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ABSTRACT:  
 
Crater Size-Frequency Distributions (SFD) on planetary surfaces are crucial to dating the geological age. On the Moon they have 
been employed together with radioactive K-Ar techniques to determine ages of different regions. The launch of the ESA Mars 
Express (MEX) mission on 6 June 2003 with the 9-view camera HRSC (High Resolution Stereo Camera) orbiting instrument and 
subsequent spectacular multi-angle and colour data acquired since January 2004 opens up the possibility of applying the lessons 
learnt on the Moon to Mars. Although there is an on-line web-based cataloguing and mapping system at USGS which shows the 
location and characteristics of some 40,000 craters on Mars (Mars Crater Consortium, MCC) with diameters >5km, these craters 
represent only a tiny fraction of the millions of craters which are believed to be present on the Martian surface. It is highly unlikely 
that there will ever be sufficient resources to map these smaller craters using existing manually-intensive techniques. An automated 
crater detection algorithm has been developed which exploits both image data  and DTMs derived from laser altimetry (MGS-MOC) 
and in future DTMs from HRSC. The algorithm is described and examples of it’s application for a variety of different crater types 
are demonstrated. Central to the application of any automated algorithm and prior to systematic application to the Martian planetary 
surface it is crucial to perform a quantitative assessment of any automated algorithm’s performance. We show results from three 
different approaches here: (1) inter-comparison of automated crater locations with those in the MCC catalogue; ; (2) inter-
comparison of automated crater locations with manually-derived crater locations; (3) simulation of crater images using an idealised 
3D model of a Martian crater changing the illumination conditions.  

 
1. INTRODUCTION 

1.1 Aims 

Impact crater detection and crater size frequency counting have 
a very high priority in Extra Terrestrial Mapping and planetary 
chronological research. In spite of the increasing demand for 
geological and geodetic control over the last few decades, the 
application of machine vision to address this problem has not 
been very successful. The main reasons can be summarized as 
follows:. 
 
a) The “visibility” of impact craters in optical images depends 
not only on the surface scattering behaviour but also on the 
illumination direction, atmospheric state as well as the sensor 
incidence direction.  
b) Some geographical features like small valleys and volcanoes 
have similar morphological characteristics as craters in low-
level feature space.    
c) Impact craters are often concentrated into clusters resulting 
in overlap and for larger structures, multi-ring structures 
frequently occur. This means that the separation of individual 
craters from their background can be very difficult to generalise.  
d) Craters on Mars are frequently eroded due to surface (aeolian 
processes such as dust storms as well as the action of water. 
 
To address these problems, a combinatorial fusion technique has 
been developed to exploit not only image features bur crucially 
3D information. The final objective is to develop a fully 
automated processing system which can accurately detect 
boundary rims of impact craters using raw planetary images and 
3D data with sufficient accuracy for practical planetary research. 
Here we report on an evaluation of the crater detected products 

with simulated crater features, manually detected craters and the 
MCC (Mars Crater Consortium) catalogue (Barlow, 2003). 
 
1.2 Previous research work 

Several methods to automatically detect craters have been 
developed but are not operational yet. The first data mining 
system for planetary images including the functionality for 
impact crater detection was Diamond Eye (Burl et al. 1999). No 
quantitative evaluation was reported. Another case of impact 
crater detection on an asteroid, which appears to be relatively 
successful is Leroy et al. (2001)’s work. The primary aim of 
this research was the automated detection of impact crater and 
3D modelling of asteroids. Recently, Michael (2002) developed 
a crater detection algorithm using an elliptical Hough 
transformation applied to a global MOLA DTM. His result was 
apparently very successful so that the correct shift vector 
between the MDIM and MOLA DEM could be extracted using 
this information. Magee et al. (2003) showed an automated 
impact carter detection by edge processing and template 
matching. Kim and Muller (2003) suggested a similar crater 
detection method but employing ellipse fitting on the DTM and 
optical image.  
 

2. ALGORITHMS 

The overall processing steps are shown in Figure 1. The 
procedure consists of 3 stages. Firstly, target edge segments in 
so-called ROIs (Region of Interests) are defined in a focusing 
stage using a GLCM (Grey Level Co-occurrence Matrix) 
texture classifier and edge direction analysis. These 
“Preliminary crater edges” are then organized to find optimal 
ellipses in a second processing step. Optimal ellipses for impact 
craters are evaluated using a fitness function and refined using a 



 

Hough transformation. They are then finally verified using 
template matching. 
In the case of small impact craters, which are classified by 
measuring their ROIs’ size, the RoIs are directly fitted to an 
optimal ellipse without any further processing.  
 

 
Figure 1. Overall work flow and processing steps 

 
2.1 Focusing 

When applying the first stage, there are usuallye too many 
connected edge segments in an optical image. For example, 
hundreds of edges appear in a single MOC image even on a 
relatively flat  area. Therefore it is impossible to apply these 
algorithms to these edges to drive crater shape. A focusing 
strategy using the GLCM and edge direction analysis is used 
here to reduce the search space.   
At first, an edge is localized by it’s ROI, which is defined 
through GLCM texture classification. Then within a localized 
edge area, edge thresholding is applied.  
However, extracted edges usually include not only crater rims 
but also shadow boundaries. As seen in Figure 3, which is 
generated from a generalised 3D crater using a Phong shading 
model, four different shading regions can be defined and the 
boundaries of each shading form double structured edge lines. 
The real crater edge is usually the boundary between the 
illuminated and shadowed areas.  
 

 
Figure 2. Edge formation geometry in specific illumination 

condition 
 

 
(a) Simulated image using 

hill shading for a crater DTM 
model using a Phong shading 
model Solar Evevation =45°, 

Solar Azimuth=0°) 

 
(b) Detected edges from 

image (a) 

 
Figure 3. Simulated crater image and edges 

 
The analysis of edges in these four regions by looking at the 
directional properties shows that the centre point of the crater 
rim part should satisfy the following condition. 
 

2
πϕθ =+                   (1) 

where θ = sun azimuth angle, 
           ϕ=edge direction of centre point 

 
Additionally the extent of one crater edge rim is limited by 
 

ϕ c - π/2 < ϕ < ϕ c + π/2         (2) 
 
where ϕ c = edge direction of centre point ,  
           ϕ =edge direction of crater rim 
 
assuming that there are no hidden edge lines from erosion or 
other illumination effects. 
The detection of preliminary crater edge can be simply 
implemented by rotating the edge mask or a algorithms 
discussed below.   
At first, the marginal degree of the central peak is defined in 
individual ROIs by (3), 
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where Dx = X dimension,  
           Dy =Y dimension of connected component 
 

so that if the thresholded part includes edge segment, which 
satisfy (4)  

 
ϕ c +ϕ m< ϕ < ϕ c +ϕ m   (4) 

 
where ϕ c : edge direction of centre point.  
Then we can define this as a preliminary crater rim edge. 

Then re-arranging all of the edge pixels with r (estimated centre 
from initial conic fitting) and ϕ space after finding the 
maximum intensity point in each ϕ s  interval to detect seed 
points. By applying region growing with these seed points using 



 

4 connectivity within a fixed edge intensity level, the extent of 
preliminary crater rim edges can be precisely defined as seen in 
Figure 4.  

 
(a) Rim edge detection from 

simulated image  

 
(b) Rims detected in 

MOC optical image image 
(MOC WA image 

M0103863)  
 

Figure 4. Preliminary crater rim detection results 
 
2.2 Edge Organization  

The preliminary crater rims are defined in the focusing stage. 
However, it is necessary to organize these edges into more 
useful and general shapes, particularly an optimal ellipse (in the 
case of a geometrically corrected image, it is usually a circle). 
The most well known edge organization method for circle or 
ellipse detection is the Hough transformation and there are a lot 
of modified versions for efficient detection of ellipses or circles 
(Atherton and Kerbyson, 1999, Yuen at al. 1989, Olson 1998). 
However, none of them appear to be sufficiently robust to 
guarantee the reliable detection of impact craters from the 
preliminary crater rim edge according to our experience. Here, 
we address this problem using conic section fitting. 
Among several conic section fitting methods, two algorithms 
are employed in our scheme. One is Pilu’s Direct Least Squared 
(DLS) fitting method (Pilu et al, 1999) and the other is 
Kanazawa and Kanantani (1996)’s conic fitting by optimal 
estimation (OE). Both appear to be reliable even with quite 
noisy data but Kanazawa and Kanantani’s fitting scheme shows 
much higher accuracy with relatively short arcs, which are 
frequently observed in Martian crater rims. Kanantani and Ohta 
(2004) developed an osculating ellipse (OE) detection algorithm 
by fitting conic sections but their method only appears to work 
if the edge segment covers more than half of the ellipse.  This 
assumption is usually not valid for most of the impact craters 
(>100 pixels in optical image), where one connected edge 
frequently covers only a small percentage of an ellipse 
according to our experience. On the other hand, the CPU cost of 
Kanazawa and Kanantani’s covariance tensor approach and 
iterative renormalization is quite expensive compared with 
Pilu’s DLS fitting scheme. Therefore, we developed an edge 
organization scheme, which employs DLS fitting for an 
intermediate stage and refines organized edges by OE fitting. It 
consists of two sub-stages: primitive arc definition and arc 
organization. 
 
At first the possible path map is constructed using the following 
condition.  

jijyjxiyix CCSSMaxSSMax −<+ ),(),(      (5) 

 
where Six, Sjx : geometrical x size of edge segment i,j, 
           Ci,Cj : centre location of edge segment I,j 
 
Then a check is made of fitness for every possible arc pairs by 
(6), which measures the matching ratio between the fitted conic 
and edge points.  
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where T(i,j) : thresholded edge image 
           e(i,j) : binary image of fitted conic 
           s : kernel for binary erosion in size  
            n :  0.1*radius of  fitted conic, if 0.1*radius < 1, n=1 
 
If the score of such a fitness function is higher than a  given 
threshold value, this is considered a primitive arc. These 
primitive arcs are then organised as optimal ellipses by other 
kinds of path checking procedure. If the overlap ratio between 
two primitive arcs is more than some pre-specified thresholding 
value, that path is considered as a possible one for optimal 
ellipse formation. The method for ellipse formation is a very 
simple process using the cycle detection in an undirected graph, 
which is constructed from the previous path search step.  
 

 
(a) edge and fitted arc (b) optimal 

preliminary ellipse 
Figure 5. Ellipse organization 

 
2.3 Refinement and verification 

Onto the edge points of the optimal preliminary ellipses, OE 
conic fitting is applied and fitness is evaluated once more. If 
fitness is higher than a threshold value (usually 0.4), it is 
considered as a potential crater boundary. As seen in Figure 6 
(a), the outlines of crater rims are not correctly matched with 
the finally fitted ellipse so that one more refinement step is 
necessary. This step uses a Hough transformation at several 
fixed radii and centre point ranges with different margins.  
The final procedure for crater detection is the verification stage 
by template matching. As we already know the size of the 
detected crater, it is possible to examine the correlation value 



 

between a predefined template and a detected crater ellipse. At 
first, the detected ellipse is resampled to a comparable size as 
the template and transformed to similar illumination conditions 
(sun azimuth angle is used here). Exact resizing and rotation is 
not feasible so that the Gruen (1991) image matching scheme, 
which has been the best solution for the registration between 
distorted image patches, is introduced to address geometrical 
distortions, due to effects such as foreshortening in the detected 
crater. The correlation value by caters of various sizes and 
shapes is illustrated in.  
 

 
Figure 6. First outline of crater rim and refinement by Hough 

transformation and verification with template 
(Black : verification range by hough and template matching, 

White : verified and refined crater MOC WA image 
M1103889) 
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Re-sampled 
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by Gruen 
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Corr : cross-
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Figure 7. Correlation value by verification with template 

2.4 Crater detection based on DTM 

In some cases, the detection results on the optical image are 
poor, because the crater rim arcs are too short, which result 
from erosion, compared with their radii. To compensate for this, 
a DTM based crater detection is introduced. 
It is much simpler than the corresponding optical image case. 
The focusing method is replaced with a high slope area 
extraction. Instead of using the local edge of the optical images, 
ridge points from a gridded DTM (Wood, 1996) are used for the 
ellipse fitting. The big impact craters, which are not detected in 
optical images due to insufficient robustness of the edge linking 
method, can be easily identified here.  
 

3. RESULTS & ASSESSMENTS 

Final products are evaluated by visual inspection and 
quantitative assessments are made through comparisons with 
MCC and manually detected crater ellipses.  
 
3.1 Detection result on DEM 

Crater detection is performed with a MOLA DTM, gridded at 
256 m /pixel at the equator, which is shown in Figure 8. One 
characteristic of such DTM crater detection results is a high 
detection ratio for big craters with radii>15 km, even though the 
impact craters with small radii(< 4-5km) are usually not 
detected. Therefore it is highly complementary to the weakness 
of the detection results for optical images.  
 

(a) E 99.226-101.58° N 
23.375-25.72° 

 
(b) E 119.476-121.828° N 
20.828-23.164° 

Figure 8. Crater detection on MOLA DTMs  
 

3.2 Detection results on optical image 

Several examples of crater detection evaluation are shown in 
Figure 9. The detection ratio of relatively small impact craters 
(8<R<about 60 pixel) is excellent but large or multi-ringed 
structured crater show relatively poor detection accuracy.  
For quantitative assessment, quality assessment factors (Shufelt 
& McKeown, 1993), originally developed for building 
detection work, are introduced as follows: 
 
   Detection Percentage =  100 TP /(TP+FN) 
   Branching Factor = FP / TP                                            (7) 
   Quality Percentage = 100TP / (TP + FP + FN) 
 



 

where TP: TRUE POSITIVE - Both data sets (detected crater 
and comparison data set) classify the pixel as being part of a 
crater 
TN: TRUE NEGATIVE - Both data sets classify the pixel as 
being part of the background 
FP: FALSE POSITIVE - Detected data set classifies the pixel 
as a crater, comparison data set classifies it as background. 
FN: FALSE NEGATIVE - Detected data set classifies the pixel 
as background, comparison data set classifies it as a crater 
 
However, if we apply these factors directly to the optical image 
results, the detection ratio is likely to be very low, because the 
non-detection of large sized impact craters significantly reduces 
the detection ratio. So the QA factors are modified for impact 
craters, which have higher detection percentages than 50%, 
which are considered as true detection. Detection results by this 
scheme are shown in Table 1. 
 

 
(a) Crater detection on MOC-

WA level 2 image 
(M0203967) 

(b) Crater detection on MOC-
WA level 2 image (M0203967)

 
(e) Crater detection on MOC 
WA level 1 image M0300749 

 
(f) Crater detection on MOC-

WA level 2 image (M0900109)
Figure 9. Crater detection examples for craters of various sizes 

and shapes. Note that heavily eroded craters are not 
currently detected, 

 

 
(a) Centre points of craters in 

MCC overlaid on MOLA 
DEM 

(b) Crater detection results 
with MOC-WA level 2 image 
(M0101958)  same area with 

case (b) 

Figure 10. Inter-comparison with MCC data sets and detected 
craters on MOC WA image (white + ; Barlow data 
sets , Black + : Kuzmin data sets) 

 
Manual measurement 

 
MCC 

(Barlow) 
 

Small 
size 

(R < 8 
pixels ) 

Large 
Size 

(8 <R<60)

True 
positively 
detected 

crater 
number 

60 198 120 

False 
positively 
detected 

crater 
number 

False positive has no meaning 
for the  MCC inter 

comparison, because MCC 
data sets don’t aim to 

catalogue all craters in target 
area 

74 10 

False 
negatively 
detected 

crater 
number 

12 32 12 

Detection 
percentage 83% 86% 90% 

Branching 
factor - 0.37 0.08 

Quality 
percentage - 65% 84% 

*True negative has no meaning for individual crater detection  
 
Table 1. Impact crater detection  ratio by intercomparison with 

MCC and manual measurement in 12 random MOC 
WA images 

 
3.3 Simulation with different illumination condition 

As far as we have experienced, the illumination condition is 
crucial for the positional accuracy of the detected impact crater. 
To assess the robustness of an algorithm with different ranges 
of illumination angles, simulated crater DTMs whose diameter 
was 100 pixels and which have vertical 3D profiles of well 
known craters proposed by Duxbury (1991), was employed. 
Hill shaded images were generated at 10º intervals within the 
range of 0-360º sun azimuth angle and 20-90º elevation angles 
using a Minnaert surface’s reflectance model which is given by 
(8). 
 
                                                                              (8) 
                                                                                  
where B: brightness coefficient  ,  
           k : the constant of  Minnaert exponent 
           e: emission angle, I ; incidence angle 
 
The results show very good agreement with actual (modelled) 
positions except at very high sun elevation angles around 90º, 
which rarely occurs for real image acquisitions. 
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Figure 11. Detected impact crater's positioning accuracy in 
simulated data 

 
4. CONCLUSION 

Automated impact crater detection algorithms were developed 
to identify various sizes of impact craters under different 
conditions such as illumination angles and geographical 
complexity. The algorithm developed here shows a reliable 
detection accuracy for crater rim locations under many different 
conditions when the automated crater locations were compared 
against the MCC catalogue and manual measurements. 
Currently, the MCC catalogue covers craters, which have 
diameters >5km. The algorithm described here appears to have 
great potential for extending the range of the MCC catalogue to 
a much wider range of crater diameters especially with the 
release of new high resolution Mars optical images such as 
HRSC, where manual measurements are unlikely to be 
practicable.  
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