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ABSTRACT:

The most commonly used topographic vector data, the core data of a geographic information system (GIS) are currently two-
dimensional. The topography is modelled by different objects which are represented by single points, lines and areas with additional
attributes containing information, for example on function and size of the object. In contrast, a digital terrain model (DTM) in most
cases is a 2.5D representation of the earth’s surface. The integration of the two data sets leads to an augmentation of the dimension
of the topographic objects. However, inconsistencies between the data may cause a semantically incorrect result of the integration
process.

This paper presents an approach for a semantically correct integration of a DTM and 2D GIS vector data. The algorithm is based on
a constrained Delaunay triangulation. The DTM and the bounding polygons of the topographic objects are first integrated without
considering the semantics of the objects. Then, those objects which contain implicit height information are further utilized: object
representations are formulated and the semantics of the objects is considered within an optimization process using equality and
inequality constraints. The algorithm is based on an inequality constrained least squares adjustment formulated as the linear
complementary problem (LCP). The algorithm results in a semantically correct integrated 2.5D GIS data set.

First results are presented using simulated and real data. Lakes represented by horizontal planes with increasing terrain outside the
lake and roads which are composed of several tilted planes were investigated. The algorithm shows first satisfying results: the

constraints are fulfilled and the visualization of the integrated data set corresponds to the human view of the topography.

1. INTRODUCTION
1.1 Motivation

The most commonly used topographic vector data, the core data
of a geographic information system (GIS) are currently two-
dimensional. The topography is modelled by different objects
which are represented by single points, lines and areas with
additional attributes containing information, for example on
function and size of the object. In contrast, a digital terrain
model (DTM) in most cases is a 2.5D representation of the
carth’s surface. The integration of the two data sets leads to an
augmentation of the dimension of the topographic objects.
However, inconsistencies between the data may cause a
semantically incorrect result of the integration process.
Inconsistencies may be caused by different object modelling
and different surveying and production methods. For instance,
vector data sets often contain roads modelled as lines or
polylines. The attributes contain information on road width,
road type etc. If the road is located on a slope, the
corresponding part of the DTM often is not modelled correctly.
When integrating these data sets, the slope perpendicular to the
driving direction is identical to the slope of the DTM which
does not correspond to the real slope of the road. Another
reason for inconsistencies is the fact, that data are often
produced independently. The DTM may be generated by using
lidar or aerial photogrammetry. Topographic vector data may
be based on digitized topographic maps or orthophotos. These
different methods may cause inconsistencies, too.

Many applications benefit from semantically correct integrated
data sets. For instance, good visualizations of 3D models of the
topography need correct data and are important for flood
simulations and risk management. A semantically correct
integrated data set can also be used to produce correct
orthophotos in areas with non-modelled bridges within the

DTM. Furthermore, the semantically correct integration may
show discrepancies between the data and thus allow to draw
conclusions on the quality of the DTM.

1.2 Related work

The integration of a DTM and 2D GIS data is an issue that has
been tackled for more than ten years. Weibel (1993), Fritsch &
Pfannenstein (1992) and Fritsch (1991) establish different forms
of DTM integration: In case of height attributing each point of
the 2D GIS data set contains an attribute “point height”. By
using interfaces it is possible to interact between the DTM
program and the GIS system. Either the two systems are
independent or DTM methods are introduced into the user
interface of the GIS. The fotal integration or full database
integration comprises a common data management within a
data base. The terrain data often is stored in the data base in
form of a triangular irregular network (TIN) whose vertices
contain X,Y and Z coordinates. The DTM is not merged with
the data of the GIS. The merging process, i.e. the introduction
of the 2D geometry into the TIN, has been investigated later by
several authors (Lenk 2001; Klotzer 1997; Pilouk 1996). The
approaches differ in the sequence of introducing the 2D
geometry, the amount of change of the terrain morphology and
the number of vertices after the integration process. Among
others, Lenk and Klotzer argue that the shape of the integrated
TIN should be identical to the shape of the initial DTM TIN.
Lenk developed an approach for the incremental insertion of
object points and their connections into the initial DTM TIN.
The sequence of insertion is object point, object line, object
point etc. The intersection points between the object line and
the TIN edges (Steiner points) are considered as new points of
the integrated data set. Kldtzer, on the other hand, first
introduces all object points, then carries out a new preliminary
triangulation. Subsequently, he introduces the object lines,
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determines the Steiner points, adds both to the data set. Since
the Delaunay criterion is re-established in the preliminary
triangulation, the shape of the integrated TIN may deviate
somewhat from the one of the initial DTM. The methods have
in common, that inconsistencies between the data are neglected
and thus may lead to semantically incorrect results. Rousseaux
& Bonin (2003) focus on the integration of 2D linear data such
as roads, dikes and embankments. The linear objects are
transformed into 2.5D surfaces by using attributes of the GIS
data base and the height information of the DTM. Slopes and
regularization constraints are used to check semantic
correctness of the objects. However, in case of incorrect results
the correctness is not established. A new DTM is computed
using the original DTM heights and the 2.5D objects of the GIS
data.

2. SEMANTIC CORRECTNESS
2.1 Consequences of non-semantic integration

In our investigations a digital terrain model (DTM) is
represented by a triangular irregular network (TIN). Bridges,
vertical walls and hang overs are not modelled correctly
because it is a 2.5D representation. The topographic vector data
we consider are two-dimensional. The topography is modelled
by different objects which are represented by single points,
lines and areas. The integration of the data sets leads to an
augmentation of the dimension of the topographic objects.

Figure 1 shows two examples of the non-semantic integration of
a DTM and 2D topographic vector data. The height values of
the lakes do not show a constant height level (left side of Figure
1). Several heights of the lakes near the bank are higher than the
mean lake heights.

At the right side of Figure 1 the roads are not modelled
correctly in the corresponding part of the DTM. The slopes
perpendicular to the driving direction are identical to the mean
slope of the corresponding part of the DTM. There are no
breaklines on the left and the right borders of the roads. Also,
some neighbouring triangles of the DTM TIN show rather
different orientations.

2.2 Correct integration

If we divide the topography into different topographic objects
(road, river, lake, building, etc.), like the data of a GIS, there
are several objects which have a direct relation to the third
dimension. These objects contain implicit height information:
For example, a lake can be described as a horizontal plane with
increasing terrain at the bank outside the lake. To give another
example, roads are usually non-horizontal objects. We certainly
do not know the mathematical function representing the road
surface, but we know from experience and from road
construction manuals that roads do not exceed maximum slope

and curvature values in road direction. Also, the slope
perpendicular to the driving direction is limited.

Of course, all other objects are related to the third dimension,
too. But it is difficult and often impossible to define general
characteristics of their three-dimensional shape. For example,
an agricultural field can be very hilly. But it is not possible in
general to define maximum slope and curvature values because
these values vary from area to area.

The objects containing implicit height information which need
to be considered for the semantically correct integration can be
divided into three different classes (see Table 1). The first class
contains objects which can be represented by a horizontal plane.
The second class describes objects which are composed of
several tilted planes. The extent of the planes depends on the
curvature of the terrain; the planes should be able to adequately
approximate the corresponding part of the original DTM. The
last class shown in Table 1 describes objects which have a
certain relation to other objects. Bridges, undercrossings and
crossovers contain a certain height relation to the terrain or
water above or beneath.

Object
Sports field, race track,
runway, dock, canal, lake,
pool

Representation
Horizontal plane

Road, path, railway, Tilted planes
tramway, river
Bridge, undercrossing, Height relation

Crossover

Table 1: Some topographic objects and their representation in
the corresponding part of the terrain

To integrate a DTM and a 2D topographic GIS data set in a
semantically correct sense, the implicit height information of
the mentioned topographic objects has to be considered. That
means, after the integration process the integrated data set must
be consistent with the human view of the topography and the
height representations as shown in Table 1 have to be
represented correctly.

3. AN ALGORITHM FOR THE SEMANTICALLY
CORRECT INTEGRATION

The aim of the integration is a consistent data set with respect to
the underlying data model taking care of the semantics of the
topographic objects.

Topographic objects which are modelled by lines but which
have a certain width, are first buffered. The buffer width is
taken from the attribute “width” if available, otherwise a default
value is used. Thus, the lines are transformed into elongated
areas, the borders of which are further considered. The next step
of the algorithm is a non-semantic integration of the data sets.

Figure 1: Results of the integration of a DTM and a 2D vector data set without considering the semantics of the topographic objects,

left: lakes, right: road network



It is based on a constrained Delaunay triangulation using all
points of the DTM (mass points and structure elements) and the
polygons of the topographic objects of the 2D GIS data (section
3.1). The linear structure elements from the DTM and the object
borders are introduced as edges of the triangulation, the result is
an integrated DTM TIN.

Then, certain constraints are formulated and are taken care of in
an optimization process (section 3.2). In this way, the
topographic objects of the integrated data set are made to fulfill
predefined conditions related to their semantics. The constraints
are expressed in terms of mathematical equations and
inequations. The algorithm results in improved height values
and in a semantically correct integrated 2.5D topographic data
set.

A Dbasic assumption of our approach is that the general terrain
morphology as reflected in the DTM is correct and has to be
preserved also in the neighbourhood of objects carrying implicit
height information. Therefore, any changes must be as small as
possible. A second assumption is that inconsistencies between
the DTM and the topographic objects stem from inaccurate
DTM heights and not from planimetric errors of the topographic
objects.

3.1 Non-semantic data integration

As mentioned in section 1.2 there are several approaches for the
integration of a DTM and 2D topographic GIS data based on a
TIN. Because Lenk’s approach has some advantages, we use a
variant of his algorithm. First, a DTM TIN is created using the
DTM mass points and the structure elements in a constrained
Delaunay triangulation. Second, the heights for the topographic
objects are derived using the height information of the TIN by
interpolating a height value for each object point. Next, the
points of the polygons representing the topographic objects are
introduced into the TIN by re-triangulating the neighbourhood
of the objects. Here, the Delaunay criterion is not re-
established. Then, the object lines are considered as constraints.
This is done in such a way, that the intersection points between
the object polygons and the edges of the DTM TIN (Steiner
points) are introduced as new points. The edges of the DTM
TIN and the lines of the object polygon are split.

a) b)

Figure 2: Integration of a DTM and an object “lake”, a) original
DTM TIN and object “lake”, b) integrated data set

Figure 2 shows an example of the integration of a DTM and an
object “lake” of a 2D GIS data set. The original points of the
bounding polygon of the lake are shown in light blue. After the
integration, the intersection points between the DTM TIN and
the object polygon are new points of the integrated data set
(Figure 2b, coloured by black).

Another example is given in Figure 3. A road is an object
modelled by lines (Figure 3a, black line) which is buffered
using an attribute “road width”. First, all intersection points
between the middle axis and the DTM TIN are estimated

(Figure 3a, light grey points of the centre axis). This is done
because every triangle has a different inclination and the middle
axis should be best fitted to the terrain represented by the initial
DTM TIN. After buffering the left and right side of the road
contain as much points as the centre axis. Then, the object is
triangulated in such a way that the cross sections situated at the
points of the road centre axis border the triangles of the object
TIN. Thus, it is garanteed that for a profile a change in slope is
allowed. The bordering polygon is then introduced using the
variant of Lenk’s algorithm (Figure 3b).

a) b)
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Figure 3: Integration of a DTM and an object “road*, a) original
DTM TIN and object “road” after buffering, b)
integrated data set

3.2 Optimization process

As mentioned, there are topographic objects of the 2D GIS data
which contain implicit height information. Within the integrated
data set these objects have to fulfill certain constraints which
can be expressed in terms of mathematical equations and
inequations. To fulfill these constraints or to achieve semantic
correctness, the heights of the DTM are changed. Up to now the
horizontal coordinates of the polygons of the topographic
objects are introduced as error-free.

The heights of the topographic objects are estimated within an
optimization process which is based on a least squares
adjustment; these values are unknown parameters. The heights
of the corresponding part of the DTM are introduced as direct
observations for the unknown heights at the same planimetric
position. Equality constraints are introduced using pseudo
observations. Thus, a Gauss-Markov adjustment model is used
and the adherence to the constraints is controlled via weights
for the pseudo observations. Furthermore, inequality constraints
are introduced. The resulting inequality constraint least squares
adjustment is solved using the linear complementary problem
(LCP) (Lawson & Hanson 1995; Heipke 1986; Fritsch 1985;
Schaffrin 1981).

3.2.1 Basic observation equations: The heights which
correspond to the topographic objects of the 2D GIS data and
the heights of the neighbouring terrain are introduced as:

0+9 =2, -7, (1)

i i i

The height Z; refers to the original height, the value Z . denotes
the unknown height which has to be estimated.

In order to be able to preserve the slope of an edge connecting
two neighbouring points P; and Py of the DTM TIN (one of the
two points is part of the polygon describing the object, the other
one is a neighbouring point outside the object) and thus to
control the general shape of the integrated TIN additional
observation equations are formulated:
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3.2.2 Equality and inequality constraints: Each class of
object representation (see Table 1) has its own constraints
which will be derived in the following.

Horizontal plane: Heights of objects which represent a
horizontal plane must be identical. This means, that points P,
with a height Z; and planimetric coordinates X,Y; situated inside
the object boundary (see Figure 4a, black points) must all have

the same value 2,,,, which has to be estimated in the

optimization process. These height values lead to the following
observation equation:

0+v,=2,,-Z, 3)

Additionally, the heights of the bounding polygon points of the
topographic objects must be identical to the height of the
horizontal plane. The height difference between the unknown
object height and the calculated height is used to formulate an
additional pseudo observation (see Figure 4a, dark grey points):
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Figure 4: Equality and inequality constraints of an object “lake”

The neighbouring terrain of the horizontal plane is considered
using the basic observations (1) and (2) (see section 3.2.1). If
the object represents a lake it is necessary to use a further
constraint which represents the relation between the lake in
terms of a horizontal plane and the bank of the lake whose

unknown height values Z . have to be higher than the height
level of the lake:

0>2,,-2 (5)

It is set up for all points marked in black in Figure 4b.

Tilted planes: The objects treated in this paper which can be
composed of serveral tilted planes are elongated objects. In
longitudinal direction these objects are not allowed to exceed a
predefined maximum slope value sy,
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D

no

(6)

s Max =

The example in Figure 5 shows a road which is modelled by
lines and then buffered using the attribute “road width” of the

GIS data base. Here, 2,, and ZAO are the unknown height values

of successive points P, and P, in driving direction of the road
(Figure 5a). D, is the horizontal distance between these points.
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Figure 5: Equation and inequation constraints of an object
C‘rOadi’

In addition, the difference between two successive slope values
which is comparable to the vertical curvature of the object is
restricted to the maximum value ds,,,, (Figure 5a):
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In case of a road, the points P,, P, and P, are successive points
of the middle axis of the object.

Assuming a horizontal road profile in the direction
perpendicular to the middle axis the height values of
corresponding points must be identical:

0+, =2,-Z, (8)

ngq

The values 2n and 2q represent point heights of the centre

axis and the left or the centre axis and the right side of the
buffered object (Figure Sb). These constraints are introduced for
all cross sections whose centre point results from the
intersection between the DTM TIN and the object centre axis
(Steiner points). Those cross sections whose centre points are
original points of the object middle axis are not used to form
this kind of constraint because in the original points the road
may show a change in horizontal direction and slope (Figure
Sb, profile p,). Consequently the cross section is not horizontal.

Finally, the points of any two neighbouring cross sections and
the points in between have to represent a plane:

0+v.=a,+a,X,+a,Y -Z, Q)

In Figure 5b the points of the neighbouring profiles p; and p, as
well as the red point in between represent a point P, of equation
(9). These points have to represent a plane with the unknown

coefficients 4,,a,,a, . X,,Y, are the planimetric coordinates of

point P,, ZAr is the height of P, which has to be estimated. A

special case is the treatment of the points of a cross section
involving an original object point of the 2D road centre axis. As
an example let’s consider the profile p, of Figure S5b. Equation
(9) is set up twice, once for the horizontal profile p; and the
centre point of profile p, (and any point in between), and again
for the horizontal profile p; and the centre point of profile p,
(and any point in between). After the optimization process the
intersection line of the two neighbouring planes can be



calculated. This straight line represents the non-horizontal
profile p,.

3.2.3 Inequality constrained least squares adjustment:
The basic observation equations (section 3.2.1) and the equation
and inequation constraints (section 3.2.2) have to be introduced
in the optimization process which is based on an inequality
constrained least squares adjustment. The stochastic model of
the observations (basic observations and equation constraints)
consists of the covariance matrix which can be transformed into
the weight matrix. Assuming that the observations are
stochastically independent, the diagonal of the weight matrix
contains the reciprocal accuracies of the observations. To fulfill
the equation constraints the corresponding pseudo observation
has to have a very high accuracy and the corresponding
diagonal element of the weight matrix has to be large. The
possibility to solve the optimization process, i.e. the semantic
correctness of the resulting integrated data set depends on the
choice of the individual weights. The algorithm is formulated as
the linear complementary problem (LCP) which is solved using
the Lemke algorithm (Lemke, 1968). For more details see Koch
(2003), the LCP is explained in detail in Lawson & Hanson;
1995; Heipke, 1986; Fritsch, 1985 and Schaffrin, 1981.

4. RESULTS

The results presented here were determined using simulated and
real data sets. Two different objects were used - a lake which
can be represented by a horizontal plane and a road which can
be composed of several tilted planes. The simulated data consist
of a DTM with about 100 height values containing one
topographic object. The heights are approximately distributed in
a regular grid with a grid size of about 25 meters.

The real data consist of the DTM ATKIS DGMS, a hybrid data
set containing regularly distributed points with a grid size of
12,5 m and additional structure elements. The 2D topographic
vector data are objects of the German ATKIS Basis-DLM.
Three different lakes were used bordered by polygons. The
objects are shown on the left side of Figure 1.

4.1 Simulated data

In case of a lake, the basic observation equations (1) and (2),
the equation constraints (3), (4) and the inequation constraint
(5) are used. The unknown lake height is identical to the mean
value of the heights inside the lake. This is true if the
neighbouring heights outside the lake are higher than the mean
height value, i.e. if the inequation constraints (5) are fulfilled
before the optimization begins. It is also true if neighbouring
heights outside the lake are somewhat lower than the mean
height value and equation (3) has a very high weight. Here,
equation (3) was given a weight of 10° times higher than all
other observations. Equation (4) had a rather low weight
because the heights are not original heights of the DTM.

After the optimization process the equation and inequation
constraints are fulfilled, and thus the neighbouring heights
outside the lake are higher than the estimated lake height. All
heights inside the lake and at the waterline have the same height
level; the integrated data set is consistent with the human view
of a lake.

If some heights outside the lake are too low and the heights of
the bank have a high weight, the lake height is pushed down.
Then, the heights outside are nearly unchanged, consistency is
again achieved.

The second simulated data set represents a road with five initial
polyline points. The maximum height difference is 6 m, the
road length is 160 m and the width is 4 m.

The investigations were carried out by using different weights
for the basic observation equations (1), (2) and the equality
constraints (8), (9). Furthermore, the inequation constraints (6)
and (7) were used. Equation (1) was considered for all points of
the bordering polygon, the points of the centre axis and the
points outside the object which are connected to the polygon
points. Equation (2) represents the connections to the
neighbouring terrain. Using the same weight for all
observations results in a road with non-horizontal cross sections
and differences to the tilted planes. After the optimization
process the inequation constraints are fulfilled and the
maximum differences between the initial DTM heights and the
heights of the integrated data set are in an order of half a meter.

Using higher weights (10° times higher than other weights) for
the basic equation (2) and the equation constraints (8) and (9)
leads to horizontal cross sections and nearly no differences to
the tilted planes. The maximum differences between the initial
DTM heights and the heights of the integrated data set are
somewhat bigger than the differences before.

If just the equation constraints (8) and (9) have a high weight,
the equation and inequation constraints are fulfilled exactly.
However, compared to the results before, the terrain
morphology has changed considerably.

The results show, that a compromise has to be found between
fulfilling the equation constraints and changing the terrain
morphology. Using a higher weight of 10° leads to fixed
observations, i.e. the equation constraints are fulfilled exactly.
But, the terrain morphology is not the same as before.

4.2 Real data

The real data sets representing lakes consists of three ATKIS
Basis-DLM objects with 294 planimetric polygon points. The
DTM contains 1.961 grid points with additional 1.047 points
representing structure elements (break lines). The semantically
correct integration was carried out by using the same equations
as in the simulations and high weights for the equation
constraints (3) and for the basic observation equation (1) (10°
times higher than other weights).

The number of basic observations and equation constraints is
2.754; 533 parameters had to be estimated and the number of
inequation constraints is 530. The results show, that all
constraints were fulfilled after applying the optimization. The
differences between the estimated lake heights and the initial
mean height values are very small. The first mean height value
is reduced by 2 mm and the second one by 4 mm. The third lake
is 3,7 cm lower than the original mean height value which is
caused by a higher number of heights at the bank which did not
fulfill the inequation constraint (5).
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Figure 6: Residuals after the optimization process, blue: terrain
is pushed down, red: terrain is pushed up

Figure 6 shows the residuals after the optimization process. The
blue vectors correspond to adjusted height values which are



lower than the original heights. Red coloured vectors refer to
heights which became higher. The figure shows that most of the
heights inside the lakes became higher. Most of the points
which became lower are situated at the border of the lakes.
Nevertheless, a big part of the differences of the left lake
became lower, too. Here, one of the data sets seems to be coarse
erroneous. The maximum differences between the original
heights and the estimated heights are -1,84 m and +0,88 m,
respectively. The right side of Figure 7 shows the result of the
semantically correct integration with respect of the results
without considering the semantics of the lakes (Figure 7, left).
The semantically correct integrated data set shows that all
constraints are fulfilled. The height values inside the lake and at
the water line have the same level. The terrain outside the lake
rises. Summarized, it could be stated that most of the residuals
are rather small in respect of the vertical accuracy of the DTM
of half a meter. The estimated lake heights are nearly identical
to the mean values of the heights inside the lakes, the
constraints are fulfilled exactly.

5. OUTLOOK

This paper presents an approach for the semantically correct
integration of a DTM and 2D topographic GIS data. The
algorithm is based on a constrained Delaunay triangulation and
a least squares adjustment taken into account inequality
constraints.

First investigations were carried out using simulated and real
data sets. The objects used are lakes represented by a horizontal
plane with increasing terrain outside the lake and roads which
can be composed of several tilted planes. The results which are
based on the use of different weights for the basic equations and
equation constraints are satisfying. All predefined constraints
can be fulfilled but a compromise between fulfilling these
constraints and changing the terrain morphology has to be
found.

In the future the impact of blunders has to be investigated
because height blunders or big differences to the equality and
inequality constraints may cause a non-realistic change of the
original height information of the DTM.

Furthermore, the planimetric coordinates of the topographic
objects were introduced as error-free. This may cause a
erroneous height level of the topographic objects. Also the
horizontal accuracy of the GIS objects has to be considered.
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Figure 7: Results of the integration process, left: non-semantic integration, right: semantically correct integration
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