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ABSTRACT: 
 
In many cases, the derivation of high-resolution digital terrain models (DTMs) from planetary surfaces using only conventional 
digital image matching is a problem. The matching methods need at least a stereo pair of images covering an area with sufficient 
texture. Often though, space missions provide only a few stereo images and planetary surfaces often possess insufficient texture. 
This paper describes a method for the generation of high-resolution DTMs from planetary surfaces using digital optical images 
developed by the authors over a number of years. The suggested method, termed “multi-image shape-from-shading” (MI-SFS), is 
able to generate a planetary DTM with an arbitrary number of images of low texture. Therefore, MI-SFS is a suitable method in 
areas, in which image matching fails to yield a DTM. 
The paper contains a short review of the theory of MI-SFS, followed by a presentation of results, which were obtained with images 
from NASA’s lunar mission Clementine. These results constitute the first practical application of MI-SFS using extraterrestrial 
imagery. The reconstruction of the lunar surface is made with the assumption of different kinds of reflectance models (Lommel-
Seeliger and Lambert model). The represented work shows that the derivation of a high-resolution DTM of real digital planetary 
images by means of MI-SFS is feasible. 
 
 

1. INTRODUCTION 

Digital terrain models (DTMs) are an important information 
source for many applications in planetary sciences, such as for 
the description of local and regional topographic features, 
slopes, discontinuities of the surface and thus possible flow 
direction of liquid material and isostatic considerations to name 
only a few. On Earth, such DTMs can normally be generated by 
means of conventional photogrammetry including digital image 
matching. But planetary missions in general are not topographic 
missions, and therefore usually only a few stereoscopic images 
are available. Additionally, some planetary stereo pairs have a 
disadvantageous camera configuration (e.g. a poor base-to-
height ratio or different images resolutions) and in many cases 
planetary images have poor image texture, which is an obstacle 
to automatic matching methods. For this reason, in many 
regions no complete high-resolution DTM of planetary bodies 
can be made available by means of conventional 
photogrammetric methods. 
 
Besides photogrammetry, there are other methods to generate a 
DTM of a planetary body. One example is laser scanning as 
employed by the “Mars Orbiter Laser Altimeter” (MOLA) 
flown on the Mars Global Surveyor mission (Smith et al., 
2001). MOLA acquired high-precision height information along 
one dimensional tracks, but despite simultaneous processing of 
multiple orbits, the horizontal resolution of the resulting data set 
is rather limited. 
 
For these reasons, it is of great interest to many planetary 
scientists to have at their disposal reconstruction methods, 
which are able to work with a single image and/or with images 
including low texture, such as “multi-image shape-from-
shading” (MI-SFS). 
 

MI-SFS has been developed by our group over the last years. A 
detailed description including results with simulated and aerial 
images from a desert area on Earth are given in (Heipke, 1992; 
Heipke, Piechullek, 1994; Piechullek, 2000). First 
investigations with real digital planetary images from NASA’s 
lunar mission Clementine of 1994 are presented in (Lohse, 
Heipke, 2003). This paper deals with advanced results using 
Clementine images. Similar investigations, however with the 
goal to produce orthophoto mosaics from images taken at 
different illumination directions, are described in (Dorrer, 
2002). Other approaches worth mentioning are the iterative 
multi-image DTM reconstruction by (Gaskell, 2003) and the 
integration of image matching and shape-from-shading 
suggested by (Fua, Leclerc., 1995). 
 
 

2. MULTI-IMAGE SHAPE-FROM-SHADING 

For solving the DTM reconstruction problem by SFS, the image 
formation process has to be modelled and inverted with respect 
to the parameters describing the object space (Horn et al., 
1989). Like other SFS methods, MI-SFS is based on the fact 
that surface patches, having different inclination relative to the 
light source, are imaged with different brightness. MI-SFS uses 
these variations in the grey values for the reconstruction of the 
surface. In contrast to classical SFS methods, MI-SFS can deal 
with an arbitrary number of images and spectral bands, is based 
on a perspective transformation between image and object 
space and relates directly the grey values to the heights of a 
DTM and the parameters of a radiometric model, which 
describes the surface reflectance behaviour. The DTM heights 
as well as the parameters of the radiometric model are estimated 
from the image grey values in a least-squares adjustment. 
 
For MI-SFS it is assumed that the albedo in the observed area is 
constant everywhere, because the method does not differ 



 

between albedo and topographical variations as reason for grey 
value changes in image space. 
 
For the mathematical modelling of the bi-directional reflectance 
(BDR), we use the Lunar-Lambert model (McEwen, 1991) for 
describing the object surface. This radiometric model is a linear 
combination of two different models, the Lambert and the 
Lommel-Seeliger model. 
 
The Lambert law is one of the simplest and most frequently 
used reflectance models. Specific descriptions and equations of 
the Lambert law can be found in (Horn, 1986; Hapke, 1993; 
Zhang et al., 1999). The Lambert law describes a surface, which 
emits the incoming irradiance uniformly in all directions. The 
model is based on the assumption that the brightness of a 
surface depends only on the incidence angle i, the angle 
between the direction of illumination s  and the surface normal 
n  (figure 1). This means, that a surface looks equally bright 
from every viewing direction. The Lambert model characterizes 
the reflectance from bright surfaces very well. 
 
The second used radiometric model is the Lommel-Seeliger 
law. In order to extend the assumption that light reflection 
occurs at the boundary surface between two media only, the 
Lommel-Seeliger law was derived by Seeliger (Horn et al., 
1989; Hapke, 1993; Rebhan, 1993). In this model, light 
scattering is assumed to take place at the individual particles 
within a layer of infinite thickness below the apparent surface; 
the irradiance observed at a sensor comes from light scattered 
by all particles in the medium lying within the field of view of 
the sensor. Therefore, the Lommel-Seeliger law does not only 
contain i but also the emittance angle e between viewing 
direction v  and n (figure 1). The significant increase in 
brightness for large e is due to the fact that with increasing e the 
area of the imaged surface also increases, and consequently a 
greater part of the surface layer contributes to the brightness 
observed in the sensor. In contrast to the Lambert law, the 
Lommel-Seeliger law describes dark surfaces better. 
 
Using first only the Lommel-Seeliger reflectance the model 
grey value G(x’,y’) in image space can be formulated based on 
the well-known camera equation (e.g. Horn, 1986): 
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where G(x’,y’) model grey value at image point P’ 
 x’,y’ image coordinates of P’ (proj. of P into image space) 
 k rescaling constant for transformation of image  

irradiance into model grey value G(x’,y’) 
 a exponent of light fall-off 
 γ  angle between optical axis and the ray through P and 

P’ 
 d aperture of optical lens 
 f focal length of optical lens 
 ES scene irradiance 
 ρ(X,Y) albedo of the object surface at P(X,Y,Z) 
 n  normal vector of the object surface at P(X,Y,Z) 
 s  vector in illumination direction at P(X,Y,Z) 
 v  vector in viewing direction at P(X,Y,Z) 

The scene irradiance ES, the parameters (a, d, f, k and γ) and the 
albedo ρ are assumed to be constant values and are merged into 
a so called reflectance coefficient AR: 
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Thus, the model grey value G depends on AR, s , v  and n : 
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Figure 1. Configuration of multiple images, camera parameters 

and the relationship between s , n , v  
 
In the case of the Lunar-Lambert model the model grey value G 
looks as follows: 
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The parameter Λ controls the weighting between the Lambert 
and the Lommel-Seeliger term. The light source in this 
approach is assumed to be a distant point with a known 
position. The influences of a possibly existing atmosphere are 
considered to be constant, and thus part of AR. Moreover, the 
parameters of the interior and the exterior orientation are 
assumed to be known from a camera calibration and a 
previously carried out bundle adjustment. 
 
For the purpose of the object surface description, a geometrical 
and a radiometrical surface model are introduced. The 
mathematical description of the geometric model is given by 
means of a DTM with a simple grid structure, which is defined 
in the XY-plane of the object space. The roughness of the terrain 
is the decisive point for the choice of the mesh size of the grid. 
An independent height Z(Xk,Yl) is assigned to each grid point 
(Xk,Yl) of the DTM. A height Z at an arbitrary point is 
interpolated from the neighbouring grid heights, e.g. by bilinear 
interpolation. At each point of the object surface, n  and thus 
the angles i and e become a function of the neighbouring Zk,l. 
 
A radiometric surface model is introduced to establish the 
connection between the geometric surface model and the 
reflectance behaviour of the surface. Each DTM grid mesh is 
divided into several object surface elements of constant size. The 
size is chosen approximately equal to the pixel size multiplied by 
the average image scale factor. Each object surface element is 
assigned the same reflectance coefficient AR. 



 

Since we assume, that s  and the parameters of orientation of all 
images j, and thus also all v j, are known, the only unknown 
parameters for the computation of G(x’,y’) (equation 4) are the 
parameters of the object surface model, the DTM heights Zk,l 
and AR. Each considered object surface element can be 
projected into the image space of each used image j using the 
well known collinearity equations. At the resulting position 
Pj

’(x’,y’) the image grey value gj(x’,y’) can be resampled from 
the recorded grey values. The gj are considered as observations 
in a least-squares adjustment for the estimation of the 
unknowns. The corresponding observation equations read: 
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where vj(x’,y’) residuals of observed grey value in image j 

 ,
ˆ

k lZ  DTM-heights (k – column; l – row), unknown 
 ˆ

RA  reflectance coefficient, unknown 

 G model grey value 
 gj observed grey value in image j 
 
After inserting equation (4) into equation (5) we obtain: 
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Equation (6) is non-linear with regard to ,

ˆ
k lZ , and for this 

reason initial values have to be available for the unknown 
object space parameters ,

ˆ
k lZ  and ˆ

RA  for carrying out the least-
squares adjustment. 
 
 

3. MI-SFS INVESTIGATIONS  

In order to investigate the proposed method with real 
extraterrestrial imagery we have selected suitable overlapping 
images from NASA’s 1994 scientific lunar mission Clementine. 
A detailed description of the Clementine mission is published in 
(Nozette et al., 1994). 
 
At the beginning of this section we investigate and discuss the 
case of a one-image analysis by means of MI-SFS. After that, 
we carry out the multiple-image analysis and determine the 
radius of convergence of the method. 
 
3.1 Input data 

For the reconstruction of a surface by means of MI-SFS it is 
necessary that following information and data is available: 
 

• one or more digital images 
• interior and exterior orientation of the images 
• sun position during data acquisition for each image 
• initial values for the unknowns (heights Zk,l and AR) 

 
For our investigations we selected images from the 
Ultraviolet/Visible (UV/Vis) digital frame camera, a medium 
resolution camera based on CCD-technology. We chose two 
images (figure 2) which were taken from different orbits. Image 
no. 334 is an oblique image with an off nadir angle of 

approximately 12.2 degrees. The second image no. 338 was 
recorded when the camera was tilted sidewards over the same 
region with an off nadir angle of about 46.8 degrees. The two 
images were recorded with a time difference of 20 hours. We 
assume that during this period of time no changes happened in 
the observed area. The mean geometric resolution of a pixel in 
both images is about 180 m. In the overlapping part of the two 
images an area with a size of 24.3 x 24.3 km2 was chosen. The 
altitude difference in this region is about 1.3 km. The selected 
area of the moon is part of the “Northern Mare Orientale Basin” 
(between 16.3° and 14.3° South and 87.3° and 90.9° West) and 
is depicted as the white rectangles in the two images (figure 2). 
The area is divided into 54 x 54 DTM grids with a mesh size of 
450 m. Thus, in total there are 3025 DTM-heights. Each grid 
mesh consisted of 3 x 3 object surface elements with a size of 
150 x 150 m2. 
 

 
Figure 2. Selected images: no. 334 (l.), no. 338 (r.) 
 
3.2 One-image analysis 

In the following, we carried out analyses with one image; 
assuming Lambert (L) and Lommel-Seeliger reflectance (LS). 
This means, that Λ, the weighting parameter for the ratio of the 
two models, takes the value zero and the value one, 
respectively. 
 
We introduce a manually measured DTM as initial-DTM. This 
DTM was measured several times by different operators using a 
digital photogrammetric workstation. For the unknown 
reflectance coefficient AR we use the mean grey value of the 
input images as initial value. 
 
The internal accuracy of the manually measured DTM is about 
80 metres. However, the stereo configuration of the images was 
not optimal and for this reason the measurement of the DTM 
cannot be regarded as reference. Nevertheless, we compared the 
obtained DTMs with the manually measured DTM to calculate 
the mean offset Z0 and the standard deviation rms (table 1). 
These parameters include the inaccuracy of the initial-DTM. 
For the interpretation of the accuracy parameters it should be 
noted that the mean position change in the two images of about 
one pixel (pixel size of 23 µm) conforms with a height change 
in the DTM of approximately 360 metres. 
 
No. Image Model Absolute 

DTM-height 
Iterations Z0 [m] rms [m] 

1 338 L corner no conv. - - 
2 334 L corner no conv. - - 
3 338 LS corner 13 14.7 156.1 
4 334 LS corner no conv. - - 
5 338 LS centre 16 19.3 156.9 
6 338 LS edge 14 8.9 158.3 

Table 1. Results of the one-image analyses 
 
With the assumption of a Lambert surface the calculations 
diverge. Analysis no. 3 assuming a Lommel-Seeliger surface 
converges after 13 iterations. The rms value lies below a half 



 

pixel in image space and is in the range of the measurement 
accuracy of the initial DTM. With this knowledge we conclude 
that the observed area seems to be a Lommel-Seeliger rather 
than a Lambert surface. The analysis with image 334, assuming 
Lommel-Seeliger, does not converge. Reasons for this 
behaviour are discussed in section 3.3. 
 
From one image the scale factor between image and object 
coordinate system cannot be determined. Therefore, we fix one 
DTM-height at the boundary of the observed area as constant, 
to guarantee the determination of absolute DTM-heights. The 
reason for choosing a boundary position is, that if there is 
height information for the regarded surface, then these height 
values come in all probability from the neighbouring region 
with sufficient texture computed by means of image matching. 
To demonstrate that the algorithm is independent of the chosen 
position of the introduced absolute DTM-height, we carried out 
analysis no. 3 (table 1) with two other heights. Analysis no. 5 is 
computed with a constant height at the centre and analysis no. 6 
with a height at the middle of an edge. The normally used 
constant DTM-height lies at a corner of the observed area. 
 

 
Figure 3. Resulting DTMLS, 338 (height-exaggeration factor 2x) 
 
Figure 3 shows DTMLS, 338 of analysis no. 3. A comparison of 
the orthoimage and the model grey values, both computed with 
the initial DTM, and the model grey values, computed with 
DTMLS, 338, is shown in figure 4. 
 

 
Figure 4. Image 338: orthoimage (l.), model grey values of 

initial DTM (m.) and of DTMLS, 338 (r.)  
 
In the model grey values of the initial DTM, vertical striping 
effects along the measuring directions of the operator can be 
seen. This demonstrates that the manually measured DTM is 
not of high accuracy. The resulting DTMLS, 338 corresponds 
much better to the orthoimage (figure 4 left and right), although 
a few visible structures in the images, such as craters and 
valleys, are not visible in DTMLS, 338. In a comparison of an 
enlargement of the model grey values of DTMLS, 338 and the 
same enlarged area of the orthoimage (figure 5 centre and right) 
some blobs and grid structures are visible. The grid structures 
are an indication, that the chosen meshes of the geometric 
surface model may not be sufficiently small. We are still 
investigating possible reasons for the visible blobs. 
 

 
Figure 5. Model grey values of DTMLS, 338 (l.), enlargement of 

marked area (m.) and same area in orthoimage (r.) 
 
3.3 Error diagnostics 

In this section we go into the matter of the non-convergence 
using image 334 assuming Lommel-Seeliger reflectance. A 
comparison of the orthoimage and the model grey values 
calculated with the initial DTM (figure 6) shows, that the grey 
value differences are extremely large. The model grey values 
are 22 percent darker than the observed grey values. This is 
probably a reason that the algorithm computes wrong 
DTM-heights and diverges. 
 

 
Figure 6. Image 334: orthoimage (l.), model grey values (r.) 
 
The following causes are possible reasons for the large grey 
value differences: 
 

• incorrect radiometric calibration of image no. 334 
• assumption of a wrong reflectance model 

 
With the given information there is no way to separate these 
effects from each other. The only possibility is to adjust the 
observed values to the model using a simple mathematical 
transformation without investigating the physical meaning. To 
compensate the encountered radiometric problems a change of 
the grey values in image 334 as described in table 2, is carried 
out. 
 

Mean model grey value G 
[W·sr-1·m-2]  

Mean grey value of orthoimage g 
[W·sr-1·m-2] 

3.28 4.20 

0G = a + m g⋅  

Modification Offset a0 [W·sr-1·m-2] Scale factor m 
m1 0.00 0.78 
m2 2.06 0.29 

Table 2. Modification parameters for image 334 
 
The first modification method m1 is a change of the grey values 
in image 334 with only a scale factor. The second variant m2 is 
a linear accommodation of the grey values. The simplest 
concept, only an offset, is not useful, because due to the fact the 
G is a linear function of AR (see equation 4) after using the first 
iteration the correction of the unknown reflectance coefficient is 
the same as the offset computed a priori. Table 3 shows the 
results computed with the modified image 334. 
 
The computation diverges if we use only the scale factor. If we 
use the linear change, the algorithm converges. In comparison 
to the analysis with image 338 the result with image 334m2 is 



 

not very good. Also the high number of required iterations is an 
indication of a relatively poor result. Compared to the analysis 
with image 334, however, this result is a significant 
improvement. It should be recalled that the obtained rms 
corresponds to only 2/3 of a pixel. Figure 7 shows the 
orthoimage and the model grey values, both computed with the 
initial DTM, and the model grey values, computed with  
DTMLS, 334m2. 
 
Image Comment Iterations Z0 [m] rms [m] 
334m1 only scale factor no conv. no conv. no conv. 
334m2 linearly changed 42 79.5 242.7 
Table 3. Results with modified image 334 
 
 

 
Figure 7. Image 334m2: orthoimage (l.), model grey values of 

initial DTM (m.) and of DTMLS, 334m2 (r.) 
 

 
Figure 8. Model grey values of DTMLS, 334m2 (l.), enlargement of 

marked area (m.) and same area in orthoimage (r.) 
 
The orthoimage shows less contrast than the orthoimage in 
figure 6. This happens, due to the used scale factor (m ≈ 0.3). At 
the beginning the model grey values show the already reported 
strips caused by manual measurement (figure 7 centre). The 
model grey values computed with DTMLS, 334m2 (figure 7 right 
and figure 8 centre) show again some blobs. The resulting 
DTMLS, 334m2 is illustrated in figure 9. 
 

 
Figure 9. DTMLS, 334m2 (height-exaggeration factor 2x) 
 
In comparison with DTMLS, 338 (figure 3), DTMLS, 334m2 exposes 
the consequences of contrast reduction of image 334. The 
resulting DTM is smoothed. 
In order to demonstrate that the linear modification applied to 
image no. 334 does not have a negative effect if orthoimage and 
model grey values are of approximately equal brightness, we 
have also applied the modification to image no. 338. As 
expected, the result does not show significant changes to the 

computation with the original image (see analysis no. 3, table 
1). After 19 iterations the accuracy parameter Z0 has the value 
of 42.6 metres and a rms of about 148.7 metres. 
 
3.4 Two-image analysis 

The advantage of applications using multiple images with 
different exterior orientations is that an additional geometric 
stabilisation constraint, the correspondence between the images, 
is added to the determination of the surface. In addition, further 
images provide independent grey value information for the 
reconstruction of the unknown DTM heights. Compared with 
the one-image analysis, it is unnecessary to introduce a known 
height as a scale factor, because homologous image rays 
intersect in the appropriate object point. In this way, the 
definition of absolute heights is guaranteed. 
 
If we use the two described original images, the computation 
failed as expected. For this reason, we carried out the two-
image analysis using the modified images 334m2 and 338m3. 
The analysis converges after only four iterations (table 4). 
 
Images Comment Iterations Z0 [m] rms [m] 
334m2 / 338m3 linearly changed 4 -19.2 140.1 
Table 4. Result of a two-image analysis using modified images 
 
The fast computation and the values of the accuracy parameters 
are indications of a good reconstruction. DTMLS, 334m2, 338m3 
(figure 10) shows that the poor grey value information of image 
334 could be overcome by the second image. 
 

 
Figure 10. DTMLS, 334m2, 338m3 (height-exaggeration factor 2x) 
 
3.5 Radius of convergence 

To investigate the radius of convergence of MI-SFS, we have 
inserted different initial DTMs into the algorithm. These DTMs 
differ from the manually measured DTM by an offset a0 and a 
scale factor m. The height differences are chosen in a way that 
the mean position change of a surface element in the two 
images is a multiple of the pixel size. As mentioned in section 
3.2, a pixel change in the images conforms with a height change 
of about 360 metres. Using equation 7, 15 different initial 
DTMs were computed (table 5). 
 
The results of the two-image analyses assuming Lommel-
Seeliger reflectance and computed with different initial DTMs 
are presented in table 5. The numerical results show, that the 
radius of convergence of MI-SFS is approximately four pixels 
which conforms with an offset a0 of about 1440 metres. It 
should be noted, that the algorithm produces a correct result 
also starting from a horizontal plane located at the average 
height in the investigated area (third line of table 5). 
 



 

( )0Xi M Mi MZ Z a m Z Z= + + −     (7) 

 
where MZ  mean value of the manually measured DTM 
 ZMi DTM-height no. i of the manually measured DTM 
 ZXi DTM-height no. i of the destination DTMX 
 m scale factor 
 a0 height offset 
 

DTM parameter Analysis and accuracy parameter 
Scale factor m Offset a0 [m] Iterations Z0 [m] rms [m] 

1 0.0 4 -19.2 140.1 
0.5 0.0 9 -8.4 146.3 
0 0.0 7 -9.5 150.5 
1 360.0 6 36,3 148.4 

0.5 360.0 18 14.2 145.4 
1 720.0 12 35.4 148.4 

0.5 720.0 14 15.6 143.1 
1 1080.0 18 16.5 142.3 

0.5 1080.0 16 21.4 143.6 
1 1440.0 29 11.6 141.7 

0.5 1440.0 26 16.5 142.6 
1 1800.0 17 1801.9 1807.9 

0.5 1800.0 83 14.5 147.0 
1 2160.0 10 2184.9 2190.2 

0.5 2160.0 18 2174.5 2181.4 
Table 5. Radius of convergence using two images 
 
 

4. CONCLUSIONS 

The represented work on MI-SFS shows that the derivation of a 
high-resolution DTM of real digital planetary images by means 
of MI-SFS is feasible. The one-image and multiple-image 
analyses are carried out using imagery from the lunar mission 
Clementine. The obtained results shows that MI-SFS is a 
method which is able to close the gaps in DTMs determined 
with other reconstruction methods. Furthermore we show, that 
the required initial values have a radius of convergence of about 
four pixels (in this case of about 1440 metres). 
 
The computation with one of the images was not successful. In 
this case we developed a simple, and successful method which 
modified the observed grey values. In order to do so, we also 
needed an initial-DTM of the area, and although we have not 
yet explicitly checked this assumption, we believe that we can 
compute the grey value modification based on the DTM which 
serves as initial height values for the whole approach. 
 
In future we will intensify our investigations to simultaneously 
process two and more images within MI-SFS. We will also try 
to increase the geometric accuracy by introducing more 
sophisticated object surface models (one times one pixel DTMs 
with appropriate smoothness constraints, breakline and 
occlusion detection modules). We also plan to integrate the line 
sensor geometry into the algorithm, to use other planetary data, 
e.g. HRSC data. In addition, the next important step is the 
combination of image matching with MI-SFS into a combined 
method. A precondition for such a combination is a separation 
of the surface under consideration into parts with constant 
albedo (MI-SFS) and into parts with variable albedo (image 
matching). This task remains a challenge of the whole approach 
which we will try to tackle using texture analysis. 
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