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ABSTRACT: 
 
In this paper, we have designed a data model for moving objects and implemented it. The moving objects are time-evolving spatial 
objects, that is, their geometries are dynamically changed as time varies. Generally, a GIS database stores and manages the spatial 
objects, of which geometries are rarely changed. The traditional GIS database, therefore, has a difficulty to manage the moving 
objects, due to the fact of geometries being frequently changed and all of the history information of moving objects being managed. 
To manage moving objects efficiently, we have added new data types, such as moving point and moving polygon, to the traditional 
GIS data type. We have also defined the semantic of underlying operators for those data types. It is expected that the GIS database 
we have developed makes it feasible to developing a wide range of database applications managing moving objects, such as cars, 
aircraft, ships, mobile phone user, hurricanes, oil spills in the sea, forest fires, armies, and tribes of people in history. 
 
 

1. INTRODUCTION 

Recently, various types of location-based services have obtained 
increasingly high attention according to the extensive spread of 
mobile handset, which is capable of accessing wireless internet, 
and the development of location determination technology, that 
is represented by GPS (Global Positioning System). Location-
based services are related the moving objects which change 
their locations through time. Therefore, to provide location-
based services efficiently, it is required that an efficient system 
which could acquire, store, and query the large number of 
locations. The time-evolving locations of moving objects are 
not efficiently managed by existing commercial Database 
Management System (DBMS) as well as Geographic 
Information System (GIS). The reason is that there is a critical 
set of capabilities that are needed by moving objects database 
applications (Wolfson et al., 1998), such as location-based 
services, and are lacking in existing DBMS and GIS. The 
needed capabilities are location data model for moving objects, 
query language for moving objects, location index for moving 
objects, and so on. 
 
Previous works for moving objects can be classified into two 
main groups; works related to location data models and query 
languages (Sistla et al., 1997; Forlizzi et al., 2000; Wolfson et 
al. 1998; Güting  et al., 2000) and works related to indexing 
locations (Pfoser et al., 2000; Kollios et al., 1999; Nascimento 
and Silva, 1998; Vazirgiannis et al., 1998; Song and 
Roussopoulos, 1987). These works, also, can be classified by 
works for current and future locations (Sistla et al., 1997; 
Kollios et al., 1999; Wolfson et al. 1998; Song and 
Roussopoulos, 1987) and works for trajectories (past locations) 
of moving objects(Pfoser et al., 2000; Forlizzi et al., 2000; 
Nascimento and Silva, 1998; Vazirgiannis et al., 1998; Güting  
et al., 2000). Other type of previous works to is related to 
generate synthetic data (Pfoser and Theodoridis, 2000; 
Theodoridis et al., 1999; IBM). Location data generator, which 
is capable of simulating real-world moving objects, are needed 
because it is not possible to obtain real datasets, either they do 
not exist or they are not accessible. 
 

The purpose of this paper is to design and implement the overall 
architecture of a Moving Objects Database (MODB) which is 
applicable to the real-world applications. We have integrated 
various kinds of works related to moving objects into the 
MODB. The rest of the paper is organized as follows: Firstly, 
we will discuss the overall architecture of MODB. Then, we 
will explain each of six modules of which the system consists. 
Finally, we will conclude by giving directions for future work. 
 
 

2. OVERALL ARCHITECUTRE OF MODB 

The Moving Objects Database (MODB) devised in this paper is 
depicted by Figure 1. It is composed of six modules, Intelligent 
(location) Acquisition Module (IAM), a Query Processing 
Module (QPM), a Buffer Management Module (BMM), a 
Location Indexing Module (LIM), a Location Storage Module 
(LSM), and an Attribute Storage Module (ASM). 
 
Intelligent Acquisition Module (IAM): According to the 
location acquisition policies we are proposed such as static 
acquisition policy, distance-based acquisition policy, region-
based acquisition policy, and predict-based acquisition policy, 
IAM acquires the current location of moving objects and reports 
it into the QPM. The policies determine when IAM acquires the 
location of a moving object and how many threads IAM uses to 
acquire the locations of all objects. The objective of IAM is as 
follows. When location based services prevail into the wireless 
internet applications; we can easily predict that transmission 
overhead is so heavy to acquire the locations of large 
subscribers and vehicles between MODB and location server. 
To solve this problem, MODB must support IAM that lessens 
transmission overhead as much as possible and guarantees 
stable system state. So, we have proposed the techniques of 
minimizing overheads of transmission in acquiring locations of 
so many moving objects. 
 
Query Processing Module (QPM): First of all, we defined 
query interfaces to issue user’s request. Also, we defined the 
moving objects model, which is composed of data structures 
and operations to represent the moving objects. User’s request 



 

issued by query interfaces are executed by QPM based on a 
moving objects model. 
 
Buffer Management Module (BMM): Because of high cost of 
insert transaction, it is difficult for the LSM to process every 
requests of location insertion from QPM directly. This is the 
reason why BMM exists. We designed every requests 
transferred from QPM into LSM through BMM. BMM do not 
issue insert request to LSM immediately. Instead, it maintains a 
memory buffer to gather insertion requests for a specific period, 
and issue one insertion request to LSM. 
 

 
 

Figure 1. Overall Architecture of Moving Objects Database 
 
Location Indexing Module (LIM): To efficiently search 
moving objects with some spatio-temporal predicates, MODB 
should have dedicated indexes for moving objects. LIM could 
manage several indexes by the Time Segmented Indexing 
method, which is newly devised in this paper. 
 
Location Storage Module (LSM): Location information that is 
reported from IAM is permanently stored into location storage 
managed by LSM through the memory buffer (temporary 
storage). 
 
Attribute Storage Module (ASM): The traditional database 
systems, such as MS SQL Server or Oracle, are used to store the 
attributes of moving objects without any additional efforts. We, 
therefore, have no comment about ASM especially. 
 
We will give detail explanation about each module except IAM 
and ASM in the following sections.  
 
 

3. QUERY PROCESSING MODULE (QPM) 

The Query Processing Module should define location data 
model and location query language for the moving objects. The 
location data model means data structure and operations for the 
moving objects. In this paper, we revised the previous works, 
and newly defined a data model, which is composed of a lot of 

classes such as MPoint, MLineString, and MPolygon. In this 
paper, we focus on MPoint. 
 
3.1 Moving Objects Data Model 

In this section, we describe class model for moving objects 
components using UML. This supports time-series operations as 
well as continuous moving objects operations. 
 
(1) Data Model 
 
Class package for moving objects components (see Figure2) 
consists of four major components. ETRITime, ETRIGeometry, 
and ETRIMGeometry component is a set of classes supporting 
temporal operations, spatial operations, and moving objects 
operations, respectively. OGISGeometry component which is 
very similar to ETRIGeometry component is just included in 
our package design, because we had already implemented it for 
another project. 
 

 
 

Figure 2. Class Package for Moving Objects Components 
 
As shown in figure 3, ETRITime component has four types of 
temporal classes. These classes have interfaces such as 
ITemporal, ITemporalRelation, and ITmporalOperator. Each 
interface consists of several operations such as figure 4. 
  

 
 

Figure 3. Temporal Classes 
 

 
 

Figure 4. Temporal Operations 
 
ETRIGeometry component has several geometry classes such as 
Point, LineString, Polygon, GeometryCollection, Surface, and 
et al. UML modeling for these classes is borrowed from that of 
International Standard of Open GIS Consortium for geographic 



 

information system (Open GIS, 1999). We omit, therefore, the 
class hierarchy and operations in this paper. 
 
Figure 5 and Figure 6 show the classes for moving objects and 
the operations of some of major interfaces, respectively.  
  

 
 

Figure 5. Moving Objects Classes 
 

 
 

Figure 6. Moving Objects Operations 
 
A characteristic of operations included in ITimeSeries interfaces 
is the target of operation. It is not location information of 
moving points at any time operated but real location data stored 
in database. For example, the First(int k) operation returns k-th 
location information from first value of moving point, and the 
After(MOInstance currentTime) operation returns similarly the 
nearest location information after currentTime in parameter. 
 
The operations of IMoving interface are different from those of 
ITimeSeries interface. IMoving interface provides functions of 
calculating location information at all time. For example, the 
Snapshot(Instant instantTime) returns location information of 

moving object in instantTime, and Slice(Instant fromTime, 
Instant toTime) which has period parameter returns moving 
object between given time period. The Project() returns value 
objects projected by time. 
 
3.2 Moving Object Query Language 

We also revised the SQL syntax to support moving object 
described in section 3.1. We add some data type to present 
moving object data model (see Figure 7).  
 

 
 

Figure 7. Data Types for Moving Object Query Language 
 
In this section, we just describe some DML statements by 
examples. Base tables for all of the queries in this section are 
assumed as follows. 
 

CelluarPhoneUser ( id MOID, position MPoint )  
Car ( id MOID, poistion MPoint, type string )  
People ( id MOID, location MPoint, name string)  
Region ( id MOID, area MPolygon, name string) 

 
(1) Snapshot Queries 
 
In this section, the snapshot queries for moving objects are 
described. The snapshot query is usually used to search the 
locations of specific time. 
 
Example 1: Find the current location of cellular phone user 
1001 at time t. 
Select Project (Snapshot (position, t)) 
From CelluarPhoneUser 
Where id = 1001; 
 
Example 2: Find the information on the moving object at point 
(x,y) at time t. 
Select * 
From CelluarPhoneUser 
Where Equals (Snapshot (position, t), Point (10, 20)) = TRUE; 
 
Example 3:  Find 911 cars in Daejeon now. 
Select id 
From Car, Region 
Where Contains (Snapshot (Car.position, NOW), Region.area) 
= TRUE AND Region.name = 'Daejoen'; 
 
Example 4:  Find taxis within 1km from point(x, y) now. 
Select id 
From Car, Region 
Where Withins (Snapshot (position, NOW), Buffer (MPoint 
(NOW, x, y), 1000)) = TRUE AND Car.type = 'Taxis'; 
 
Example 5: Find the closest k delivery trucks to the point(x, y) 
now. 
Select id 
From Car 



 

Where Nearest (Snapshot (position, NOW), Point (x, y), k) = 
TRUE 
 
(2) Slice Queries 
 
In this section, we show the example of the slice queries for 
moving objects. The slice query requires the period parameter 
as follows. 
 
Example 6: Find the location of cellular phone user 1001 
between time t1 and t2. 
Select Project (Slice (location, t1, t2)) 
From People 
Where id = 1001; 
 
Example 7: Find people who were within 1km from point (x, y) 
between time t1 and t2. 
Select id 
From People 
Where Withins (Slice (location, t1, t2), Buffer (MPoint (t1, t2, x, 
y), 1000)) = TRUE; 
 
Example 8: Find k people who were closest to the point (x, y) 
time t1 and t2. 
Select id 
From People 
Where Nearest (Slice (location, t1, t2), Point (x, y), 1) = TRUE; 
 
(3) Trajectory Query 
 
Trajectory query include the operations such as Enter(), Leave(), 
Passes(), Insides(), Meets().  
 
Example 9: Find people who were (at least once) in Daejeon 
between time t1 and t2. 
Select id 
From People, Region 
Where Passes (Slice (location, t1, t2), Region.area ) = TRUE  
AND Region.name = 'Daejeon'; 
 
 

4. BUFFER MANAGEMENT MODULE (BMM) 

The BMM plays an important role in enhancing the 
performance of the query of location insertion. Locations of 
moving objects are permanently stored into various types of 
database systems by LSM. In this environment, it is difficult for 
LSM to process every insertion request from QPM, because the 
cost of insertion transaction is very high in database system and 
insertion requests from QPM occurs very frequently. Therefore, 
buffering of insertion request and batch processing are very 
effective. 
 
Another role of BMM is that when QPM issues a search request 
BMM searches moving objects in the memory buffer, transfer 
the request into LSM, and then bind the results from the 
memory buffer and those from permanent storage.  
 
4.1 MORow Object 

BMM stores locations of a moving object into a MORow object 
for insertion request from QPM. There is one-to-one 
relationship between a moving object and a MORow object. 
Therefore, a MORow object take a responsibility for buffering 
locations of a corresponding moving object. MORow object 
depicted in Figure 8 is composed of MOID (Moving Object 

IDentifier), Length (the number of locations stored in it), MBR 
(Minimum Bounding Rectangle of the locations), From (time 
that first location in it is acquired) and To (time that last 
location in it is acquired). The MaxLocation means the 
maximum number of locations stored in a MORow object. If the 
Length of a MORow Object is equal to the MaxLocation, then 
all of the locations in the MORow object are transferred to LSM 
in order to store permanently. 
 

 
 

Figure 8. Structure of Memory Buffer 
 
4.2 Memory Buffer 

The overall structure of memory buffer is composed of a set of 
MORow objects. Each MORow object represents a trajectory of 
a moving object from From time to To time. As the figure 
indicates, there is a B-tree for indexing MOIDs of MORow 
objects. The BMM, therefore, finds efficiently a corresponding 
MORow object by using MOID. 
 
 

5. LOCATION INDEXING MODULE (LIM) 

According to the previous works (Pfoser et al., 2000; Kollios et 
al., 1999; Nascimento and Silva, 1998; Vazirgiannis et al., 
1998; Song and Roussopoulos, 1987), there are three kinds of 
location indexes for moving objects. 
 
Current Location Indexes: The indexes of this type take only 
current locations of continuously moving objects into 
consideration. And current locations are also used for 
anticipating future locations of moving objects. These indexes 
should have capabilities to process frequently updates of 
numerous moving objects. 
 
Past Location Indexes for time interval (or time point) queries: 
The indexes, such as 3DR-tree and HR-tree, have a special 
purpose of efficient processing of a time interval (or time point) 
queries for the current and past locations. 
 
Past Location Indexes for trajectory queries: The indexes, such 
as STR-tree and TB-tree, have a special purpose of efficient 
processing of a trajectory queries for the past locations. 
 
LIM we implemented in this paper supports all kinds of indexes 
mentioned above. We implemented Adaptive Quad-tree (show 
Figure 9) as current location index. This index partitioned 



 

spaces into sub-space, and then maintains a quad-tree for each 
sub-space.  
 
We also implemented TB-tree, STR-tree, 3DR-tree, and HR-
tree as past location indexes. But these trees for indexing past 
locations of moving objects are not applied in real world 
applications due to the problems described in following section. 
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Figure 9. Current Location Indexes (Adaptive Quad-Tree) 
 
 
5.1 Problems in Whole Indexing Method 

The whole indexing method means that a tree is used to index 
all of the locations (including past locations) of moving objects. 
Figure 10 shows the whole indexing method. Most of past 
location indexes are based on R-tree, and therefore, are height-
balanced trees. 
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INSERT SEARCH DELETE 

single tree during the 
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Figure 10. Whole Indexing Method 
 
In whole indexing method, all of the locations of moving 
objects are managed by single tree during entire time interval. 
As shown in Figure 10, � as time goes, � increasing the depth 
of tree, makes � the performance of INSERT and SEARCH 
operation worse. 
 
Another problem is about the DELETE operation. The 
DELETE operation of R-tree variables requires the 
reorganization of the tree, if the number of entries of node N, 
which contained the deleted entry, is less than the minimum 
number (m) of entries. Because the reorganization of the tree 
requires the deletion and re-insertion of m-1 entries, DELETE is 
costly operation in this environment. Therefore, the deletion of 
entries during a specific time period, which is probably usable 
operation of managing the moving objects, is hardly performed. 
Architecture of Time Segmented Indexing Method 
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Figure 11. Time Segmented Indexing Method  
(Time Division Framework) 

 
To solve the above problems, we revised the indexing 
framework (called Time Division Framework), which could be 
applicable regardless of the types of past location indexes. 
Figure 11 shows the overall architecture of time segmented 
indexing method. In this framework, an index tree is segmented 
into several TSIs (Time Segmented Index), but these TSIs 
compose a virtual index, which is shown as single tree from 
outside. A virtual index has also TSI manager, INSERT 
manager, SEARCH manager, and DELETE manager. Due to 
the space limitation, we do not explain the detail operations of 
the virtual index and the strategies of time segmentation. 
 
 

6. LOCATION STORAGE MODULE (LSM) 

The role of Location Storage Module (LSM) is to insert and 
search the locations of moving objects in efficient. As shown in 
Figure 12, LSM consists of a storage manager, a server manager, 
a connection manager, a disk manager and storage drivers. 
 

 
 

Figure 12. Location Storage Module  
 
The Storage Manager has two main operations, INSERT and 
SEARCH, which are usually called by BMM. When BMM 
issues INSERT or SEARCH, the Storage Manager looks for a 
suitable storage system by referencing the Connect Manager 
and the Server Manager. Then, it calls INSERT and SEARCH 
of the storage driver, which is corresponded with the storage 
system. 
 



 

The Server Manager maintains the registered storage drivers for 
balancing the loads of INSERT operations. That is, it checks the 
status of storage system corresponding with the storage driver, 
and then informs the Storage Manager which storage system is 
most available to execute INSERT operations. 
 
The Connection Manager manages the distributed-index 
database that contains where locations are in distributed 
environment. When Storage Manager inserts locations into 
storage system through storage driver by issuing INSERT 
operation, Connection Manager inserts metadata into 
distributed-index database. In case of SEARCH operation, a 
Connection Manager looks up the servers in distributed-index 
database, and returns the list of relevant server information to 
Storage Manager. 
 
The Disk Manager examines periodically storage systems, such 
as Oracle, MS-SQL Server, ZEUS, or etc., which are registered 
on Server Manager. When it detects one of the storage systems 
full, it prohibits Storage Manager from inserting into the storage 
system. Storage Manager, however, could access the storage 
system for the purpose of retrieving locations. Disk Manager 
also provides system administrator with several utilities, such as 
IMPORT, EXPORT, BACKUP and RESTORE. 
 
The Storage Driver inserts locations of moving objects into 
corresponding storage system and search locations with specific 
predicates.  
 
 

7. CONCLUSION 

In this paper, we have designed the moving objects database for 
a large number of moving objects. And we have also 
implemented moving object components and SQL processing 
system on Microsoft Windows .Net Environment using C#. We 
integrated various kinds of works related to moving objects into 
one system, and newly proposed a data model for moving 
objects, a location query language, an indexing framework, and 
a method for storing moving objects. The system we proposed 
supports a diverse set of location acquisition policies, location 
indexes and location storages. Therefore, it is expected to be 
applied into various kinds of location based services practically.  
 
As future work, we should make extensive experiments with 
real environments to measure the performance of MODB, and 
develop algorithms to enhance the performance of location 
query processing. 
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