
THE IMPORTANCE OF UNDERSTANDING ERROR IN LIDAR DIGITAL ELEVATION 
MODELS 

 
 

Smith, S.L a, Holland, D.A a, Longley, P.A b 
 

a Research & Innovation, Ordnance Survey, Romsey Road, Southampton, SO16 4GU  
e-mail sarah.smith@ordnancesurvey.co.uk; david.holland@ordnancesurvey.co.uk 

 
b  Centre for Advance Spatial Analysis, University College London, 1-19 Torrington Place, Gower Street London, 

WC1E 6BT e-mail plongley@geog.ucl.ac.uk  
KEY WORDS:  DEM/DTM, Laser Scanning, Error, Urban, Accuracy 
 
ABSTRACT: 
 
The paper presents the results of an accuracy analysis of a number of gridded Digital Surface Models (DSMs) which have been 
created from first return laser scanning (LiDAR) data. DSMs are created using a variety of methods, and differences between the 
models and the raw LiDAR data are quantified and the spatial patterns of the errors explored. The results presented in this paper 
demonstrate the importance of understanding not only the global accuracy of elevation models, but also the location and magnitude 
of individual errors which are created during DSM creation.  Results to date indicate that errors of up to 1m can be created by using 
different techniques, and that these errors will affect the results of any subsequent analysis. This investigation highlights the 
importance for both data suppliers and data users to better understand errors which are created within digital elevation models and 
incorporated within any subsequent analysis. 
 

1. INTRODUCTION 

1.1 
1.2 

1.2.1 

Applications of LiDAR DEMs 

LiDAR derived elevation models are used in a multitude of 
applications, including town planning, urban micro-climate 
analysis, and telecommunications planning. Despite the 
importance of the analysis which is based on these models, 
the accuracy of the models is often overlooked, and there is 
currently a paucity of information regarding the 
characteristics of the errors created using different modelling 
methodologies. A large proportion of the total error is 
introduced during the processing of the raw data, and the 
subsequent modelling with and analysis from it. Each stage 
of the modelling process potentially introduces error into the 
DEMs (Digital Elevation Models). This error is in addition to 
the error incorporated during the capture process (Latypov, 
2002). Modelling stages include data formatting, filtering, 
which is the removal of above ground features to create bare 
earth Digital Terrain Models (DTMs), segmentation, which is 
the differentiation of above ground objects, and object 
reconstruction (Haithcoat et al (2001)). This paper 
investigates the effect of the first stage of modelling: data 
formatting.  
Many software packages require that the irregularly spaced 
raw points are interpolated onto a regular grid for analysis 
and visualisation of a height model. Despite the fact that 
laser scanner points are sampled at very small separation 
distances, the interpolation from points onto a grid can 
introduce a degree of uncertainty into the model. The level of 
this uncertainty can vary greatly with different interpolation 
methods and grid sizes. Therefore, the choice of gridding 
methodology is potentially a very significant decision in 
determining the accuracy of the final LiDAR model. There 
are two principal processes which affect the success of the 
gridding process: the choice of interpolation algorithm, and 
the choice of grid size for resampling. In this investigation, 
four deterministic interpolation techniques (bilinear, bicubic, 
nearest neighbour, and biharmonic splining) are created at 3 
different grid resolutions (1m, 2m, and 4m). Each of the 
surfaces created are compared to the values of the raw 

LiDAR data in an attempt to quantify the errors introduced 
by different gridding methods. 
 

Previous Research 

Modelling from interpolated, or gridded, data is generally 
considered to be less accurate than modelling from the raw 
data, and most recent academic research has shown a 
preference for modelling from the raw data (Rottensteiner 
and Briese, 2002; Vosselman, 2000; Maas and Vosselman, 
1999; Gruen and Wang, 1998) for this reason. Yet, the 
gridded approach remains the one favoured in many 
commercial and business environments, mainly as a result of 
the speed of processing and accessibility of software which 
requires regularly spaced data. Quantifying the amount of 
error incorporated during the gridding process is therefore 
important if users of gridded data are to assess the accuracy 
of the DEMs they create. 
 

Interpolation Methods 
 
A number of previous studies have looked at the effect of 
interpolation as it is a routine process in many disciplines 
including digital image processing, cartography, soil science, 
electronic imaging,  and mathematics. The effects and quality 
of different interpolation algorithms have been heavily 
investigated in the past in these disciplines  (Desmet, 1997) 
including studies of how interpolation algorithms perform at 
different resolutions (Turner et al, 1996). However these 
studies have not investigated the interpolation onto a regular 
grid, nor have they examined how the interpolation effects 
change for different grid resolutions and very few have 
looked at this problem where the grid heights represent the 
urban surface. The conclusions from these studies may not be 
directly transferable to models of urban surface form. Much 
real world urban spatial variation is not smooth and 
continuous, but is jagged and irregular (Longley et al, 2001), 
this is certainly the case for models of elevation in urban 
surfaces. According to fractal geometry theory, jagged 
irregularity is a property which can be observed across a 
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2. METHODOLOGY range of scales for many types of surfaces. Studies of fractals 
in elevation surfaces have shown how they can be used to 
model bare earth terrain (Batty and Longley, 1994) at 
different resolutions on the basis of their self-repeating 
properties. However, this same argument is not directly 
transferable to the modelling of large scale urban surface 
form (say at the level of modelling buildings) due to the 
inherent complexity and lack of self-repeating structures at 
this level in urban areas. If urban surfaces cannot be 
modelled with fractals at these large scales, then it follows 
that we do not understand how the characteristics of these 
surfaces may alter at higher resolutions. In effect, this means 
that we do not understand how the pattern of interpolation 
errors may change for different grid resolutions. 
 
However, several global characteristics of the various 
surfaces created by different interpolation methods have been 
noted previously in the literature. Zinger et al (2002) 
commented that linear interpolation will tend to overly 
smooth and deform building edges. However, such general 
characteristics reveal little about the exact spatial pattern of 
error within a surface model. Lloyd and Atkinson (2002) 
further investigated the quantification of error within 
interpolated surfaces. The authors focused on a comparison 
of Inverse Distance Weighting (IDW) and kriging 
interpolation, and quantified the inaccuracy in each surface. 
Such measures are useful general indicators of error within 
surface models, again however they do not reveal anything 
about the spatial pattern of errors across the surface. One of 
the most relevant comparisons of interpolation algorithms 
was that of Rees (2000) who investigated the interpolation of 
gridded DEMs to higher resolutions - whilst this study did 
not look at the interpolation of irregularly spaced data onto a 
regular grid (the subject of this paper) many of Rees' (2000) 
conclusions are nevertheless relevant. Rees (2000) concluded 
that simple bilinear and bicubic interpolations are adequate 
for most elevation model requirements in non-urban areas. 
Rees'(2000) conclusions are tested within this study for urban 
areas.  
 
1.2.2 

1.3 

2.1 

2.1.1 

2.1.2 

2.1.3 

Creating the Surfaces 

The Data and the Study Area 
 
DSMs were created from a subset of a first return laser 
scanning dataset, supplied by the Environment Agency. The 
data were captured from an airborne sensor, at a point 
density of ~2m. The area used for modelling is shown in 
Figure 1, which shows that this sample region comprises a 
complex roof structure (church), some bare earth, a flat roof 
and a variety of vegetation. Despite being a small area (1315 
points over a 80m by 50m region), the surface was 
considered to be representative of the typical types of 
structure found in the wider region. In addition, the 
investigation has been conducted over 2 more study areas to 
ensure the reliability of the results. 
 

 
Figure 1: Orthorectified photograph of the corresponding 
area. Aerial photography reproduced with permission of 
Ordnance Survey © Cc Ordnance Survey. All rights 
reserved.  
 

The Choice of Interpolation Methods 
 
There are many routines for spatial interpolation available 
and these have been widely documented in the past (Watson, 
1992). However, not all of the methods are suitable for 
elevation modelling from LiDAR data. In particular, for the 
urban surface environment where there are frequent 
discontinuities, local interpolation rather than global or fitted 
function methods are preferable in order that the local 
complexity in the surface be retained as much as possible. 
For this reason, this study compared only local deterministic 
interpolation techniques. 

Grid Spacing 
 
Whilst the effect of different interpolation methods on the 
form of the surface has been investigated in the past (eg. 
Zinger et al, 2002; Morgan and Habib, 2002; Lloyd and 
Atkinson, 2002; Smith et al, 2003a) there has been little 
research into the effect of changing grid size in the 
interpolation stage save for that of Behan (2000). Behan 
(2000) quantified error within models produced from 
different interpolation algorithms. It was found that the most 
accurate surfaces were created using grids which had a 
similar spacing to the original points. Behan’s (2000) study 
looked at global or average error differences between two 
interpolation methods.  

 
Performing the Interpolation 

The raw points were first resampled onto a regular 1m, 2m 
and 4m grid, using four interpolation methods: bilinear, 
bicubic, biharmonic splining, and nearest neighbour, and the 
resultant surface forms produced are shown below in Figure 
2.  

 

 
Aim of the Investigation 

The investigation presented here quantifies the amount of 
model error introduced during the interpolation process, and 
specifically examines the pattern of errors created when 
modelling at different spatial resolutions. From previous 
literature it is known that the interpolation method and scale 
will influence the derived urban DSM, however we do not 
know to what extent.  
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Figure 2: Showing the (a)bilinear, (b) nearest neighbour, (c) 
bicubic, and (d) biharmonic spline surfaces created using the 
interpolation methods at 1m grid spacing. For information 
regarding the specifics of the four algorithms see Sandwell 
(1987), Watson (1992), and Smith et al (2003b).  
 
The differences in surface form between the DSMs shown in 
Figure 2 can clearly be seen. The nearest neighbour surface 
is blocky and ‘stepped’ in appearance, whilst the spline 
surface is much smoother, with many of the building and 
vegetation edges appearing curved. The quantified 
differences between the surface height predictions and the 
raw data are presented below. 
 
2.2 Comparing the Surfaces 

For the purposes of this investigation, the error (ε ) at each 
investigated point within the surfaces was considered to be 

the difference between the raw data point, , and the 

interpolated value, , for that location (see eq.1 
below).  
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This calculation was repeated across the surface to assess the 
success of the four interpolation algorithms at the 
investigated grid spacings. Model suitability was assessed in 
relation to how much error was introduced to the surface by 
each of the techniques - the most suitable model being the 
one which introduced the least error (ε ).  

(b) 

 
In order to assess model suitability, some of the raw data 
points had to be omitted from the surfacing process. If all of 
the data points were used to interpolate a surface, then the 
goodness-of-fit of the surface could not be assessed with 
these same data points as this would yield an overly 
optimistic (low) prediction error. For this reason a standard 
validation procedure was employed which involved omitting 
some raw data from the interpolation procedure and assessing 
the success of the procedure to model in the absence of these 
known values. The method chosen is called the split-sample 
validation routine which is advocated by Declercq (1996). In 
this procedure part of the sample values are omitted, the 
interpolation is performed, and the difference between the 
predicted and the raw data values at these locations are 
calculated. This difference is then used as a measure of the 
success of the algorithm. The usefulness of this technique is 
increased when it is used iteratively, where the number of 
omitted points is progressively increased and the differences 
calculated. This can return useful information regarding the 
stability of the algorithm, and its ability to cope with 
differences in input point density. The split-sample 
methodology was used in this way in Lloyd and Atkinson 
(2002). The authors used sample sizes of 95%, 50% and 25% 
of original points to measure the effects of interpolation for 
rural DEMs. The methodology outlined in Lloyd and 
Atkinson (2002) is adhered to in this study, and the same 
proportions of omitted data are used here for the comparison 
of interpolation methods. For the grid spacing investigation a 
random selection of 5% of the raw points were omitted and 
the surfaces produced at different resolutions. The success of 
each resolution was then assessed by calculating the 
difference between the omitted data and the surface 
predictions at these locations. The amount of omitted data 
points in each sample was not varied for this part of the 
investigation. 

(c) 

(d) 

 
In each investigation the omitted data points were chosen in a 
random selection process, and the tests run multiple times to 
ensure different points were selected each time and similar 
results obtained. This ensured the reliability of the 
investigation. 

3. RESULTS 

The model errors were calculated in accordance with 
Equation (1), and are recorded in Table 1 below. 
 



 

Table 1: The Results from Split-Sample Routine Designed to 
Assess the Suitability of Each Interpolation Technique 
 

 
 
Table 1 above shows the results from the interpolation 
method comparison on a 1m grid. It can clearly be seen that 
there is a difference in the statistics of the calculated errors. 
A discussion of these results follows in section 3.1. 
 
Table 2: The Results from the Split-Sample Routine 
Designed to Quantify the Differences in Errors Introduced by 
the Methods at a Variety of Grid Resolutions. 
 

 
 
3.1 

3.2 

Discussion 

The results presented in Table 1 show that bilinear and 
bicubic algorithms were found to produce the lowest RMSE 
of all the interpolators. It was surprising that the biharmonic 
spline method did not produce lower errors. This was thought 
to be caused by the tendency for this algorithm to produce 
strong artificial oscillations in the surface reconstruction in 
unconstrained regions as indicated by the large maximum 
and minimum errors. The results also showed that, in 
general, the nearest neighbour interpolator produced the 
highest RMSE value. Despite preserving discontinuities 
across the surface, the nearest neighbour algorithm was 
found to introduce a large amounts of error. This was 
probably due to its inability to model oblique surfaces - as 
there are no slopes the changes between groups of values are 
very steep and create discontinuities which are not 
necessarily present in the raw data. 
 
In terms of differences in errors created at different 
resolutions, the bilinear, bicubic, and biharmonic splining 
interpolators produced relatively stable range and mean 
errors, and there appeared to be only a minimal difference 
between the surfaces produced at different resolutions. It 
was, however, noted that the resolution which produced the 

lowest error was that which was as close as possible to the 
original point spacing, which in this instance was ~2m. The 
nearest neighbour interpolator produced higher errors at 
larger grid spacings than any of the other methods. In all 
cases interpolation onto the 4m grid resulted in higher errors, 
due to the loss of information in this approach. The increase 
in error was in the order of 50-80cm. In such cases it remains 
the decision of the end-user as to whether the decreases in 
accuracy are outweighed by faster computation and smaller 
file sizes.  
 

The Spatial Pattern of Error 

The pattern of individual errors was examined by plotting the 
locations of the interpolated points and assigning them a size 
in proportion to the error calculated for that point (Figure 3). 
It was observed that there was a strong spatial dependence of 
the highest magnitude errors in the biharmonic splined 
surface, and that many of the highest magnitude errors 
occurred at the edges of the dataset. It was considered that 
these edge errors were skewing the statistical analysis. As 
such it is suggested that the biharmonic spline should be used 
with an edge buffer to eliminate some of the largest errors 
(see Smith et al, 2003b). It was also noted that there was a 
general patterns of larger errors which coincided with the 
occurrence of breaklines in the dataset (in this instance 
breaklines included building and vegetation edges). 
However, there was a clear difference in the amounts of 
errors over different breaklines, with the errors caused by 
building breaklines tending to be smaller than those caused 
by vegetation. 
 

 
Figure 3 Errors created in the interpolation of DSM using 
Biharmonic Spline method on a 2m grid. Size of the disks 
indicates amount of error at that location. Contours underlain 
for context. Note the occurrence of some large errors at the 
edges of the dataset. This edge effect for the biharmonic 
splining algorithm is explored further in Smith et al (2002b). 
 
There was also a difference noted in the pattern of errors 
produced by different methods at different resolutions. 
Figure 4 shows the differences in the distribution of errors 
for both the bilinear and the nearest neighbour methods at the 
3 different scales. It can be seen that the errors produced by 
the nearest neighbour method are much more dense and of 
higher magnitude over vegetated areas than the bilinear 
errors. The increase in errors over breaklines at higher grid 
resolutions can also be observed. Refer to Figure 1 for 
context. 
 



 

 
 
Figure 4 The pattern of errors in the bilinear and nearest 
neighbour surfaces at 1m, 2m and 4m grid resolutions. neighbour surfaces at 1m, 2m and 4m grid resolutions. 
  

4. SUMMARY OF TECHNICAL CONCLUSIONS 4. SUMMARY OF TECHNICAL CONCLUSIONS 

This investigation has shown that there is significant 
variation between the forms of DSMs created using different 
interpolation algorithms and different grid sizes. It was found 
that the most error was introduced by the nearest neighbour 
algorithm, and the least error was introduced by the bilinear 
and bicubic methods, with some evidence that the 
biharmonic spline may produce lower errors where used with 
a buffer zone to reduce the strongest oscillations in the 
unconstrained regions. Despite being shown to produce the 
least overall error, bilinear and bicubic interpolation were 
observed to over smooth building edges and may therefore be 
unsuitable for some applications. Ultimately the choice of 
optimal algorithm for a particular application must be 
decided by the user – understanding spatial variations in 
accuracy can therefore promote better informed decision 
making.  

This investigation has shown that there is significant 
variation between the forms of DSMs created using different 
interpolation algorithms and different grid sizes. It was found 
that the most error was introduced by the nearest neighbour 
algorithm, and the least error was introduced by the bilinear 
and bicubic methods, with some evidence that the 
biharmonic spline may produce lower errors where used with 
a buffer zone to reduce the strongest oscillations in the 
unconstrained regions. Despite being shown to produce the 
least overall error, bilinear and bicubic interpolation were 
observed to over smooth building edges and may therefore be 
unsuitable for some applications. Ultimately the choice of 
optimal algorithm for a particular application must be 
decided by the user – understanding spatial variations in 
accuracy can therefore promote better informed decision 
making.  
This investigation has also shown that changes in grid sizes 
have very different effects on the magnitude of error 
introduced by different interpolation algorithms. Where 
accuracy is the most important factor, optimal grid spacing 
for any interpolation method should be as close as possible to 
(or slightly less than) the original point spacing. This 
supports Behan’s (2000) conclusions. The pattern of highest 
magnitude error appeared to occur in the areas of greater 
surface roughness. There is some potential for this pattern to 
be used in subsequent image segmentation as an indicator of 
surface roughness. This is currently being investigated by the 
authors.  

This investigation has also shown that changes in grid sizes 
have very different effects on the magnitude of error 
introduced by different interpolation algorithms. Where 
accuracy is the most important factor, optimal grid spacing 
for any interpolation method should be as close as possible to 
(or slightly less than) the original point spacing. This 
supports Behan’s (2000) conclusions. The pattern of highest 
magnitude error appeared to occur in the areas of greater 
surface roughness. There is some potential for this pattern to 
be used in subsequent image segmentation as an indicator of 
surface roughness. This is currently being investigated by the 
authors.  
  

5. SIGNIFICANCE OF THE FINDINGS AND REAL 
WORLD APPLICATIONS 

5. SIGNIFICANCE OF THE FINDINGS AND REAL 
WORLD APPLICATIONS 

One common application of LiDAR DEMs is in flood 
modelling and flood inundation prediction. Small differences 
in values in the DEM used as an input to the flood modelling 
program can have a large effect on the predictions. The effect 
of these differences are shown in figure 5, in which the four 
surfaces created are ‘flooded’ at 4m and then at 5m. Figure 5 

shows the marked difference between the flood predictions, 
particularly the limited flooding in the nearest neighbour 
surface. This is caused by the ‘stepped’, or blocky,  nature of 
this surface which was noted in section 2.1. In the nearest 
neighbour flood prediction it is clear that the level of the 
‘step’ must be exceeded in order for the flood to propagate. 
In this instance the ‘step’ characteristic of this surface clearly 
acts as a flood break, altering the results, and producing a 
potentially erroneous prediction. In contrast, the biharmonic 
splined surface, which was noted to produce a very smooth 
surface, permitted the largest flood prediction. Despite these 
noted differences it is, of course, impossible to comment on 
which of the predictions is closest to reality. Clearly, 
however, if these models were to be used in the calculation 
and mapping of flood risk areas, the use of different gridding 
techniques could substantially alter the results. The same 
argument holds for the use of DEMs in similarly sensitive 
applications, such as mobile phone wave propagation 
modelling, and noise pollution modelling. Thus differences 
in the height values of DEMs can have significant 
implications where the models are used in a predictive or 
analytical capacity.  

One common application of LiDAR DEMs is in flood 
modelling and flood inundation prediction. Small differences 
in values in the DEM used as an input to the flood modelling 
program can have a large effect on the predictions. The effect 
of these differences are shown in figure 5, in which the four 
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shows the marked difference between the flood predictions, 
particularly the limited flooding in the nearest neighbour 
surface. This is caused by the ‘stepped’, or blocky,  nature of 
this surface which was noted in section 2.1. In the nearest 
neighbour flood prediction it is clear that the level of the 
‘step’ must be exceeded in order for the flood to propagate. 
In this instance the ‘step’ characteristic of this surface clearly 
acts as a flood break, altering the results, and producing a 
potentially erroneous prediction. In contrast, the biharmonic 
splined surface, which was noted to produce a very smooth 
surface, permitted the largest flood prediction. Despite these 
noted differences it is, of course, impossible to comment on 
which of the predictions is closest to reality. Clearly, 
however, if these models were to be used in the calculation 
and mapping of flood risk areas, the use of different gridding 
techniques could substantially alter the results. The same 
argument holds for the use of DEMs in similarly sensitive 
applications, such as mobile phone wave propagation 
modelling, and noise pollution modelling. Thus differences 
in the height values of DEMs can have significant 
implications where the models are used in a predictive or 
analytical capacity.  
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6. SUMMARY 6. SUMMARY 

The introduction of errors in the gridding of data remains 
only one source of error in the process of modelling from 
LiDAR data. It has been the purpose of this paper to 
demonstrate how these gridding errors may be introduced, 
and how the magnitude and the spatial structure of these can 
change with different methodologies. Whilst differences have 
been highlighted between different interpolation methods, it 
should be noted that there is no optimal creation 
methodology, as the final decision regarding interpolation 
algorithm, grid spacing, filtering method, and segmentation 
procedure must be driven by the requirements of the 
application for which the DEM is intended. However, what 
has been shown is that in order that informed decisions can 
be made regarding the specific modelling processes, users 
must be provided with error information which may come in 
the form of a map of the spatial structure of error – such as 
those presented in this paper. The provision of this error 
information further requires that there are software processes 
which are able to cope with the communication of the error, 
and with the incorporation of this information in subsequent 
analysis. This in turn requires that the data users understand 
the error information, and can use this intelligently in order 
to reduce the introduction of error in their LiDAR 
processing.  

The introduction of errors in the gridding of data remains 
only one source of error in the process of modelling from 
LiDAR data. It has been the purpose of this paper to 
demonstrate how these gridding errors may be introduced, 
and how the magnitude and the spatial structure of these can 
change with different methodologies. Whilst differences have 
been highlighted between different interpolation methods, it 
should be noted that there is no optimal creation 
methodology, as the final decision regarding interpolation 
algorithm, grid spacing, filtering method, and segmentation 
procedure must be driven by the requirements of the 
application for which the DEM is intended. However, what 
has been shown is that in order that informed decisions can 
be made regarding the specific modelling processes, users 
must be provided with error information which may come in 
the form of a map of the spatial structure of error – such as 
those presented in this paper. The provision of this error 
information further requires that there are software processes 
which are able to cope with the communication of the error, 
and with the incorporation of this information in subsequent 
analysis. This in turn requires that the data users understand 
the error information, and can use this intelligently in order 
to reduce the introduction of error in their LiDAR 
processing.  
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