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ABSTRACT: 
 
The global spread of highly pathogenic avian influenza (H5N1) in wild birds and poultry is considered a significant pandemic threat. 
Furthermore, human infections resulting from direct contact with infected birds/poultry pose a serious public health threat. From 
November 2003 to March 2007, a total of 3345 H5N1 outbreaks were reported worldwide. Spatial and temporal patterns can provide 
clues in understanding the dynamics of disease spread. However, little has been done to explore these patterns of H5N1 outbreaks 
during this period at the global scale. The objective of this research is to detect spatial, temporal and space-time clustering using 
geostatistical methods. Data from histological confirmed cases of H5N1were obtained from a Dutch web site and a Google earth 
data. Kernel estimation, G and F functions were used to test the first-order and the second-order spatial clustering respectively. An 
autocorrelation function and a periodogram were used to detect the temporal clustering. In addition, Knox’s test, space-time K-
function and space-time scan statistics were used to explore the space-time clustering. The Monte Carlo simulation was used to test 
the significance of the clustering. Examination of spatial and temporal patterns indicates significant spatial clustering and seasonal 
cyclicity. The Monte Carlo test revealed strong evidence for space-time clustering of H5N1 cases and the location of significant 
space-time clusters were detected. The results are considered to be valuable for global H5N1 surveillance, prevention and possible 
future outbreaks controlling. 
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1. INTRODUCTION 

H5N1 Avian influenza, commonly called “bird flu”, is an 
infectious disease of birds caused by strains of the influenza 
virus. The first H5N1 virus was isolated from a farmed goose in 
southern China in 1996 (WHO 2007). Following this, the first 
case of avian influenza viruses in humans occurred in Hong 
Kong (China) in 1997 (WHO 2007). The present outbreak of 
the H5N1 virus began in December 2003, when South Korea 
identified the virus in poultry populations (WHO 2004). From 
December 2003 to February 2007, a total of 3345 H5N1 
outbreaks in birds and poultry were reported worldwide and 277 
people were infected, 167 died (OIE 2006). The global spread 
of highly pathogenic avian influenza (H5N1) in wild birds and 
poultry is considered a significant pandemic threat. Furthermore, 
human infections resulting from a direct contact with these 
infected birds/poultry pose a serious public health threat. 
 
Spatial and temporal patterns can provide clues in 
understanding the dynamics of disease spread. Detection of 
spatial, temporal and space-time clustering is useful in 
identifying higher risk areas and times, where disease 
surveillance and control should be targeted. Several methods 
are proposed for spatial and temporal patterns analysis. Kernel 
estimation and nearest neighbour analysis are selected in this 
research because they are widely used in exploring spatial point 
processes at first order and second order (Gatrell et al. 1996, 

Walter et al. 2005). The autocorrelation function and 
periodogram are used for temporal pattern analysis, to detect 
the seasonality of the disease outbreak (Diggle 1990, French et 
al. 1999). For space-time interactive analysis, Knox’s test is a 
popular and simple method that has been extensively used by 
others (Kulldorff and Hjalmars 1999, Norstrom et al. 2000, 
Rogerson 2001). Space-time K function is another valuable 
method for exploring the space-time clustering because of the 
advantages of incorporating multiple cut-offs and the graphical 
visualizations (French et al. 2005, McNally et al. 2006, 
Wilesmith et al. 2003). Spatial scan statistics localize the 
specific space-time clusters, which can be used for hot spot area 
identification (Kulldorff 1997, Kulldorff et al. 2005). 
 
The spatial and temporal patterns of H5N1 at a local level 
within a short period have been explored in some areas, like 
Southern China (Oyana et al. 2006), Italy (H7N1) (Mulatti et al. 
2007) and Romania (Ward et al. 2008). However, no research 
has been done to explore these patterns of the H5N1 at the 
global scale within a 3-year period. The objective of this 
research is to explore the spatial and temporal patterns of highly 
pathogenic H5N1 at global level. The hypotheses of this 
research are (1) the outbreak of H5N1 showed clustering in 
geographical space; (2) the outbreak of H5N1 has the character 
of seasonal cycle in temporal pattern; (3) significant space-time 
clustering occurred under specific spatial and temporal cut-offs;  
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 (4) the location of space-time clusters showed the hot spots of 
H5N1 outbreaks. 
 
 

2. METHODS AND MATERIALS 

2.1 Data 

A Google earth data layer named “time series of H5N1 
outbreaks” was obtained for this research as the main data 
source. The data layer was organized by Declan Butle based on 
historical confirmed cases of H5N1. These reports can be found 
at the following internet web site 
(http://www.oie.int/downld/AVIAN%20INFLUENZA/A_AI-
Asia.htm) and a Dutch web site 
(http://vogelgriep.startpagina.nl/). For spatial and temporal 
pattern analysis, the data was converted to a geospatial point 
data format (ESRI shapefile). The time and geographical 
location of all reported outbreaks of H5N1 from December 
2003 to March 2007 were stored in the attribute table of an 
ESRI shapefile. The point map was placed in an equidistant 
cylindrical projection. For pure temporal pattern analysis, the 
time range of the data is from December 2003 to December 
2007. 
 
2.2 Spatial Clustering Analysis 

Spatial stochastic processes may be characterized in terms of 
first-order and second-order properties (Bailey and Gatrell 
1995). The first-order properties are described in terms of the 
intensity of the process, which is the mean number of events per 
unit area of the points in a region R. The second-order 
properties involve the relationship between the number of 
events in pairs of sub-region within R. In this study, kernel 
estimation was used to detect the first-order properties of the 
disease outbreak patterns and the G and F functions were used 
to detect the second-order properties of the disease outbreak 
patterns.  
 
Kernel estimation is used to obtain a smooth estimate of a 
univariate or multivariate probability density from an observed 
sample of observations. If s represents a general location in R 
and s1, ..., sn are the locations of the n observed events then the 
intensity, λ(s) , at s is estimated by 
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where k () is the kernel weighting function which is symmetric 
about the origin and ( )sτδ  is used for the edge-correction. The 
kernel weighting function is centered on s and “stretched” 
according to the parameter 0>τ , which is referred to as the 
bandwidth. 
 
The G and F functions are designed to investigate second order 
properties using distances between observed events in the study 
area (Bailey and Gatrell 1995). The G function estimates the 
empirical cumulative probability of the distance from a random 
event to the nearest other event below or equal to h. The F 
function estimates the probability of the distance from a random 
location to the nearest event. Both G and F functions are based 
on nearest neighbour test. However, they have a distinct 
difference. The G function describes the spatial distribution 
mode by inter-event attraction. If it climbs very steeply in the 
early part of its range before flattening out, then this would 

imply clustering. The F function describes the distribution 
mode by random point-event dispersion. If the F function 
climbs very slowly in the early part of its range, then this would 
imply clustering. The significance of the clustering was 
detected by comparing the estimated distribution functions with 
a simulation estimate of their theoretical distribution functions 
under complete spatial randomness (CSR). Ninety-nine 
simulations were generated to make the significant level equal 
to 0.01. These statistical analyses were executed using the R 
statistical software and the R packages splancs and maptools.  
 
2.3 Temporal Clustering Analysis 

The temporal pattern was explored by estimating the 
autocorrelation function and the periodogram (Diggle 1990). 
The autocorrelation function describes the correlation between 
the processes at different points in time. Here we summarized 
the relationship between the cases in each month and the cases 
in previous months for a defined time lag (k). The 
autocorrelation function value ranges from -1 to 1. High 
positive values indicate strong positive association while large 
negative values indicate strong negative association. The high 
degree of correlation at a time lag of  means there is a strong 

cyclical pattern within  months. In the case of cyclic patterns 
in the data, the data is usually detrended by fitting a least 
squares regression line and then each value is subtracted from 
the fitted values using the estimated regression equation. The 
autocorrelation function was calculated for the residuals of the 
fitted model and the lags ranged from 0 to a maximum of 48 
months. 

ik

ik

 
The periodogram is a summary description based on a 
representation of an observed time series as a superposition of 
sinusoidal waves of different frequencies. The data is fitted to 
sinusoidal waves with Fourier frequencies using least squares 
methods (Diggle 1990). Each periodogram ordinate, which is 
proportional to the amplitude of the fitted sinusoidal wave and 
its variance, was plotted against the given Fourier frequency to 
show the contribution of cyclical components to the temporal 
pattern. The statistical software R and a contributed package 
pgam were used to calculate the autocorrelation function and 
periodogram respectively.  
 
2.4 Space-Time Clustering Analysis  

Space-time clustering occurs when excess numbers of cases of a 
disease are observed within small geographical locations at 
limited periods of time and this cannot be explained in terms of 
general excesses in those locations or at those times.  
 
Knox’s test is a simple space-time interaction test, which uses 
as the test statistic the number of pairs of events that are within 
defined critical time and space values (Knox and Bartlett 1964). 
Each individual pair is compared in terms of distance and time 
interval defined by the user. A  contingency table is 
formed by classifying the 

22×
( )/1−nn 2  pairs of cases as close in 

space and time, close in space only, close in time only, or close 
in neither space nor time. The expected number is obtained by 
the cross-products of the columns and row totals. The different 
between the observed number of pairs in each cell and the 
expected number is measured with a Chi-square statistic. 
According to the previous research (Picado et al. 2007, 
Wilesmith et al. 2003) and the mean distance and time intervals, 
two critical spatial distances (10 and 4374 km) and two 
temporal distances (21 and 320 days) were selected to do the 
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Knox test. One thousand Monte Carlo simulations of the chi-
square value under spatial randomness were calculated to test 
the significance of the space-time clustering. Knox test was 
carried out using software CrimeStat III (version 3.1 
http://www.icpsr.umich.edu/CRIMESTAT/). 
 
Space-time K function provides informal graphical methods to 
describe the space-time clustering at different scales. It defines 
the expected number of events within a distance d and time 
interval t of an arbitrary event, scaled by the expected number 
of events per unit area and per unit time. An appropriate edge-
corrected estimate of  derived from ( tdK , ) K  function is 
therefore 
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where R  is the area of the region, T  is the overall time span 
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probability that an event is observed in R , given that it is a 
distance  from the th event, and  is the temporal 

equivalent of the spatial-edge correction based upon whether a 
time interval centered on i of length  lies wholly within the 

 time span observed (Diggle et al. 1995). 
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Thus the function of exploring space-time interaction is  
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Peaks on the surface of  indicate space-time interaction 
when plotted against space and time. To facilitate comparison 
among time periods, a relative measure of 

( tdD ,ˆ

( )tsD ,0  was 
calculated to represent the excess risk attributable to the space-
time interaction (Diggle et al. 1995). 
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To avoid first-order effects, a small maximum distance of 10 
km and a maximum time separation of 21 days were selected in 
accordance with previous researches (Picado et al. 2007, 
Wilesmith et al. 2003). To test the significance of the space-
time interactive, 999 Monte Carlo simulations were calculated 
by randomly permuting the time labels to the fixed spatial 
locations. The sum of  over 999 d and t were obtained. 

The sum of  for the observed data was ranked among 
the empirical frequency of nine hundred and ninety nine sums. 
The significant level was determined by the rank of the 
observed data. These analyses were carried out using R 

software and the contributed packages spatstat, splancs and 
maptools. 

( tdD ,ˆ

)

Space-time K function was used to test whether space-time 
clustering occurs throughout the map, according to both small 
clusters of slightly larger than average incidence rate and 
weakly interacting events (Assuncao et al. 2007). However, to 
detect and localize the specific space-time clusters is also very 
important for disease control and surveillance. The spatial scan 
statistic has been developed to test for geographical clusters and 
to identify their approximate location (Kulldorff 1997). The 
space-time permutation model was selected because it does not 
need population at risk data and only requires the number of 
cases in each area for each time period (Kulldorff 2006).  
 
The space-time permutation scan statistic utilizes many 
overlapping cylinders to define the scanning window. After 
iterating over a finite number of geographical grid points (if no 
grid file is specified, the coordinates are used as the centroids of 
the circles), the circle radius is increased from zero to a 
maximum spatial searching radius. The height of the cylinder 
represents the number of days. The last day is always included 
together with some preceding days, up to a maximum temporal 
range. Initially the total number of observed cases (C) was 
calculated, where is some defined area and d  is some 
specific day: 

z

 

∑∑=
z d

zdcC                                 (5) 

 
Then, for each area and day, the expected number of cases μzd 
was calculated conditioning on the observed marginal and is 
given by 
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The expected number of cases μA in a specific cylinder A is the 
summation of all expected cases within that cylinder. Hence μA 
is defined as 
 

( )
∑

∈

=
Adz

zdA
,

μμ                                (7) 

 
Let cA  be the observed number of cases in the cylinder, when 
both ∑

∈Az
zdc and ∑

∈Ad
zdc are small compared to c, then cA is 

approximately Poisson distributed. The Poisson generalized 
likelihood ratio was calculated as a measure of containing an 
outbreak in cylinder A  and is given by  
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Among all the cylinders evaluated, the one with the maximum 
generalized likelihood ratio is most likely to constitute the 
space-time cluster, and to include a true outbreak (Kulldorff et 
al. 2005). Monte Carlo test was used to evaluate the statistical 
significance of the clustering.  )

( tdD ,ˆ  
The space-time permutation model was executed based on 
outbreak data instead of cases because of the inadequate case 
information. The maximum spatial and temporal window 
cannot exceed 50% of the population at risk and 50% of study 
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period (Kulldorff 2006). In order to allow both small and large 
clusters to be detected, and according to the result of parameter 
sensitive analysis, the maximum spatial and temporal scanning 
window size was defined as 40 km and 40 days to get 
maximum number of clusters. 999 Monte Carlo simulations 
were executed to allow the smallest p-value to be 0.001. These 
analyses were carried out using the software SaTScan 
(http://www.satscan.org).  
 
 

3. RESULTS 

3.1 Spatial Clustering Analysis  

3.1.1 Kernel Estimation: The distribution of the H5N1 
outbreaks in poultry and birds from December 2003 to February 
2007 is shown in figure 1(a). The shallow point shows the 
specific location of each outbreak. Kernel density was 
calculated to show the first-order spatial property of the H5N1 
outbreaks. The kernel density is displayed in figure 1(b). Darker 
regions denote higher outbreak density. Most of the outbreaks 
are distributed in South Asia, East Russia, West Europe, Black 
Sea, and East Africa, with the highest outbreak density in South 
Asia.   
 

 
 
Figure. 1. (a) The spatial distribution of 3345 histological 
confirmed H5N1 outbreaks in poultry and birds from December 
2003 to February 2007 worldwide; (b) Kernel estimation of 
H5N1 outbreaks.  
 
3.1.2 G and F Function:  The estimated G function line is 
located above the upper envelope of simulated G under CSR 
(figure 2(a)), and the estimated F function is located below the 
lower envelope of simulated F under CSR (figure 2(b)), which 
suggest significant spatial clustering ( )01.0=p . 
 

 

Figure. 2. (a) Estimated G (w) against simulated G (w) with 
upper and lower envelopes under complete spatial randomness 
(p-value = 0.01); (b) Estimated F (x) against simulated F (x) 
with upper and lower envelopes under complete spatial 
randomness (p-value = 0.01). 
 
3.2 Temporal Clustering Analysis  

Most of the wild birds H5N1 outbreak peaks occurred during 
the winter period, which suggesting a character of seasonal 
cycle (figure 3). 
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Figure. 3. The number of H5N1 outbreaks according to 
different species, wild birds and poultry 

 
3.2.1 Autocorrelation Function: The autocorrelation 
function was found by using the residuals after fitting a linear 
model for lags from 0 to 48 months. The autocorrelation 
function (figure 4) is dominated by a 12-month periodicity. The 
time lags among the peaks (2 positive to positive, 1 negative to 
negative) are 14, 11 and 13 months apart.  
 

 
 
Figure. 4. The Autocorrelation function of the monthly time 
series of H5N1 outbreaks worldwide between December 2003 
and December 2007, with 95% confidence limits. 
 
3.2.2 Periodogram 
 
The periodogram of the time period confirms the approximate 
12-month period to the variability in the time series. 
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3.3 Space-time clustering analysis 

3.3.1 Knox test: The result of Knox test in table 1 suggested 
the presence of significant space-time interaction ( )01.0<p  in 
all critical spatial (10 km and 4374 km) and temporal (21 and 
320 days) thresholds.   
 

 
 

Figure. 5. Periodogram of the time series of monthly reported 
H5N1 outbreaks worldwide 

 
Space 
(km) 

Time 
(day) 

Observed
outbreaks

Expected 
outbreaks 

p-value

10 21 2671 337 < 0.05
4374 320 1844023 1587416 < 0.05

Table 1: Results of the Knox test showing the number of 
observed and expected pairs of H5N1 disease worldwide from 
December 2003 to March 2007. 
 
3.3.2 Space-time K Function:  The ( )tdoD ,ˆ  plot in figure 
6 shows a large proportion of incident cases (risk) within 10 km 
and 21 days, and provides visual evidence of space-time 
clustering. The formal test of significance using 999 Monte 
Carlo simulations by generating a set of simulated summed D 
values, with only one exceeding the observed value (figure 6). 
These results imply that there is significant space-time 
clustering in the H5N1 outbreak data )001.0<p , supporting 
the hypothesis that H5N1 is the result of some infectious agent. 

(

 
 

 
Figure. 6.(a) A 3-dimensional plot of the  function for 

H5N1 outbreaks, (b) testing H5N1 data for space-time 
interaction (b) 

( tdoD ,ˆ )

 

3.3.3 Space-time permutation scan statistics:  One 
hundred and four significant space-time clusters ( )05.0<p  
were detected by space-time permutation scan statistics (Figure 
7). The black dots showed all H5N1 outbreaks worldwide 
between December 2003 and March 2007, while the red circles 
showed the location of the space-time clusters. 
 

 
 

Figure. 7. Space-time clusters of H5N1 outbreaks detected by 
space-time permutation scan statistics. 

 
4. DISCUSSION 

This study has explored the spatial, temporal and space-time 
clustering of highly pathogenic H5N1 outbreak in 3-year period 
at the global scale. According to kernel estimation, the highest 
density areas are South Asia, East Russia, West Europe, Black 
Sea, and East Africa. The results of G and F functions showed 
that the disease outbreak is clustering significantly in the 
geographical scale. The outbreak of H5N1 also had a character 
of seasonality, and most of the cases are reported during the 
winter period. The autocorrelation function and periodogram 
showed the cyclical time is about 12 months. The significant 
space-time clustering was tested by both Knox’s test and space-
time K function. In terms of disease hot spots, space-time 
permutation scan statistics detected one hundred and four 
space-time clusters which are widely distributed in South Asia, 
East Russia, West Europe, Black Sea, and East Africa. These 
areas are suggested to be a high risk area for which warning 
systems should be targeted at. 

(a) (b) 

 
These analyses are based on the online reported cases. The data 
source is inevitably bias. Some cases would be reported late or 
ignored because of the medical treatment level and government 
publicity. However, this is the most reliable data source we 
could obtain at present; the analyzing results can shed some 
light on spatial and temporal patterns of the highly pathogenic 
H5N1 outbreak both at the global and regional scales. 
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For the temporal pattern analysis, the disease showed a 
preference to cool temperatures. However, the outbreak period 
is not exactly 12 months. That is possibly because most of the 
countries in South Asia and Africa have no big temperature 
difference between summer and winter, which may influence 
the detection of outbreak seasonality.  
 
The future work will focus on the possibly spreading directions 
of highly pathogenic H5N1 both at the global and regional 
scales. This will furthermore provide valuable information in 
understanding the global spread of H5N1 and surveillance.  
 

5. CONCLUSIONS 

This study resulted in the following conclusions: 
• The disease outbreak of H5N1 clusters significantly 

in the spatial scale. The highest density areas are 
South Asia, East Russia, West Europe, Black Sea, and 
East Africa.  

• The outbreak of H5N1 showed a temporal clustering 
in winter period with a 12-month cycle. 

• Significant space-time clustering occurred in global 
H5N1 outbreaks. The locations of one hundred and 
four space-time clusters are suggested to be hot spot 
areas. 
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