodes, only frame 3 retains its original node.  
This decreases the number of nodes used to define the 
polygon’s location, and leads to a reduction in the amount of 
space needed to store this data while maintaining the most 
important characteristics of the object’s spatiotemporal 
behavior.  For more detailed information on our SOM work see 
(Kohonen 1982; Kohonen 1997; Doucette, Agouris et al. 2001). 
 
 

 
 

Figure 9:  SOMs constructed with 4 (L) and 3 (R) nodes 
 
 

5.4 Node Placement and Prong Information 

The final stage in helix construction is to move each extracted 
node to the closest position recorded in the frames and to add 
prong information. For example, when four nodes are extracted 
in the SOM process, three of the nodes are located at the 
object’s position in frames 3, 4, and 5. The fourth node is 
located between the object’s positions in frames 1 and 2, but is 
closer to that of frame 2 (Figure 9).  Thus, when constructing 
the helix, our algorithm places the final nodes in frames 2, 3, 4, 
and 5 (Figure 10 left).   
 
When examining the SOM of 3 nodes, we end up with final 
node placement in frames 1, 3, and 5 (Figure 10 right).  In our 
example, this would select frames from the original dataset, and 
use only them to define the placement of the polygon over time.  
It is more accurate than using the node placements from the 
third step, because it does not create interpolated positions, but 
uses locations that were already part of the dataset. 
 

 
 

Figure 10:  Complete helixes for 4(L) and 3(R) nodes with 
spines and prongs 

 
In addition to selecting the most important object instances that 
should be recorded in our database, the fourth stage in our helix 
construction process also compares changes in object expansion 
or contraction to a user-defined threshold.  In this example, the 
threshold has been set at 20%.  The largest change that was 
found in our example dataset occurs between frames 3 and 4, 
where there is a large reduction of area in the west quadrant and 
a smaller reduction in the east quadrant.  This is represented in 
our helixes by a long line emerging from the “west” side of the 
node at frame 4 and a shorter line on the “east” side of the same 

node.  This indicates that the polygon has undergone the most 
significant change in outline between these two frames. 
 
 

6. ADDITIONAL EXPERIMENTS 

In addition to these basic experiments in extracting helix 
information, we have tested the integrity of our calculations, as 
well as their performance speed.  For helix generation, 
constructed datasets of 700 frames and used differing user-
defined thresholds to determine the number of nodes and prongs 
that define the helix.  Figure 11 shows two helixes that were 
constructed during this phase.  Both have 17 nodes, but helix 
“a” has more prongs than helix “b.”  Their respective prong 
thresholds are 10% and 20%. 
 
 

  
 

Figure 11: Helixes constructed from differing thresholds 
 

In order to determine the usefulness of our prongs in 
reconstructing an object at any given time instance, we used 
only the image of the object at t=0 sec, and modified the initial 
object outline using only the expansions and contractions as 
indicated by the prong magnitudes and angles.  We then 
compared these results to the actual object boundaries in frame 
700.  We found that with our dataset, we were able to 
reconstruct the object with 83% accuracy when using a prong 
threshold of 20% and with around 94% accuracy when using 
any prong threshold below 15%.  There seems to be a level of 
prong definition beyond which no additional benefit is gained 
in storing the extra information.  See (Stefanidis, Eickhorst et 
al. 2003) for a more detailed discussion of this topic. 
 
Another type of experiment that we conducted involves the 
computation of similarity indices using the metrics discussed in 
section 3.  We created a dataset of 100 helixes, comprising an 
average of 19 nodes and 7 prongs each, and used both the 
abstract and quantitative metrics to compare each helix to the 
larger pool of candidate helixes.  We noted the time that it took 
to run each of these queries, and found that the abstract query 
averaged 2 seconds to run, while the more intensive quantitative 
query took 4 seconds.  These are very encouraging results as 
many applications in the geospatial realm are large-scale efforts 
where computational times are of the utmost importance. 
 
 

7. FUTURE DIRECTIONS 

We are currently exploring various ways to visualize node and 
prong values with colors, various levels of shading, fuzziness, 
or other overlays. This information is intended to supplement 
the quantitative values of the helix components, to support 
quick decision-making though visual analysis. For instance, if 
one wanted to be visually alerted to nodes where accelerations 



 

occur rapidly, such nodes can be identified using red (or other 
bright colors). If accuracy metadata are also available, this 
could be expressed in the relative crispness or fuzziness of the 
node and prong representations (Pang, Wittenbrink et al. 1997). 
These future extensions of our model are expected to be useful 
in alerting users to potential situations where merging or 
splitting helixes might be helpful. 
 
In addition to visual representations of helixes, we are also 
working on utilizing aggregation and splitting techniques when 
dealing with text and other data formats that may be associated 
with the helixes. These formats can complement and enhance 
the helixes. As an example, we might have metadata about 
accuracy. The level of metadata that deals with specific 
horizontal and vertical accuracies of angles is quite detailed. 
The FGDC lists a set of standard metadata that is set up in a 
hierarchical fashion. By exploiting this construction we can 
gradually zoom in to the level of detail that is required, both 
within the data itself and within the corresponding metadata 
(Eickhorst 2002; Eickhorst and Agouris 2002). Thus, the user 
would not need to actually see metadata on accuracy or fuzzy 
visualizations until a very detailed view of the helix itself is 
desired. Integrating this capability into our helix model is a 
future goal of our research. 
 
 

8. CONCLUSIONS 

Spatiotemporal helixes represent a new and promising theory 
for modelling and analyzing change in geospatial applications 
and other large-scale data-intensive projects in various fields. In 
this paper, we have presented our work on the theories of 
helixes and similarity metrics, and have given examples of how 
these theories can be implemented.  We have presented 
examples of the experiments being conducted to test the 
robustness of our methods.  Finally, we discussed some new 
directions that we are currently pursuing. These extensions will 
result in the development of a comprehensive model that will 
support users querying on object behaviour over time, using an 
easily understandable interface.   
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