
A GIS DATABASE FOR TIME-EVOLVING SPATIAL OBJECTS

Dae-Soo Cho, In-Sung Jang, Kyoung-Wook Min, Jong-Hyun Park

LBS Research Team, Telematics Research Division, ETRI, 161 Gajeong-dong, Yuseong-gu, Daejeon, 305-600 Korea - (junest,

e4dol2, kwmin92, jhp)@etri.re.kr

KEY WORDS: Spatial Information Sciences, Databases, Modelling, Query, GIS

ABSTRACT:

In this paper, we have designed a data model for moving objects and implemented it. The moving objects are time-evolving spatial
objects, that is, their geometries are dynamically changed as time varies. Generally, a GIS database stores and manages the spatial
objects, of which geometries are rarely changed. The traditional GIS database, therefore, has a difficulty to manage the moving
objects, due to the fact of geometries being frequently changed and all of the history information of moving objects being managed.
To manage moving objects efficiently, we have added new data types, such as moving point and moving polygon, to the traditional
GIS data type. We have also defined the semantic of underlying operators for those data types. It is expected that the GIS database
we have developed makes it feasible to developing a wide range of database applications managing moving objects, such as cars,
aircraft, ships, mobile phone user, hurricanes, oil spills in the sea, forest fires, armies, and tribes of people in history.

1. INTRODUCTION

Recently, various types of location-based services have obtained
increasingly high attention according to the extensive spread of
mobile handset, which is capable of accessing wireless internet,
and the development of location determination technology, that
is represented by GPS (Global Positioning System). Location-
based services are related the moving objects which change
their locations through time. Therefore, to provide location-
based services efficiently, it is required that an efficient system
which could acquire, store, and query the large number of
locations. The time-evolving locations of moving objects are
not efficiently managed by existing commercial Database
Management System (DBMS) as well as Geographic
Information System (GIS). The reason is that there is a critical
set of capabilities that are needed by moving objects database
applications (Wolfson et al., 1998), such as location-based
services, and are lacking in existing DBMS and GIS. The
needed capabilities are location data model for moving objects,
query language for moving objects, location index for moving
objects, and so on.

Previous works for moving objects can be classified into two
main groups; works related to location data models and query
languages (Sistla et al., 1997; Forlizzi et al., 2000; Wolfson et
al. 1998; Güting et al., 2000) and works related to indexing
locations (Pfoser et al., 2000; Kollios et al., 1999; Nascimento
and Silva, 1998; Vazirgiannis et al., 1998; Song and
Roussopoulos, 1987). These works, also, can be classified by
works for current and future locations (Sistla et al., 1997;
Kollios et al., 1999; Wolfson et al. 1998; Song and
Roussopoulos, 1987) and works for trajectories (past locations)
of moving objects(Pfoser et al., 2000; Forlizzi et al., 2000;
Nascimento and Silva, 1998; Vazirgiannis et al., 1998; Güting
et al., 2000). Other type of previous works to is related to
generate synthetic data (Pfoser and Theodoridis, 2000;
Theodoridis et al., 1999; IBM). Location data generator, which
is capable of simulating real-world moving objects, are needed
because it is not possible to obtain real datasets, either they do
not exist or they are not accessible.

The purpose of this paper is to design and implement the overall
architecture of a Moving Objects Database (MODB) which is
applicable to the real-world applications. We have integrated
various kinds of works related to moving objects into the
MODB. The rest of the paper is organized as follows: Firstly,
we will discuss the overall architecture of MODB. Then, we
will explain each of six modules of which the system consists.
Finally, we will conclude by giving directions for future work.

2. OVERALL ARCHITECUTRE OF MODB

The Moving Objects Database (MODB) devised in this paper is
depicted by Figure 1. It is composed of six modules, Intelligent
(location) Acquisition Module (IAM), a Query Processing
Module (QPM), a Buffer Management Module (BMM), a
Location Indexing Module (LIM), a Location Storage Module
(LSM), and an Attribute Storage Module (ASM).

Intelligent Acquisition Module (IAM): According to the
location acquisition policies we are proposed such as static
acquisition policy, distance-based acquisition policy, region-
based acquisition policy, and predict-based acquisition policy,
IAM acquires the current location of moving objects and reports
it into the QPM. The policies determine when IAM acquires the
location of a moving object and how many threads IAM uses to
acquire the locations of all objects. The objective of IAM is as
follows. When location based services prevail into the wireless
internet applications; we can easily predict that transmission
overhead is so heavy to acquire the locations of large
subscribers and vehicles between MODB and location server.
To solve this problem, MODB must support IAM that lessens
transmission overhead as much as possible and guarantees
stable system state. So, we have proposed the techniques of
minimizing overheads of transmission in acquiring locations of
so many moving objects.

Query Processing Module (QPM): First of all, we defined
query interfaces to issue user’s request. Also, we defined the
moving objects model, which is composed of data structures
and operations to represent the moving objects. User’s request

issued by query interfaces are executed by QPM based on a
moving objects model.

Buffer Management Module (BMM): Because of high cost of
insert transaction, it is difficult for the LSM to process every
requests of location insertion from QPM directly. This is the
reason why BMM exists. We designed every requests
transferred from QPM into LSM through BMM. BMM do not
issue insert request to LSM immediately. Instead, it maintains a
memory buffer to gather insertion requests for a specific period,
and issue one insertion request to LSM.

Figure 1. Overall Architecture of Moving Objects Database

Location Indexing Module (LIM): To efficiently search
moving objects with some spatio-temporal predicates, MODB
should have dedicated indexes for moving objects. LIM could
manage several indexes by the Time Segmented Indexing
method, which is newly devised in this paper.

Location Storage Module (LSM): Location information that is
reported from IAM is permanently stored into location storage
managed by LSM through the memory buffer (temporary
storage).

Attribute Storage Module (ASM): The traditional database
systems, such as MS SQL Server or Oracle, are used to store the
attributes of moving objects without any additional efforts. We,
therefore, have no comment about ASM especially.

We will give detail explanation about each module except IAM
and ASM in the following sections.

3. QUERY PROCESSING MODULE (QPM)

The Query Processing Module should define location data
model and location query language for the moving objects. The
location data model means data structure and operations for the
moving objects. In this paper, we revised the previous works,
and newly defined a data model, which is composed of a lot of

classes such as MPoint, MLineString, and MPolygon. In this
paper, we focus on MPoint.

3.1 Moving Objects Data Model

In this section, we describe class model for moving objects
components using UML. This supports time-series operations as
well as continuous moving objects operations.

(1) Data Model

Class package for moving objects components (see Figure2)
consists of four major components. ETRITime, ETRIGeometry,
and ETRIMGeometry component is a set of classes supporting
temporal operations, spatial operations, and moving objects
operations, respectively. OGISGeometry component which is
very similar to ETRIGeometry component is just included in
our package design, because we had already implemented it for
another project.

Figure 2. Class Package for Moving Objects Components

As shown in figure 3, ETRITime component has four types of
temporal classes. These classes have interfaces such as
ITemporal, ITemporalRelation, and ITmporalOperator. Each
interface consists of several operations such as figure 4.

Figure 3. Temporal Classes

Figure 4. Temporal Operations

ETRIGeometry component has several geometry classes such as
Point, LineString, Polygon, GeometryCollection, Surface, and
et al. UML modeling for these classes is borrowed from that of
International Standard of Open GIS Consortium for geographic

information system (Open GIS, 1999). We omit, therefore, the
class hierarchy and operations in this paper.

Figure 5 and Figure 6 show the classes for moving objects and
the operations of some of major interfaces, respectively.

Figure 5. Moving Objects Classes

Figure 6. Moving Objects Operations

A characteristic of operations included in ITimeSeries interfaces
is the target of operation. It is not location information of
moving points at any time operated but real location data stored
in database. For example, the First(int k) operation returns k-th
location information from first value of moving point, and the
After(MOInstance currentTime) operation returns similarly the
nearest location information after currentTime in parameter.

The operations of IMoving interface are different from those of
ITimeSeries interface. IMoving interface provides functions of
calculating location information at all time. For example, the
Snapshot(Instant instantTime) returns location information of

moving object in instantTime, and Slice(Instant fromTime,
Instant toTime) which has period parameter returns moving
object between given time period. The Project() returns value
objects projected by time.

3.2 Moving Object Query Language

We also revised the SQL syntax to support moving object
described in section 3.1. We add some data type to present
moving object data model (see Figure 7).

Figure 7. Data Types for Moving Object Query Language

In this section, we just describe some DML statements by
examples. Base tables for all of the queries in this section are
assumed as follows.

CelluarPhoneUser (id MOID, position MPoint)
Car (id MOID, poistion MPoint, type string)
People (id MOID, location MPoint, name string)
Region (id MOID, area MPolygon, name string)

(1) Snapshot Queries

In this section, the snapshot queries for moving objects are
described. The snapshot query is usually used to search the
locations of specific time.

Example 1: Find the current location of cellular phone user
1001 at time t.
Select Project (Snapshot (position, t))
From CelluarPhoneUser
Where id = 1001;

Example 2: Find the information on the moving object at point
(x,y) at time t.
Select *
From CelluarPhoneUser
Where Equals (Snapshot (position, t), Point (10, 20)) = TRUE;

Example 3: Find 911 cars in Daejeon now.
Select id
From Car, Region
Where Contains (Snapshot (Car.position, NOW), Region.area)
= TRUE AND Region.name = 'Daejoen';

Example 4: Find taxis within 1km from point(x, y) now.
Select id
From Car, Region
Where Withins (Snapshot (position, NOW), Buffer (MPoint
(NOW, x, y), 1000)) = TRUE AND Car.type = 'Taxis';

Example 5: Find the closest k delivery trucks to the point(x, y)
now.
Select id
From Car

Where Nearest (Snapshot (position, NOW), Point (x, y), k) =
TRUE

(2) Slice Queries

In this section, we show the example of the slice queries for
moving objects. The slice query requires the period parameter
as follows.

Example 6: Find the location of cellular phone user 1001
between time t1 and t2.
Select Project (Slice (location, t1, t2))
From People
Where id = 1001;

Example 7: Find people who were within 1km from point (x, y)
between time t1 and t2.
Select id
From People
Where Withins (Slice (location, t1, t2), Buffer (MPoint (t1, t2, x,
y), 1000)) = TRUE;

Example 8: Find k people who were closest to the point (x, y)
time t1 and t2.
Select id
From People
Where Nearest (Slice (location, t1, t2), Point (x, y), 1) = TRUE;

(3) Trajectory Query

Trajectory query include the operations such as Enter(), Leave(),
Passes(), Insides(), Meets().

Example 9: Find people who were (at least once) in Daejeon
between time t1 and t2.
Select id
From People, Region
Where Passes (Slice (location, t1, t2), Region.area) = TRUE
AND Region.name = 'Daejeon';

4. BUFFER MANAGEMENT MODULE (BMM)

The BMM plays an important role in enhancing the
performance of the query of location insertion. Locations of
moving objects are permanently stored into various types of
database systems by LSM. In this environment, it is difficult for
LSM to process every insertion request from QPM, because the
cost of insertion transaction is very high in database system and
insertion requests from QPM occurs very frequently. Therefore,
buffering of insertion request and batch processing are very
effective.

Another role of BMM is that when QPM issues a search request
BMM searches moving objects in the memory buffer, transfer
the request into LSM, and then bind the results from the
memory buffer and those from permanent storage.

4.1 MORow Object

BMM stores locations of a moving object into a MORow object
for insertion request from QPM. There is one-to-one
relationship between a moving object and a MORow object.
Therefore, a MORow object take a responsibility for buffering
locations of a corresponding moving object. MORow object
depicted in Figure 8 is composed of MOID (Moving Object

IDentifier), Length (the number of locations stored in it), MBR
(Minimum Bounding Rectangle of the locations), From (time
that first location in it is acquired) and To (time that last
location in it is acquired). The MaxLocation means the
maximum number of locations stored in a MORow object. If the
Length of a MORow Object is equal to the MaxLocation, then
all of the locations in the MORow object are transferred to LSM
in order to store permanently.

Figure 8. Structure of Memory Buffer

4.2 Memory Buffer

The overall structure of memory buffer is composed of a set of
MORow objects. Each MORow object represents a trajectory of
a moving object from From time to To time. As the figure
indicates, there is a B-tree for indexing MOIDs of MORow
objects. The BMM, therefore, finds efficiently a corresponding
MORow object by using MOID.

5. LOCATION INDEXING MODULE (LIM)

According to the previous works (Pfoser et al., 2000; Kollios et
al., 1999; Nascimento and Silva, 1998; Vazirgiannis et al.,
1998; Song and Roussopoulos, 1987), there are three kinds of
location indexes for moving objects.

Current Location Indexes: The indexes of this type take only
current locations of continuously moving objects into
consideration. And current locations are also used for
anticipating future locations of moving objects. These indexes
should have capabilities to process frequently updates of
numerous moving objects.

Past Location Indexes for time interval (or time point) queries:
The indexes, such as 3DR-tree and HR-tree, have a special
purpose of efficient processing of a time interval (or time point)
queries for the current and past locations.

Past Location Indexes for trajectory queries: The indexes, such
as STR-tree and TB-tree, have a special purpose of efficient
processing of a trajectory queries for the past locations.

LIM we implemented in this paper supports all kinds of indexes
mentioned above. We implemented Adaptive Quad-tree (show
Figure 9) as current location index. This index partitioned

spaces into sub-space, and then maintains a quad-tree for each
sub-space.

We also implemented TB-tree, STR-tree, 3DR-tree, and HR-
tree as past location indexes. But these trees for indexing past
locations of moving objects are not applied in real world
applications due to the problems described in following section.

Query
Interface

Management
Interface

���

������

���

���	
����

���

���	
����

������

������

���	
�
��
���

���	
���
����
������

������

���	

���������������	

����������	

��

������

������

���	
���
���

��		�������������
� �����	

��	���������
 	��

Query
Interface

Management
Interface

���

������

���

������

���

���	
����

���

���	
����

���

���	
����

���

���	
����

������

������

���	
�
��
���

���	
���
����
������

������

���	

���������������	

����������	

��

������

������

���	
���
���

��		�������������
� �����	

��	���������
 	��

Figure 9. Current Location Indexes (Adaptive Quad-Tree)

5.1 Problems in Whole Indexing Method

The whole indexing method means that a tree is used to index
all of the locations (including past locations) of moving objects.
Figure 10 shows the whole indexing method. Most of past
location indexes are based on R-tree, and therefore, are height-
balanced trees.

� as time goes

� increasing the depth of tree

INSERT SEARCH DELETE

single tree during the

entire time interval

� the performance worse

Figure 10. Whole Indexing Method

In whole indexing method, all of the locations of moving
objects are managed by single tree during entire time interval.
As shown in Figure 10, � as time goes, � increasing the depth
of tree, makes � the performance of INSERT and SEARCH
operation worse.

Another problem is about the DELETE operation. The
DELETE operation of R-tree variables requires the
reorganization of the tree, if the number of entries of node N,
which contained the deleted entry, is less than the minimum
number (m) of entries. Because the reorganization of the tree
requires the deletion and re-insertion of m-1 entries, DELETE is
costly operation in this environment. Therefore, the deletion of
entries during a specific time period, which is probably usable
operation of managing the moving objects, is hardly performed.
Architecture of Time Segmented Indexing Method

� as time goes

� uniform depth of TSI

INSERT SEARCH DELETE

According to each period,

a time segmented index(TSI) is maintained

���� � �� � ��� �	
 � � �
 �� �
 ��� �� � �
 ��

TSI Manager

Insert M
anager

Search M
anager

D
elete M

anager

INITIALIZE

Index Types

Division Strategies

TB, STR, …

Time, Space, …

Virtual Index

((shown as single

tree from outside)
TB

Time

Figure 11. Time Segmented Indexing Method
(Time Division Framework)

To solve the above problems, we revised the indexing
framework (called Time Division Framework), which could be
applicable regardless of the types of past location indexes.
Figure 11 shows the overall architecture of time segmented
indexing method. In this framework, an index tree is segmented
into several TSIs (Time Segmented Index), but these TSIs
compose a virtual index, which is shown as single tree from
outside. A virtual index has also TSI manager, INSERT
manager, SEARCH manager, and DELETE manager. Due to
the space limitation, we do not explain the detail operations of
the virtual index and the strategies of time segmentation.

6. LOCATION STORAGE MODULE (LSM)

The role of Location Storage Module (LSM) is to insert and
search the locations of moving objects in efficient. As shown in
Figure 12, LSM consists of a storage manager, a server manager,
a connection manager, a disk manager and storage drivers.

Figure 12. Location Storage Module

The Storage Manager has two main operations, INSERT and
SEARCH, which are usually called by BMM. When BMM
issues INSERT or SEARCH, the Storage Manager looks for a
suitable storage system by referencing the Connect Manager
and the Server Manager. Then, it calls INSERT and SEARCH
of the storage driver, which is corresponded with the storage
system.

The Server Manager maintains the registered storage drivers for
balancing the loads of INSERT operations. That is, it checks the
status of storage system corresponding with the storage driver,
and then informs the Storage Manager which storage system is
most available to execute INSERT operations.

The Connection Manager manages the distributed-index
database that contains where locations are in distributed
environment. When Storage Manager inserts locations into
storage system through storage driver by issuing INSERT
operation, Connection Manager inserts metadata into
distributed-index database. In case of SEARCH operation, a
Connection Manager looks up the servers in distributed-index
database, and returns the list of relevant server information to
Storage Manager.

The Disk Manager examines periodically storage systems, such
as Oracle, MS-SQL Server, ZEUS, or etc., which are registered
on Server Manager. When it detects one of the storage systems
full, it prohibits Storage Manager from inserting into the storage
system. Storage Manager, however, could access the storage
system for the purpose of retrieving locations. Disk Manager
also provides system administrator with several utilities, such as
IMPORT, EXPORT, BACKUP and RESTORE.

The Storage Driver inserts locations of moving objects into
corresponding storage system and search locations with specific
predicates.

7. CONCLUSION

In this paper, we have designed the moving objects database for
a large number of moving objects. And we have also
implemented moving object components and SQL processing
system on Microsoft Windows .Net Environment using C#. We
integrated various kinds of works related to moving objects into
one system, and newly proposed a data model for moving
objects, a location query language, an indexing framework, and
a method for storing moving objects. The system we proposed
supports a diverse set of location acquisition policies, location
indexes and location storages. Therefore, it is expected to be
applied into various kinds of location based services practically.

As future work, we should make extensive experiments with
real environments to measure the performance of MODB, and
develop algorithms to enhance the performance of location
query processing.

REFERENCES

Beckmann, N., and Kriegel, H. P., 1990. “The R*-tree: An
Efficient and Robust Access Method for Points and
Rectangles,” In Proc. ACM SIGMOD, pp. 332-331.

Erwig, M., Guiting, R. H., Schneider, M., and Vazirgiannis, M.,
1999. “Spatio-Temporal Data Types : An Approach to
Modeling and Querying Moving Obejct in Databases,” GeoIn-
fomatica, Vol.3, No.3, pp.269-296.

Forlizzi, L., Güting, R. H., Nardelli, E., and Schneider, M.,
2000. “A Data Model and Data Structures for Moving Objects
Databases,” Proc. ACM SIGMOD Conf. (Dallas, Texas), pp.
319-330.

Güting, R. H., Böhlen, M. H., Erwig, M., Jensen, C. S.,
Lorentzos, N. A., Schneider, M., and Vazirgiannis, M., 1998.
“A Foundation for Representing and Querying Moving
Objects,” Fern Universität Hagen, Informatik-Report 238,
September 1998, ACM Transactions on Database Systems,
25(1), pp. 1-42.

Guttman, A., 1984. “R-trees: A dynamic index structure for
spatial searching,” ACM SIGMOD Conference, pp. 47-54.

IBM, http://www.alphaworks.ibm.com/tech/citysimulator
(accessed 29 Apr. 2004)

Jensen, C. S., Friis-Christensen, A., Pedersen, T. B., Pfoser, D.,
Saltenis, S., and Tryfona, N., 2001. “Location-Based Services -
A Database Perspective,”' Proceedings of the Eighth
Scandinavian Research Conference on Geographical
Information Science, As, Norway, June 25-27, pp. 59-68.

Kollios, G., Gunopulos, D., and Tsotras, V. J., 1999. “On
Indexing Mobile Objects,” ACM Symposium on Principles of
Database Systems, pp. 261-272.

Nascimento M. A., and Silva, J. R. O., 1998. “Towards
historical R-trees,” ACM SAC.

Pfoser, D., and Theodoridis, Y., 2000. “Generating Semantics-
Based Trajectories of Moving Objects,” International Workshop
on Emerging Technologies for Geo-Based Applications, Ascona,
Switzerland.

Pfoser, D., Jensen, C. S., and Theodoridis, Y., 2000. “Novel
Approaches in Query Processing for Moving Object
Trajectories,” VLDB 2000, pp. 395-406.

Sistla, A. P., Wolfson, O., Chamberlain, S., and Dao, S., 1997.
“Modeling and Querying Moving Objects,” ICDE, pp. 422-432.

Song, Z., and Roussopoulos, N., 2001. “Hashing Moving
Objects,” MDM 2001, LNCS 1987, pp. 161-17.

Tao, Y. and Papadias, D., 2001. “MV3R-Tree: A Spatio-
Temporal Access Method for Timestamp and Interval Queries,”
VLDB.

Theodoridis, Y., Silva, J. R. O., and Naschimento, M. A., 1999.
“On the Generation of Spatiotemporal Datasets,”
CHOROCHRONOS Technical Report CH-99-01, Proceedings
of the 16th Int’l Symposium on Spatial Databases (SSD).

Vazirgiannis, M., Theodoridis, Y., and Sellis, T. K., 1998.
“Spatio-Temporal Composition and Indexing for Large
Multimedia Applications,” Multimedia Systems 6(4), pp. 284-
298.

Wolfson, O., Xu, B., Chamberlain, S., and Jiang, L., 1998.
“Moving Objects Databases: Issues and Solutions,” SSDBM
1998, pp. 111-122.

Wolfson, O., Chamberlain, B. X. S., Sistla, P., Xu, B., and
Zhou, X., 1999. “DOMINO: Databases fOr MovINg Objects
tracking,” ACM International Conference on SIGMOD , pp.
547-549.

Wolfson, O., Jiang, L. A., Sistla, P., Chamberlain, S., and Deng,
M., 1999. “Databases for Tracking Mobile Units in Real Time,”
International Conference on Database Theory, pp.169-186.

