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ABSTRACT: 
 
Geographical data sets contain a huge amount of information about spatial phenomena. The exploitation of this knowledge with the 
aim to make it usable in an internet search engine is one of the goals of the EU-funded project SPIRIT. This project deals with 
spatially related information retrieval in the internet and the development of a search engine, which includes the spatial aspect of 
queries. 
Existing metadata as provided by the standard ISO/DIS 19115 only give fractional information about the substantial content of a 
data set. Most of the time, the enrichment with metadata has to be done manually, which results in this information being present 
rarely. Further, the given metadata does not contain implicit information. This implicit information does not exist on the level of 
pure geographical features, but on the level of the relationships between the features, their extent, density, frequency, 
neighbourhood, uniqueness and more. This knowledge often is well known by humans with their background information, however 
it has to be made explicit for the computer. 
The first part of the paper describes the automatic extraction of classical metadata from data sets. The second part describes concepts 
of information retrieval from geographical data sets. This part deals with the setup of rules to derive useful implicit information. We 
describe possible implementations of data mining algorithms. 
 
 

1. INTRODUCTION 

There is an imagination, a dream, that some day our computer 
would communicate with us in a meaningful way. Tim Berners 
Lee (2001) concretised this dream in the range of Internet with 
the formulation of the Semantic Web. The idea is to let the 
computer understand not only the words used by humans, but 
also the context of the expressions and their use in different 
situations. 
Especially when using an Internet search engine, we are often 
confronted with the stupidity of the computer. Today most of 
the search engines conduct a query by looking up keywords and 
comparing them to a precompiled catalogue of all existing web 
sites. However, there is no analysis of the sense of a query or an 
interpretation of the combination of used words in web sites. 
The aim of building a Semantic Web deals with those questions. 
Linked to the idea of the Semantic Web is the EU-funded 
project SPIRIT (Jones et al., 2002). SPIRIT (Spatially-aware 
Information Retrieval on the Internet) is engaged in improving 
the concept of search engines by evaluating the spatial context 
of queries and web sites. The inclusion of the context and 
consideration of the semantic background improves the quality 
of the results. Often we use spatial concepts to describe 
something or we keep a spatial situation in mind, when we 
search for something. In SPIRIT we want to include those 
structures to define a spatial ontology. 
A huge amount of information is stored in spatial data sets. 
However, usually these data sets are not accessible in the 
Internet. Most of the time there are neither metadata describing 
the datasets nor specifications of the intrinsic geometries and 
attributes. Furthermore these data sets contain a lot of implicit 
information. 

The aim is to make spatial data sets visible in the Internet, 
especially to enable search engines to get knowledge about the 
data and publish it or use it in search queries. This requires the 
definition of metadata that are sufficient enough to describe the 
significant aspects of the data, but moreover it requires the 
development of algorithms, which will determine these 
metadata automatically. The second and more ambitious aim is 
to even make the contents usable for a search engine. This 
means to identify spatial phenomena in the data sets and to 
build a semantic network from implicit information in the data. 
Both attempts are described in the following chapters. In 
section 3 we discuss the first issue, namely the automatic 
annotation of spatial data sets with a set of important metadata 
tags. Subsequently we present ideas for the extraction of 
implicit information to use it for spatial concepts and 
concentrate on data mining algorithms to derive this 
information. 
 
 

2. RELATED WORK 

The extraction of information from spatial data sets has been 
investigated in the domain of interpreting digital images. There, 
the need for interpretation is obvious, as the task is to 
automatically determine individual pixels or collections of 
pixels representing an object. Basic techniques for image 
interpretation are either pixel based classification methods (e.g. 
Lillesand and Kiefer, 1994) or structure based matching 
techniques (e.g. Schenk, 1999). The major applications in 
photogrammetry lie in the automatic extraction of topographic 
features like roads (Gerke et al., 2003), buildings (Brenner, 
2000) or trees (Straub, 2003). The main challenge is to provide 
appropriate models for the objects to be found in the images. 



 

 

These models are either given by hand or can also be acquired 
using machine learning approaches (Sester, 2000). The 
interpretation of vector data sets is a fairly new application. It 
has mainly been investigated in the context of spatial data 
mining (Koperski & Han, 1995). 
 
 

3. METADATA DESCRIPTIONS OF SPATIAL DATA 
SETS 

3.1 Metadata in SPIRIT 

In metadata information about spatial data sets can be stored. 
Metadata are structured data to describe resources and to enable 
users or agents to select and assess the data. However, there are 
two major problems: 
The expressiveness of metadata highly depends on the used 
scheme. Many existing schemes define the content more or less 
strictly. The ISO 19115 standard (ISO/TC-211, 2003) is 
designed especially for geographical data sets. The metadata 
used in SPIRIT are highly conforming to this existing 
international standard. However we identified a set of metatags, 
which are of essential importance for SPIRIT. 
Secondly the enrichment with metadata still is a process, which 
has to be done manually for the most part. Although there are 
some tools supporting the data entry by using interfaces and 
predefined lists of terms, the costs of manpower and time input 
to enter the data are still almost insurmountable obstacles. This 
leads to the fact that only few web sites and information 
resources are enriched with metadata. For this reason tools to 
generate metadata automatically would be preferably. We will 
illustrate this ambition on the example of ArcView projects and 
shape files. 
 
3.2 Automatic Extraction of metadata 

For SPIRIT, we considered the following metatags as of high 
importance: name, spatial extent, keywords, contact and 
resolution. In this chapter we will illustrate the automatic 
extraction of metadata from ArcView shape files. Hereby of 
special relevance is the discovering of keywords regarding the 
stored spatial elements. 
From ESRI shape format the following information can be 
extracted easily: 

- minimum bounding box 
- number of geometrical elements 
- type of geometrical elements, like point, line, polygon 
- information about the attributes and their structure, 

like name, type 
That information is important for the interpretation of the 
geometrical aspect of a data set. Indeed it does not tell us many 
things about the semantics of the data. Particularly if the names 
of the predicates are coded by numbers or like in the 
abbreviated example given in table 1, the primary information 
of the shape files is insufficient. 
 
SHAPE AOBJID TEIL OBJART OART_ATYP 
PolyLine N01CZ70 001 3102 3102 
PolyLine N01CZ1S 002 3105 3105_1301 
PolyLine N20LHCN 001 3106 3106 
 

Table 1. ATKIS-record, Excerpt of the adequate dbf file 
 
From this, it is not apparent, that this data represents a road 
network, which is displayed in figure 1. 

At least it is necessary to know, which data are coded in the set 
to be able to provide an internet user the right information. Up 
to date we only know about the type of elements, for example 
there are lines, but we do not have knowledge whether the lines 
are streets, pipelines, administrative borderlines or contour 
lines. To detect this information, we analyse shape files and if 
there is a legend available, more information can be extracted 
from the ArcView project file to derive automatically adequate 
keywords. The following example documents the process. 
 

 
Figure 1. Road network data set 

 
In figure 2 the automatically extracted metadata are shown. 
 

 
Figure 2. Metadata for the displayed road network data set, 

distinguishing different types of road (in German) 
 
All available data are analysed to acquire the keywords. Text 
files are checked to identify street names and designations of 
regions. Captions often give a glimpse of the character of the 
stored geographical elements, as well as the names of the 
attributes in the dbf files. 
The spatial extent of the data set is determined by the minimum 
bounding box. Moreover there are also some indicators to infer 
the scale or the level of detail of the data set. Analysing only 
the geometry of features, a simple measure for the scale of a 
data set can be the distance between the individual points a line 
or a polygon is composed of. Furthermore, the existence and 
type of certain geographic elements also give rise to a certain 
resolution, e.g. typically buildings are only present in large 
scales; in large scales roads are typically represented as areal 
objects whereas in small scales they are given in forms of 
polylines. 



 

 

Important information can be anticipated already by means of 
the keywords. However there is still no knowledge about the 
distribution and location of the geometrical elements, their 
connections to each other, their accumulation in special places 
and so on. Those characteristics make the information of a data 
set complete and allow humans to interpret data. This is the 
ambition of the next step, namely to extract implicit information 
from data sets and making them visible in the internet, 
especially for search engines. 
 
 
4. EXTRACTION OF IMPLICIT KNOWLEDGE WITH 

DATA MINING 

As mentioned in the above chapter especially the keywords are 
a first approach to get some semantic information. However 
these keywords have a big drawback. They are still 
interpretable only by human beings. Still expressions like 
“Autobahn”, “Aérogare“ or “Hospital“ are characterless to the 
computer. We would need a translation in two respects: first a 
language translation, but moreover a semantic translation. 
Those catalogues, which describe the meaning of a word and 
determine its sense depending on the context, are called 
ontologies. 
To enrich the ontology our ambition is focused on teaching the 
computer to learn spatial concepts and to combine knowledge to 
higher concepts automatically. They are hidden in the spatial 
data, less to find on the level of pure geometry, but rather 
inherent by the combination and interaction of the spatial 
elements. Spatial data mining is the approach to extract those 
implicit information. 
Needless to say, upon finding those implicit spatial structures 
still the computer does not know the meaning of “Autobahn”. 
However the concept is learnt, that “Autobahn” is a major road 
(which has own concepts as well), has less junction points and 
is situated rarely inside of settlement areas, but rather in 
peripheral areas. 
Next we will introduce those implicit structures and concepts, 
which could be useful for a search engine. Afterwards we will 
describe procedures and algorithms to discover inherent 
information with data mining and will document first 
approaches and results. 
 
4.1 Implicit Data 

As Aristoteles put it: the whole is more than the sum of its 
parts, the content of a spatial data set is more than only the pure 
geometry. Cognitive structures of human beings fit to the world, 
because they were formed by adaptation to the world. Up to 
now computers do not have this semantic knowledge of the 
world. The challenge is to reproduce such an adaptation process 
by learning automatically. 
Considering typical queries to a search engine and user 
scenarios with spatial background, there is a lot of helpful 
information stored in data sets. E.g. a user would like to search 
for a hotel in the centre of the city, at least the search engine has 
to know, where the city centre is located. This knowledge can 
be discovered in vector data, but it is usually not explicitly 
stored in an item. 
In figure 3 you can see topographic elements of a small village, 
like roads and houses. However, this is already an interpretation 
by humans. You have to be aware, that actually you just can 
spot some lines and polygons, which are differently coloured. 
That is the prior information the computer is able to get out of 
the data. 

 
Figure 3. Where is the city centre located? 

 
Indeed we recognise streets and houses and we are able to 
reason further facts. Humans can locate the church by the 
special shape of this building. The interaction of the streets and 
houses and their concentration induces at least the information, 
that it is a village. We also can identify larger buildings in the 
upper part and distinguish them from smaller ones in the south. 
A computer can calculate these facts too. The big challenge is 
the following reasoning process. Humans interpret the larger 
buildings as the inner part of the village, because they know 
about old farmyards and the typical formation of a village (in 
Germany). The smaller buildings represent a colony of one-
family houses. We are able to locate the main street leading 
through the village as well, because of the structure of the 
settlement. Therefore humans can detect the city centre 
approximately without difficulty. 
There is a plenty of examples and ideas, which would be useful 
in SPIRIT. At least we would like to concentrate on some 
concepts mentioned below: 

- classification of more or less important cities 
- sphere of influence of cities 
- detection of the centre of a city 
- determination of tourist areas and attractive 

destinations 
- possibilities of suburban or industrial settlement, 

urban development, quality of housing 
The information available in the data set, which we consider to 
exploit in those concepts together with the necessary operations 
to extract and combine the information is described in Heinzle 
et al. (2002). 
Some characteristics of the elements can be determined with 
simple GIS functionality like to calculate an area/size or to 
count the existence of special objects. The evaluation of other 
properties, like density, distribution or neighbourhood, is more 
complicated. The analysis of distances is an essential part to get 
knowledge of these aspects. However, the handling of threshold 
values or absolute numbers is less helpful, because it depends 
on the context, if an attribute or a characteristic is really 
specific and outstanding. Most of the time those values are of 
interest and shed light on something, which distinguish 
themselves and excel at special properties in contrast to the rest 
of the data. Clustering algorithms can be used to identify groups 
of elements respectively their neighbourhood. Among 
clustering algorithms those are preferable that do not need 
threshold values (Anders, 2003). 
Moreover the combination of properties and their calculated 
values raise a problem. Logic operations have to be extended by 
weighting and quantifiers, which depend on the importance, 
relevance, quality of the attribute values and significance of 
elements. 
 



 

 

4.2 Automatic Derivation of Implicit Data 

As mentioned above there are rules implicit in spatial data, 
however there are two different ways of approaching the goal of 
extraction of implicit knowledge. These two kinds of extraction 
models are on the one hand to define the rules a priori 
(association rules) and to apply them to the data, on the other 
hand to let the computer find the rules by itself by exploring the 
data. Both ways lead to more knowledge, but in the first case it 
is knowledge, which we were especially searching for, like the 
concepts of chapter 3.1. The second case brings up unknown 
knowledge or inherent information, which may be useful to 
learn more about the data set, but can be not useful as well. 
Both methods are usually known as data mining (Witten and 
Frank, 2000) and will be described and examined. They are 
discerned into supervised and unsupervised classification. 
 
4.2.1 Supervised Classification: implies knowledge 
discovery on the basis of predetermined models respectively 
spatial association rules. Supervised classification starts from a 
set of classified examples for a concept to be learnt. From this 
set classification schemes for the concepts are derived, e.g. 
using machine learning approaches (Michalski et al., 1998), or 
also Maximum Likelihood classification (Lillesand and Kiefer, 
1994). In principle every kind of knowledge representation can 
be used to form a classification scheme, especially rule-based 
systems or semantic networks. We will depict the process by 
the help of decision trees. Every branch symbolises the 
existence of a distinctive classification feature. Depending on 
the result of the inquiry the adequate branch will be followed 
further. In the end the model leads to a classification into 
different categories of one issue. However the scheme includes 
some essential problems. The sequence of the validation of a 
distinctive classification feature is one determining factor. The 
use of such a step by step algorithm without the possibility to 
go backwards holds the endangerment of abandoning important 
elements or a proper solution at an early stage. The 
determination of thresholds respectively stop criterions can lead 
to problems. Therefore the need of high quantitative and 
qualitative data is necessary to be able to calibrate the model. 
The concepts of “the centre of a city” can be implemented by 
using such supervised methods. For example, we could 
determine a point as a city centre, if it fulfils following 
conditions: 

- major streets will meet in the centre 
- the buildings in the centre are larger in comparison to 

areas outside 
- non-existence of industrial areas 
- etc. etc. 

The weak point of such specifications can easily be recognised: 
- the descriptions are given in natural language, which 

is not directly usable by a computer 
- the specifications are vague 
- not all conditions might be needed in all cases 
- some conditions can be more important, some less 

important 
- there is no guarantee, that the model composed by 

humans is accurate, proper and especially complete 
- possibly there are much more criteria, which we have 

ignored and did not take into account. On the 
contrary, we could have included distinctive features, 
which do not correspond to the reality, and have only 
been valid for a small test data set. 

 
Basically we expect to retrieve a special information as a result 
of predefined inputs. However, the classification model will 

fail, if the perceptions will not agree with reality. The above 
mentioned difficulty of combining the criteria and their values 
is already hidden in the scheme. In the case of inadequate 
combination and insufficient provision of characteristics 
misinformation will be generated. On the other hand the quality 
of deliberately formed models depends highly on the human 
creativity and ability to reason. Spatial phenomena and 
relationships have to be recognised by humans a priori to 
implement them into a supervised classification algorithm. 
This implies, that the setup of such models has to be done very 
carefully, possibly using large test data sets in order to gain the 
information from and to perform tests for verification of the 
derived rules. Furthermore, a specific inference scheme has to 
be designed to apply the rules to the data, that takes the 
probability or the importance of a condition to a rule into 
account. 
 
4.2.2 Unsupervised Classification:  The method aims at 
leaving the process of knowledge discovery to the computer 
itself. That means the computer has to discover rules, 
separations into categories, similarities in data sets without any 
predefined restrictions. Koperski & Han, 1995, describe an 
approach, where spatial associations between objects have been 
analysed automatically leading to the derivation of a rule stating 
that “all large cities lie close to a river”. Since such rules are 
induced from a finite set of examples, they cannot be verified, 
but only falsified. Thus, there has to be a validation of the 
utility of the detected information. It may happen, that rules 
will be found, which are obvious and do not give further 
knowledge. It is another process of learning to distinguish 
useful and non-useful rules. 
One form of Data Mining is clustering in order to find 
regularities or similarities in data sets. We used it for the 
following investigation: 
A way to analyze geometric objects is to determine their 
characteristics and to try to find regularities among them. Such 
regularities then, in turn, can be considered as representatives 
for a certain class of objects or a class of objects in a certain 
context or environment. For linear objects or even networks of 
linear objects the nodes are such a characteristic, including the 
node degree, i.e. the number of outgoing lines from the node. 
Furthermore, also the angles of the outgoing lines can be 
important. Different types of nodes can be distinguished and 
classified, as shown in figure 4: 
 

ELL TEE CRSFRKARW KAY PSI JN5PIK  
Figure 4. Different node types 

 
We made some investigations analyzing the node types of 
linear networks. 
Three examples will point out the process: 
1. While investigating the concept of the city centre with 
supervised models, we introduced the criteria of crossroads in 
the centre. A crossroad is a node with at least four outgoing 
lines, which were expected primarily in the city centre, as there 
many roads come together. The tests turned out in an 
unexpected result of this investigation. The condition to find 
crossroads in the city centre depends on the size of the town. 
There seems to be a rule regarding the relation between the 
structure of the centre, the spatial arrangement of streets and the 
size of the city. 
In figure 5 typical structures in the city centre are shown, 
depending on the dimension of the town. In small towns often a 
big street leads through and mainly TEE-junctions can be 



 

 

found, whereas in medium size cities the expected structure 
dominate, meaning that three or more major roads will meet in 
the city centre. In large cities the opposite trend can be 
observed: major streets will run around the city but in the centre 
itself only minor streets or even pedestrian areas will be 
located. 
This could be one useful information for setting up rules, which 
can be found automatically with data mining mechanism. 
 

 
 
village or small town 
5.000 – 10.000 residents 
 
 

 
 

small town 
ca. 40.000 residents 

 
 
 

 
 
large city 
ca. 520.000 inhabitants 
 
 
 

Figure 5. Typical arrangements of streets in the city centre 
depending on the dimension of the town. 

 
2. Junctions of roads have been investigated regarding the 
existence of nodes with four outgoing lines. The intention was 
to look into detail, if there are reasoning mechanisms to cut 
settlement areas into partitions, especially if the lines will meet 
approximately orthogonal (CRS type). 
Among other things it came up, that highways will be 
represented by separate clusters with solely one edge (ELL-
junctions), with the exception of the access roads. Naturally 
there are only a few intersections with highways, the parts 
between are direct polylines without branches. 
As shown in figure 6 it could be one of a criteria to determine 
highways respectively to distinguish their access roads from 
their carriage-ways in data sets. It can be very helpful to 
validate further structures like the neighbourhood of settlement 
areas in the vicinity of an highway access. 
 

 
Figure 6. All red lines are “one edge cluster”, 
 the highway is easy to locate in the middle. 

 

The analysis of junction or node types can also help to 
distinguish between different features on a geometric level: 
when looking at different linear networks, it gets clear, that 
certain junction types only occur with certain objects – or do 
not or only rarely occur with certain objects (figure 7). E.g. the 
4-junction mentioned above mainly can be found in road 
networks – and hardly ever in river networks, as in nature it is 
very rare, that four streams will meet in the same place. 
Another extreme example are lines which typically do not 
intersect at all or only at (very rare) saddle points. 
It does not lead to new knowledge, but to new information to 
the computer. This investigation can shed light on the content 
of a data set, especially which line elements belong to the road 
network. In this context the obvious rule can turn into a very 
helpful information. 
 

 
 

Figure 7. Appearance of different line elements: roads, rivers, 
administrative boundaries, contour lines 

 
Furthermore the investigation into the nodes with four outgoing 
lines led to following conclusion regarding a partitioning: these 
CRS nodes can be of a separating nature, especially along the 
major roads. It is similar to a Voronoi diagram, which here, 
however, does not exist on the basis of geometric distance, but 
rather on the topographic detail of the intersection of four lines. 
Figure 8 documents the results of the analysis in two different 
data sets, one French and one German data set. Especially along 
the major roads the data set is segmented into different 
partitions. In the figure on the left side you can see, that the data 
set is split in two main sections each on the left and on the right 
side of the picture. In the middle a valley with major roads and 
a town is located. 
 

 
Figure 8. Clustering of road networks by analyzing the CRS 

nodes. Left: French data set. Right: German data set. 
 
Other measures we are going to investigate is the “straightness” 
of a linear object, i.e. a collection of polylines that can be 
traversed more or less straightly. A method to derive these so-
called strokes is described in Thomson and Richardson (1999) 
and has been used for network generalization and classification 
by Elias (2002). 
On the basis of described processes we are able to examine the 
data sets and the above mentioned results in more detail, 
whereby supervised and unsupervised models can hardly be 
kept apart at this stage. The following factors could be decisive 
for further (supervised and unsupervised) interpretations: size of 
a single mesh, length of segments between nodes, frequency of 



 

 

occurrence of high-order respectively significant nodes, in-
depth study of the type/shape of the nodes. To get on without 
predefinition of thresholds or the preliminary fixing of minimal 
and maximal values it is our aim to continue the search for 
broader regularities, for example in the combination between 
above mentioned criteria. 
 
Regarding this we could imagine many hypotheses and to find 
the following or similar structures with data mining: 

- capitals are always located at large rivers? 
- in general all big cities are located at large rivers? 
- in the city centre are larger buildings than in 

outskirts? 
- in tourist areas are more bicycle tracks than in non-

tourist areas? 
- industrial areas are situated mostly along big traffic 

routes? 
- winding roads are always in regions with heavy 

differences in elevation? 
- villages are embedded mostly in agricultural crop 

land, very rare they are located in forest? 
- 90 per cent of all junctions of traffic lines are situated 

in settlement areas? 
 
We will concentrate on both ways, supervised and unsupervised 
methods. Both can support knowledge discovery and during the 
implementation of algorithms, both data mining models will 
influence each other. 
 
 

5. CONCLUSIONS 

The paper presented attempts in the range of spatial data mining 
in the context of realising a spatially aware search engine. To 
solve spatially related queries, the computer has to be aware of 
semantic aspects. Ontologies are used to represent them. 
However the information therefore can not completely be 
acquired manually. Automatic detection and learning processes 
of the computer are essential to enrich such data collection. 
Classical metadata are a first approach to reveal the content of a 
data set. Our intention is to extract metadata automatically from 
geographical data sets. An automatic enrichment with specific 
metadata, e.g. the keywords, was presented. 
Further steps are necessary to make semantic of geographical 
data visible, so that the computer receives background 
knowledge and can perform logical reasoning procedures. 
Therefore we use and implement data mining methods. In this 
article concepts and first attempts were introduced and 
explained, which have emerged as main focus during our 
investigations. First algorithms were developed and realised. 
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