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ABSTRACT: 
 
Image fusion is a tool for integrating a high-resolution panchromatic image with a multispectral image, in which the 
resulting fused image contains both the high-resolution spatial information of the panchromatic image and the color 
information of the multispectral image. Wavelet transformation, originally a mathematical tool for signal processing, is 
now popular in the field of image fusion. Recently, many image fusion methods based on wavelet transformation have 
been published. The wavelets used in image fusion can be categorized into three general classes: Orthogonal, 
Biorthogonal and Nonorthogonal. Although these wavelets share some common properties, each wavelet leads to 
unique image decomposition and a reconstruction method which leads to differences among wavelet fusion methods. 
 
This paper focuses on the comparison of the image fusion methods which utilize the wavelets of the above three 
general classes. The typical wavelets from the above three general classes – Daubechies (Orthogonal), spline 
biorthogonal (Biorthogonal), and À trous (Nonorthogonal) – are selected as the mathematical models to implement 
image fusion algorithms.  
 
When wavelet transformation alone is used for image fusion, the fusion result is often not good. However, if wavelet 
transform and IHS transform are integrated, better fusion results may be achieved. Because the substitution in IHS 
transform is limited to only the intensity component, integrating of the wavelet transform to improve or modify the 
intensity and the IHS transform to fuse the image can make the fusion process simpler and faster. This integration can 
also better preserve color information. The fusion method based on the above IHS and wavelet integration concept is 
employed in this paper. IKONOS image data are used to evaluate the three different kinds of wavelet fusion methods 
mentioned above. The fusion results are compared graphically, visually, and statistically. 
 
 

1.INTRODUCTION 
 
Image fusion is a tool for integrating a high-resolution 
panchromatic image with a multispectral image, in 
which the resulting fused image contains both the 
high-resolution spatial information of the 
panchromatic image and the color information of the 
multispectral image. More and more high-resolution 
sensors appear as the technology develops, and 
correspondingly, a variety of high-resolution images 
are available; however, because of the benefits of 
image fusion, it is still a popular method to interpret 
image data. Pohl and Genderen (1998) have concluded 
that image fusion has the following functions by 
studying the literature: sharpen images; improve 
geometric corrections, provide stereo-viewing 
capabilities for stereophotogrammetry; enhance 
certain features not visible in either of the single data 
alone; complement data sets for improved 
classification; detect changes using multitemporal 
data; substitute missing information (e.g., clouds-VIR, 
shadows-SAR) in one image with signals from another 
sensor image; replace defective data. 
 

Wavelet is a relative new fusion method, which is a 
mathematical tool initially designed for signal 
processing. Because it provides multiresolution and 
multiscale analysis function, image fusion can be 
implemented in the wavelet transform domain. This 
feature cannot be replaced by any traditional fusion 
methods. Many papers about image fusion based on 
wavelet transform have been published in recent years 
(Yocky, 1995; Li, et al, 1995;Yocky, 1996; Zhou et al, 
1998; Núñez, et al., 1999;Ranchin et al, 2000; Aiazzi, 
et.al, 2002). Until now, the wavelets that have been 
used in image fusion domain can generally be 
categorized into three typical different types: 
Daubechies (Orthogonal), spline biorthogonal 
(Biorthogonal) and À trous (Nonorthogonal).  This 
paper focuses on these three different wavelets and 
compares their fusion results. 
  
The rest of this paper is organized as follows:  general 
description of wavelet theory used in the image fusion 
is given in section 2; section 3 is the experimental 
results and comparison; the conclusion is provided in 
section 4. 
 
2. WAVELET USED IN THE IMAGE FUSION 
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2.1 Basic introduction to related theory  
 
    In wavelet transformation, the basis functions are a 
set of dilated and translated scaling functions: 

        )2(2)( 2/
, knn jj
kj −= ϕϕ                        (1) 

    and a set of dilated and translated wavelet functions: 

       )2(2)( 2/
, knn jj
kj −= ψψ                       (2) 

where )(nϕ and )(nψ  are the scaling function and the 
mother wavelet function respectively. One property 
that the basis function must satisfy is that both the 
scaling function and the wavelet function at level j can 
be expressed as a linear combination of the scaling 
functions at the next level j+1: 
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where h (m) and g (m) are called the scaling filter and 
the wavelet filter respectively. 
  For any continuous function, it can be represented by 
the following expansion, defined in a given scaling 
function and its wavelet derivatives (Burrus, 
et.al.1998): 
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   The fast Discrete Wavelet Transform (DWT) can be 
expressed as follows:   
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The scaling filter )(* nh  is a low pass filter 

extracting the approximate coefficients, )(1 kc j + , 

with )()(0 nfnc = , while the wavelet filter 

)(* ng  is a high-pass filter extracting the detail 

coefficients )(1 kd j + . The coefficients are 

downsampled (i.e. only every other coefficient is 
taken). 
    The reconstruction formulas are given by: 
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    Generally, discrete wavelet is introduced by  multi-
resolution analysis. Let L2(R) be the Hilbert space of 
functions, a multiresolution analysis (MRA) of L2(R) 
is a sequence of closed subspaces Vj, Ζ∈j (Z is the 
set of integers), of  L2(R) satisfying the following six 
properties (Mallat, 1989): 

1. The subspaces are 
nested: Ζ∈∀⊂ + jVV jj 1  

2.  Separation: { }0=∩ ∈ jZj V  

3.  The union of the subspaces generate 

L2(R): )(2 RLV jj =∪ Ζ∈  

4.  Scale invariance: 
ZjVtfVtf jj ∈∀∈⇔∈ +1)2()(  

5. Shift invariance: 
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6. ,0V∈∃φ the scaling function, so that 

{ }Zkkj ∈−− )2( 2/φ is a Riesz basis of 

0V . 
   There is also a related sequence of wavelet 
subspaces Wj of L2(R), ,Zj ∈∀  where Wj   is the 
orthogonal complement of Vj in Vj-1.Then, 

jjj WVV ⊕=−1 , where ⊕  is the direct sum. 

   The above applies to about one-dimension situation; 
for two-dimension situation, the scaling function is 
defined as: 
            )()(),( yxyx φφ=Φ                                 (9) 
Vertical wavelet: 

           )()(),(1 yxyx ψφ=Ψ                               (10) 
Horizontal wavelet: 

           )()(),(2 yxyx φψ=Ψ                              (11) 
Diagonal wavelet 

           )()(),(3 yxyx ψψ=Ψ                              (12) 
 

),( yxΦ can be thought of as a 2-D scaling function, 

),(),,(),,( 321 yxyxyx ΨΨΨ  are the three 2-D 
wavelet functions. 
       For the two-dimension image, the transform can 
be expressed by the  follows: 
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Here, 1−ja  corresponds to the j-1 level approximate 

image, and 3
1

2
1

1
1 ,, −−− jjj ddd  are the horizontal, 

vertical, and diagonal subimages, respectively.  
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2.2 Different wavelet used in the image fusion 
 
2.2.1 Orthogonal wavelet 
The dilations and translations of the scaling function 
{ })(, xkjφ constitute a basis for jV  and, 

similarly, { })(, xkjψ  for jW , if the )(, xkjϕ and 

)(, xkjψ  are orthonormal, it includes the following 

properties: 
   jj WV ⊥                                                    (17) 

,, '' ,,, llljlj δφφ = '' ,,, , llljlj δψψ = , 

0, ',, =ljlj ψφ                                        (18) 

The orthogonality property puts a strong limitation on 
the construction of wavelets. For example, it is hard to 
find any wavelets that are compactly supported, 
symmetric, and orthogonal. 
 
2.2.2 Biorthogonal wavelet 
If the orthogonality condition is relaxed to 
biorthogonality conditions, wavelets with some special 
properties that are not possible with orthogonal 
wavelets can be obtained. In the biorthogonal 
transform, there are two multi-resolution analyses, a 
primal and a dual: 
Primal:  kjkjjj WV ,, ,,, ψϕ , 

Dual:  kjkjjj WV ,,
~,~,

~
,

~ ψϕ . 

 
The dilations and translations of the scaling function 
{ })(
~

, xkjφ constitute a basis for jV
~

 and, 

similarly, { })(~
, xkjψ  for jW

~
; the biorthogonallity 

conditions imply: 
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For the biorthogonal transform, perfect reconstruction 
is available. Orthogonal wavelets give orthogonal 
matrices and unitary transforms; biorthogonal 
wavelets give invertible matrices and perfect 
reconstruction. For the biorthogonal wavelet filter, the 
low pass and the high pass filters do not have the same 
length. The low pass filter is always symmetric, while 
the high pass filter could be either symmetric or anti-
symmetric.  
 
2.2.3 A trous (Nonthogonal wavelet) 
 
    A trous (with holes) is a kind of Nonorthogonal 
wavelet which is different from orthogonal and 
biorthogonal. It is a “stationary” or redundant 
transform; i.e., decimation is not implemented during 
the process of wavelet transform,  while orthogonal 
and biorthorgonal wavelet transform can be carried 

out using either decimation or undecimation mode. 
Compared with other fusion-based wavelet transform, 
this method is relatively easy to implement. The 
limitation is that it will use a lot of computer memory. 
 

3. EXPERIMENTAL RESULTS AND 
COMPARISON 

 
Corresponding to the different wavelets, six kinds of 
wavelet methods are implemented to test their fusion 
results. Decimation and undecimation cases are 
considered in the orthogonal and biorthorgonal 
wavelet, respectively.  They are orthogonal wavelet 
fusion with decimation (called ORTH method), 
orthogonal wavelet fusion without decimation (simply 
called UORTH), biorthogonal wavelet fusion with 
decimation (simply called BIOR), biorthogonal 
wavelet fusion without decimation (simply called 
UBIOR), wavelet fusion based on the A trous (simply 
called ATRO), wavelet fusion based on wavelet and 
IHS transformation (simply called WIHS)(Hong and 
Zhang, 2003). The undecimation orthogonal wavelet is 
used in the WIHS fusion method. The orthogonal and 
biorthogonal wavelet coefficients are listed in Table 1 
and Table 2, respectively. A subset of IKONOS data 
(512 pixels by 512 pixels ) is used to evaluate the 
fusion algorithm. The fusion results are listed in 
Figure 3~Figure 8. Figure 1 is the original IKONOS 
panchromatic image, Figure 2 is the original IKONOS 
multispectral image, Figure 3 is the fusion result of 
orthogonal wavelet fusion with decimation, Figure 4 is 
the fusion result of biorthogonal wavelet with 
decimation, Figure 5 is the fusion result of orthogonal 
wavelet without decimation, Figure 6 is the fusion 
result of biorthogonal wavelet without decimation, 
Figure 7 is the fusion result of A trous wavelet, Figure 
8 is the fusion result of the IHS transformation 
combined with wavelet. 
 
From the point of visual comparison, ORTH result is 
similar to BIOR result, UORTH result is similar to 
UBIOR; while there exists apparent color distortion in 
ORTH and BIOR, the degree of color distortion in 
UORTH and UBIOR is lighter than that in ORTH and 
BIOR; however, the spatial detail information in 
ORTH and BIOR is more plentiful than that in 
UORTH and UBIOR. Combining the spatial and color 
together, the rank of the fusion result is WIHS, ATRO, 
UORTH (UBIOR), ORTH (BIOR). The biorthogonal 
and orthogonal difference cannot be differentiated 
from the fusion result. The decimation and 
undecimation can be differentiated from the fusion 
result.  
 
 From the point of statistical analysis, Table 3 lists the 
correlation coefficients between fusion result and 
original multispectral image, and Table 4 lists the 
correlation coefficients between fusion result and 
original panchromatic image. In Table 3, it can be 
found that WIHS is highest, the second highest is 
ATRO, the third is UORTH (UBIOR), the lowest is 
ORTH (BIOR). In Table 4, the highest is ORTH 
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(BIOR), the second is WIHS, the third is ATRO, and 
the lowest is UORTH (UBIOR). The statistical 

analysis results correspond to the visual comparison 
result. 

 
 

  
Figure 1.  Original Panchromatic image Figure 2.  Original Multispectral image 

 

  
Figure 3.  ORTH fusion result Figure 4.  BIOR fusion result 
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Figure 5.  UORTH fusion result Figure 6. UBIOR fusion result 

 

  
Figure 7.   ATROUS fusion result Figure 8. WIHS fusion result 

 
 
Table 1. Orthogonal wavelet filter coefficients 

LD -0.0106 0.0329 0.0308 -0.1870 -0.0280 0.6309 0.7148 0.2304 
HD -0.2304 0.7148 -0.6309 -0.0280 0.1870 0.0308 -0.0329 -0.0106 
LR 0.2304 0.7148 0.6309 -0.0280 -0.1870 0.0308 0.0329 -0.0106 
HR -0.0106 -0.0329 0.0308 0.1870 -0.0280 -0.6309 0.7148 -0.2304 

Here, LD means decomposition low-pass filter, HD means decomposition high-pass filter. LR means reconstruction 
low-pass filter, and HR means reconstruction high-pass filter, the same to Table 2. 
 
Table 2. Biorthogonal wavelet filter coefficients 
LD 0 0.0378 -0.0238 -0.1106 0.3774 0.8527 0.3774 -0.1106 -0.0238 0.0378 
HD 0 -0.0645 0.0407 0.4181 -0.7885 0.4181 0.0407 -0.0645 0 0 
LR 0 -0.0645 -0.0407 0.4181 0.7885 0.4181 -0.0407 -0.0645 0 0 
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HR 0 -0.0378 -0.0238 0.1106 0.3774 -0.8527 0.3774 0.1106 -0.0238 0.0378 
 
Table 3. Correlation coefficients between the original multispectral file and fusion result 

 ORTH BIOR UORTH UBIOR ATRO WIHS 
Multispectral image R 0.743 0.757 0.823 0.813 0.864 0.897 
Multispectral image G 0.726 0.750 0.805 0.817 0.859 0.886 
Multispectral image B 0.714 0.708 0.813 0.804 0.803 0.804 
 
Table 4. Correlation coefficients between the original panchromatic file and fusion result 
 ORTH BIOR UORTH UBIOR ATRO WIHS 

0.876 0.872 0.735 0.725 0.793 0.819 
0.879 0.876 0.728 0.714 0.787 0.846 

 
Panchromatic image 

0.834 0.832 0.704 0.704 0.732 0.721 
 
 

4. CONCLUSION 
 
   This paper has described six kinds of wavelet- 
related fusion methods. Their results are compared and 
ranked through both visual and statistical comparison. 
When wavelet transformation alone is used for image 
fusion, the fusion result is often not good. However, if 
the wavelet transform and the IHS transform are 
integrated, better fusion results may be achieved. 
Because the substitution in IHS transform is limited to 
only the intensity component, integrating of the 
wavelet transform to improve or modify the intensity 
and the IHS transform to fuse the image can make the 
fusion process simpler and faster. This integration can 
also better preserve color information. Moreover, from 
the appearance of their results, the WIHS fusion result 
is continuous, while others’ results resemble those 
produced by a high-pass filter. 
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