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ABSTRACT: 
 
The reconstruction of 3D city models has matured to the point where large data sets are now available. As most of the data collection 
methods used are based on airborne sensors like e.g. aerial laser scanning or stereo imagery, the detailed geometry and material of 
the building façades is typically not available. For visualisation purposes, however, the surface structure is essential to achieve a 
good visual impression of the respective buildings. An efficient technique to provide the missing building façades is to extract 
texture images from terrestrial photographs and map them to the polygonal faces of the reconstructed models. As the task of manual 
texture extraction and placement is very time-consuming, an automatic approach is presented in this article that utilises the rendering 
pipeline of modern 3D graphics cards. The problem of texture extraction can therefore be solved by using graphics algorithms that 
are nowadays implemented in hardware and consequently are extremely fast. Since only parts of the building or even of a façade are 
typically captured in one single image, self occlusions of the buildings are detected and several photographs taken from various 
positions are fused to generate the final texture images. In order to gain high quality textures, the lens distortion of calibrated 
cameras is corrected on-the-fly by the use of pixel shaders that are running on the programmable graphics processing unit. 
 
 

1. INTRODUCTION 

The acquisition of 3D city models has been of major interest 
for the past years and a number of algorithms are now avail-
able both for the automatic and semiautomatic collection of 
3D building models. Based on measurement from aerial ste-
reo imagery or airborne laser scanner data, the geometry of 
buildings can be reconstructed on a large scale. (Baltsavias, 
Grün and van Gool, 2001) e.g. give a good overview of ex-
perimental systems and commercial software packages. One 
major limitation of these approaches is, however, that the re-
sulting models have rather coarse façades. (Früh and Zakhor, 
2003) present a method that merges ground based and air-
borne laser scans and images. The additional terrestrial data 
naturally leads to more detailed façades. 
Key market for this type of data is the visualisation in the 
context of city planning, three-dimensional car navigation, 
virtual tourism information systems and location based ser-
vices. In addition to pre-rendered movies of the virtual envi-
ronments where the user has no freedom of movement, real-
time visualisation is getting more and more important. (Kada 
et al., 2003) show e.g. that literally a complete city can be in-
teractively displayed in 3D on today’s consumer PC systems 
(see Figure 1). 
For the photo-realistic visualisation of urban landscapes, the 
material of the building façades is essential for the visual im-
pression. An efficient technique to model building façades is 
to extract texture images and place them on the coarse, po-
lygonal faces of the reconstructed models. Whereas roof im-
ages can easily be acquired from aerial photographs, such an 
approach is not feasible for the building façades. It is there-
fore inevitable to use terrestrial images as the source for 
high-quality façade textures. The manual texture extraction 
and placement is, however, a tedious task and can easily take 
up to several days per building for good results (see Figure 

2). Such an approach is consequently not applicable for cap-
turing a large number of building façades. 
 
 

 
 
Figure 1. A 3D landscape model of Stuttgart rendered in a 

real-time visualisation environment. All façade 
textures of buildings located in the main 
pedestrian area were manually captured. 

 
 
In this article, an approach is described that automatically ex-
tracts façade textures from terrestrial photographs and maps 
them on geo-referenced 3D building models. If the exterior 
orientation of the camera is known, a transformation can be 
computed that projects the polygonal faces of the building 
model into the image. (Klinec and Fritsch, 2003) determine 
the rotation and translation of the exterior orientation by 
searching for correspondences between object and image fea-
tures and use them in a photogrammetric spatial resection. 



    

 

(a) (b) (c) (d) (e) 
 
Figure 2. The manual texture extraction and mapping process involves (a) digital capturing of the building façade and removal of 

lens distortions, (b) selection of quadrilateral image sections, (c) rectification of perspective distortions, (d) retouching of 
occluded areas and (e) texture placement on building model. 

 
 
 
The presented texture extraction approach ties in from when 
the exterior orientation of the photographs is known. It de-
scribes an efficient way to get from the correspondences of 
3D object and image points to a completely textured building 
model that is ready for visualisation purposes. A naive way 
to visualise this kind of data would be to define the corre-
sponding points in the image as texture coordinates and use 
e.g. a VRML viewer for scene rendering. This is not a viable 
approach, however, as complex geometric image transforma-
tions can not be realised due to perspective effects or lens 
distortion. 
By using the functionality of 3D graphics hardware, the 
whole process can be realised very efficiently so that interac-
tive tools are possible. The user e.g. defines the input photo-
graphs and extraction parameters and observes the resulting 
textured building model in real-time. Any self occlusions of 
the model are detected automatically, so that several images 
can be fused to get the final texture images. The camera dis-
tortions are removed transparent to the operator in the hard-
ware so that no extra care needs to be taken. 
Because 3D APIs and SDKs nowadays provide powerful and 
functional rich interfaces, such a texture extraction system 
can be realised with very little programmable effort. 
 

2. HARDWARE-BASED TEXTURE EXTRACTION 

The texture extraction approach described in this article 
utilises new technologies that can be found in today’s 
commodity 3D graphics hardware. Especially three 
developments are of greater importance and shall be briefly 
discussed in the following sections. 
 
2.1 

2.2 

2.3 

Graphics Processing Units 

The extraction of façade textures from digital images mainly 
involves the transformation of vertices and the processing of 
pixel data, computations that can be highly parallelized for 
increased performance. Because the main CPU does not 
exploit this parallelism very effectively, a software solution 
is generally not an adequate approach. Graphics processing 
units (GPU) that are integrated in today’s commodity PC 
graphics cards, however, are optimised for this kind of data 
processing. As graphics processors have evolved from a fixed 
function to a programmable pipeline design, they can now be 
utilised for various fields of applications.  

 
Shader Languages 

Shaders are small programs that are executed on the 3D 
graphics card. They can be conceived of as functions that are 
called within the GPU at specific points during the 
generation of the image. Two types of shaders exist: vertex 
shaders replace the transformation module in the geometry 
stage and pixel shaders replace the processing of individual 
pixels in the rasteriser stage of the graphics rendering 
pipeline. 
Nowadays, shaders can be developed using High-Level 
Shader Language (HLSL developed by Microsoft) (Gray, 
2003) or C for graphics (Cg developed by NVIDIA) 
(Fernando and Kilgard, 2003). Both are based on the 
programming language C and offer the flexibility and 
performance of an assembly language, but with the 
expressiveness and ease-of-use of a high-level language. 
In the presented approach, pixel shaders are used to exert 
control over (projective) texture lookups, the depth buffer 
algorithm and to realise the on-the-fly removal of lens 
distortions for calibrated cameras. 
 

Floating-Point Texture Format 

Textures in floating-point format can hold real 32 bit colour 
values per channel. If used in combination with a pixel 
shader, a texture must not necessarily hold colour values, but 
rather all kinds of per pixel floating-point data can be stored 
in it. The pixel shader knows how to interpret the data in 
order to compute the output colour and depth values. 
 
Through the use of standard 3D APIs like OpenGL or 
Direct3D, the extraction algorithm is just a matter of setting 
up the rendering pipeline and to provide the vector 
information of the building geometry. The complexity of the 
core algorithm amounts to only a few lines of code. 
 

3. ALGORITHM 

It is assumed that the building geometry is already available 
as a 3D geo-referenced, polygonal surface model. The input 
photographs were taken with a calibrated camera and their 
exterior orientations are known. Hence, the transformations 
that project the faces of the building model into the images 



can be computed. Each projected polygon then overlays all 
the pixels that unprojected will make up the final façade 
texture (see Figure 3). 
 
 

 
 
Figure 3. Projected 3D building model overlaid on the input 

photograph (Rosensteinmuseum). 
 
 
Because the façade textures have to be represented by 
quadrilaterals, the polygons are substituted during the 
extraction process by their bounding rectangles which are 
given in three-dimensional world-space coordinates. The 
texture extraction is basically performed by rendering a 
quadrilateral with the colour values of the unprojected image 
pixels of the bounding rectangle. 
Lens distortions are removed on-the-fly in the pixel shader, 
so the extraction works as if processing idealized images 
where the calibration parameters are applied. 
 
3.1 Texture Extraction 

The first step is to set up the rendering pipeline to fill the 
entire target buffer where the final façade texture will be 
rendered to. For this purpose, all transformation-related states 
(including the one for the projection) are initialised with the 
identity matrix. Drawing a three-dimensional unit square 
with vertices v0 = (-1, 1, 0), v1 = (1, 1, 0), v2 = (1, -1, 0) and 
v3 = (-1, -1, 0) will render all pixels in the target buffer as 
wanted. The four vertices can incidentally be thought of as 
the projected vertices of the polygon’s bounding box into the 
image plane. 
So far, however, the rasteriser would only render a blank 
façade image as no colour information is provided yet. 
Therefore, a photograph must be assigned to the pipeline as 
an input texture from where to take the colour information 
from. As mentioned above, the polygon’s projected bounding 
box defines the pixels to be extracted from the input texture. 
So in addition to the above mentioned vertices, the texture 
coordinates of the four vertices are specified as the four-
element (homogenous) world space coordinates of the 
bounding box. Setting the texture transformation matrix with 
the aforementioned transformation from world to image 
space concludes the initialisation. 
During the rendering of the target façade image, the rasteriser 
linearly interpolates the four-dimensional texture coordinates 

across the quadrilateral. A perspective texture lookup results 
in the perspectively corrected façade texture (see Figure 4). 
Some extra care has to be taken, however, as the results of 
this transformation are in the range -1 to 1 and the final 
texture coordinates are indexed in the range 0 to 1. A single 
scale and bias will map the coordinates accordingly. 
 
 

  
 

Figure 4. Extracted façade textures. 
 
 
The resulting façade texture can then be read from the frame 
buffer and saved to file. Most 3D APIs provide special 
functions for this task. 

 
 
Figure 5. The 3D building model with the extracted 

textures placed on the façade polygons. 
 
 
3.2 

1

2

Texture Placement 

After the extraction, the textures need to be placed on the 
corresponding polygons (see Figure 5). In order to find the 
two-dimensional texture coordinates for the polygon vertices, 
a function identical to glTexGen (Shreiner, 2003) of OpenGL 
is used. The function automatically generates texture 
coordinates s and t by a linear combination of the vertex 
coordinates: 
 
 

1 1 1

2 2 2

s A x B y C z D
t A x B y C z D
= + + +
= + + +

 (1) 

 
A, B, C and D can be thought of as the definition of planes in 
parameter form. The normal vector components A, B and C 
of the two planes are defined by the vector from the bottom 
left vertex to the bottom right vertex of the bounding box and 
from the bottom left vertex to the top left vertex accordingly. 
The values for D are simply computed by inserting the 
bottom left vertex into the equation. The result of the linear 



combination of the polygon vertices are then in the range 0 to 
1 as required. 
 
3.3 

3.4 

Detection of Self-Occlusions 

The extraction of façade textures from photographs always 
leads to the problem that parts of the facades are not visible 
because of self-occlusions of the building. If no special care 
is taken, then erroneous pixel values are extracted for the 
occluded parts of the façade (see Figure 6 to Figure 8). To 
avoid such artefacts, invalid pixels that belong to other 
polygons must be identified and marked. 
Pixel-wise occlusion detection is realised in this approach by 
using the depth buffer algorithm. First, the depth value of the 
closest polygon is determined for each pixel in the 
photograph and stored in a depth texture. This can simply be 
done by rendering all polygons with the hardware depth 
buffer functionality enabled and by copying the resulting 
depth buffer into a 32 bit floating-point texture. A more 
efficient approach is to calculate the depth value in a pixel 
shader and render directly into the depth texture. Modern 3D 
graphics processors support the floating-point texture formats 
even as render targets. 
During texture extraction, the depth value is read out in the 
pixel shader using the same texture coordinates as for the 
colour lookup. After the perspective divide is applied to the 
texture coordinates, the z-component holds the depth value 
for the current polygon. A comparison of these two depth 
values then determines if the pixel in the colour texture 
belongs to the polygon. If e.g. the value from the depth 
texture is lower then the computed value, then the polygon is 
occluded at this pixel by another polygon. Figure 9 shows 
some results where occluded pixel values have been 
blackened out. To suppress artefacts caused by precision 
errors, the depth test is done by applying a small depth bias 
in the depth test. 
 

Image Fusion 

As only parts of a building or even of a façade are typically 
captured in one single image, the colour information from 
several photographs that were taken from various positions 
need to be combined to generate the final façade textures. 
One simple approach is to extract several textures for the 
same polygon from all available photographs and then use 
the one with the fewest pixels marked as occluded (see e.g. 
Figure 10). Other criteria may possibly be the photograph 
taken closest to the façade or the one with the best viewing 
angle. 
The problem of image fusion done in the hardware is how to 
get the graphics pipeline to decide from which image a pixel 
should be taken. The solution is to process all images and 
make the hardware accept or reject pixel values by using the 
depth, stencil or alpha test. Even though the approach is brute 
force, it is still very efficient with the hardware support. 
The presented per pixel approach merges the final façade 
texture by using the colour value of only the closest, non-
occluded pixel found in all images. The occlusion detection 
works as described in the previous section, but now with the 
depth test enabled on the hardware. The output of the pixel 
shader that is used for the hardware depth buffer test is the 
calculated depth value for non-occluded pixels and 1.0 (the 
farthest possible depth value) for occluded pixels. Because it 
is usually better to have a wrong colour value rather then no 

 
 
Figure 6. Input photograph showing Stuttgart State Theatre. 
 

 
Figure 7. 3D building model without textures. 

 

 
Figure 8. Building model automatically textured without 

occlusion culling. 
 

 
Figure 9. Building model automatically textured with 

occlusion culling. The black pixels were marked 
as occluded texture pixels. 



 
Figure 10 The resulting textures with the fewest occluded 

pixels were chosen as the façade texture and 
placed on the building model. 

 
 
colour value, the pixel colour is always written. The 
hardware depth test ensures that always the closest pixel is 
taken and the artificial depth value of 1.0 gives precedence to 
non-occluded pixels. The result can be seen in Figure 11. 
 
 

 
(a) 

 
(b) 

Figure 11 (a) Façade texture extracted from two input 
photographs using per-pixel fusion. The images 
were taken from two different positions. 
(b) The extracted façade textures placed on the 
building model. 

 
 
3.5 

a

a

Removal of Lens Distortion 

If a calibrated camera is being used to capture the building 
facades, the lens distortion in the images are corrected on-
the-fly in the pixel shader. The major benefit of this approach 
is that the extraction process works with the original images. 
Image pixels are therefore filtered only once during the 
whole process as opposed to the alternative approach where 
the idealised image is computed beforehand. The result is 
that the extracted façade textures are of higher quality. 

The lens distortion is described by the parameter set 
introduced by (Brown, 1971) and denotes the transition of 
pixels from the distorted to the idealized image. Here, the 
following subset is used as in (Fraser, 1997): 
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Radial distortion: 
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Decentring distortion: 
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Affinity and shearing: 
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Because the extraction process needs the transition of pixels 
from the idealized to the distorted image and the formula is 
not invertible, an iterative method is be used. Unfortunately, 
arbitrary iterations are not supported by current 3D graphics 
hardware. But because the graphics API Direct3D 9.0 
(Microsoft, 2003) already defines dynamic flow control in 
Pixel Shader 3.0, graphics cards are likely to include this 
feature in the near future. The removal of lens distortion can 
at that time be completely computed in hardware. 
Until then, an alternative approach must be used. The 2D 
transition vectors are pre-computed for all pixels in the image 
and stored in a two times 32 bit floating-point texture. In the 
pixel shader, a first texture look-up gets the transition vector 
and adds the correction values to the texture coordinates. The 
new coordinates are then used for the depth and colour 
lookup. 
 
 

4. IMPLEMENTATION AND RESULTS 

The design goal of the implementation was to have a vendor 
independent system, which means that the algorithms should 
work with a broad variety of 3D graphics cards. The graphics 
API of choice was therefore Direct3D 9.0, which also 
includes the high-level shader language (HLSL). 



The calibration of the camera was done using the bundle 
program Australis (Fraser, 1997). Camera calibration files are 
automatically loaded and the correction textures are 
generated as needed. The input photographs were taken at 
resolution 1280 * 960 pixels, but resolutions up to 2048 * 
2048 are also supported. This limitation comes from the fact 
that textures in the graphics hardware are limited to this size. 
The output resolution of the façade textures is at this point 
fixed at 256 * 256 pixels. 
The performance analysis has been conducted on a standard 
PC with an Intel 4 3.0 GHz Processor, 1 GB of DDR-RAM 
and a graphics card that is based on the ATI 9800 GPU with 
256 MB of graphics memory. The test results are given in 
Table 1. It should be noted that 8 or 16 input photographs for 
per pixel image fusion is not practical. This rather high 
number was solely used to show the speed of the approach. 
Nevertheless, the extraction time with all features enable is 
still below one second. 
 
 

time # 
images Extraction Process model 

A 
model B 

1  31 ms 47 ms 
1 Lens Correction 32 ms 62 ms 
1 Occlusion Detection 32 ms 63 ms 
1 Occlusion D. + Lens C. 46 ms 78 ms 
8 Image Fusion (per Pixel) 172 ms 328 ms 
8 Image Fusion + Lens C. 203 ms 391 ms 

16 Image Fusion (per Pixel) 375 ms 813 ms 
16 Image Fusion + Lens C. 422 ms 829 ms 

 
Table 1. Extraction times measured for model A 

(Rosensteinmuseum, 71 polygons) and model B 
(Stuttgart State Theatre, 149 polygons). 

 
 

5. CONCLUSION AND FUTURE WORK 

This article described the concept and the implementation for 
hardware-based texture extraction of photo-realistic façade 
textures. The implementation of such a system is shown to be 
very simple by using standard 3D APIs and shader 
languages. Fast extraction is possible on commodity PC 
hardware equipped with a 3D graphics processing unit and 
the resulting façade textures proved to be of very high 
quality. The resulting building models are automatically 
mapped by perspectively correct textures and can therefore 
be used for real-time visualisation. 
As the system has a low response time, it has the potential to 
be extended towards a semi-automatic tool, which allows the 
refinement of the model based on manual measurement in 
terrestrial images. The manual fitting of available building 
geometry to terrestrial images is often required due to 
remaining errors in the building model. Such errors are of 
nuisance when the correspondence between object and image 
is not exactly given and lead to artefacts or even wrong 
façade textures. Hardware-based texture extraction will allow 
a real-time visualisation of the textured 3D model, so that the 
operator can immediately observe the geometric changes. 
The future work will be to speed-up the overall process by 
doing some pre-processing of the geometry on the main 
CPU. Backface culling could e.g. be pre-computed for each 
image and stored in a backface table. Not all images would 
need to be processed for each polygon anymore. Another 

area of improvement is the quality for per pixel texture 
fusion. Alpha blending might help to reduce artefacts if parts 
of the texture can not be aligned correctly because of errors 
in the exterior orientation. As a combination of per-polygon 
and per-pixel image fusion promises the best results, adapted 
algorithms shall further be developed. 
In order to address occlusions by other objects, the presented 
system could be extended to a semi-automatic tool where the 
operator marks pixels or regions in the photograph as invalid. 
These pixels will not be used in the final texture, but rather 
colour values from other photographs are used or the missing 
pixel colours are reproduced by subsampling algorithms. 
 
 

6. ACKNOWLEDGEMENTS 

The research described in this paper is founded by “Deutsche 
Forschungsgemeinschaft” (DFG – German Research 
Foundation). The research takes place within the Center of 
Excellence No. 627 “NEXUS – SPATIAL WORLD MODELS FOR 
MOBILE CONTEXT-AWARE APPLICATIONS” at University of 
Stuttgart. The geometry of the building models is provided 
by Stadtmessungsamt Stuttgart. 
 
 

7. REFERENCES 

Baltsavias, E. Grün, A. and van Gool, L., 2001. Automatic 
Extraction of Man-Made Objects from Aerial and Space 
Images (III). Swets & Zeitlinger B.V., Lisse, The 
Netherlands. 

Brown, D.C., 1971. Close-Range Camera Calibration. 
Photogrammetric Engineering, 37 (8), pp. 855-866. 

Fernando, R. and Kilgard, M., 2003. The Cg Tutorial. 
Addison-Wesley. 

Fraser, C.S., 1997. Digital Camera Self-Calibration. ISPRS 
Journal of Photogrammetry and Remote Sensing, Vol. 52, 
pp. 149-159. 

Früh, C. and Zakhor, A., 2003. Constructing 3D City Models 
by Merging Aerial and Ground Views. IEEE Computer 
Graphics and Applications, Vol. 23 No. 6, pp. 52-61. 

Gray, K., 2003. The Microsoft DirectX 9 Programmable 
Graphics Pipeline. Microsoft Press. 

Kada, M., Roettger, S., Weiss, K., Ertl, T. and Fritsch, D., 
2003. Real-Time Visualisation of Urban Landscapes Using 
Open-Source Software In: Proceedings of the ACRS 2003 
ISRS, 24th Asian Conference on Remote Sensing & 2003 
International Symposium on Remote Sensing, Busan, Korea. 
(On CD-ROM) 

Klinec, D. and Fritsch, D., 2003. Towards Pedestrian 
Navigation and Orientation. In: Proceedings of the 7th South 
East Asian Survey Congress, SEASC’03, Hong Kong. (On 
CD-ROM) 

Microsoft, 2003. DirectX Documentation for C++. Microsoft 
DirectX 9.0 SDK. http://msdn.microsoft.com/library/ 
default.asp?url=/downloads/list/directx.asp 

Shreiner, D., Woo, M. and Neider, J., 2003. OpenGL 
Programming Guide (Version 1.4), Addison-Wesley. 


	INTRODUCTION
	HARDWARE-BASED TEXTURE EXTRACTION
	Graphics Processing Units
	Shader Languages
	Floating-Point Texture Format

	ALGORITHM
	Texture Extraction
	Texture Placement
	Detection of Self-Occlusions
	Image Fusion
	Removal of Lens Distortion

	IMPLEMENTATION AND RESULTS
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

