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ABSTRACT: 
The invasions of non-native species of vegetation pose significant threats to natural environments at all geographical scales. Saltcedar 
has been commonly treated as one of the several most threatening invasive species in U.S. in the next ten years. The spatial extent and 
density of infestation by saltcedar in the Rio Grande floodplain has been poorly understood in the past. Remote sensing provides a 
unique tool to map and monitor invasive species and provides a mean to detect major land cover changes and quantify the rate of change. 
To date, remote sensing has been mainly applied for mapping some canopy dominant invasive species. Accurate mapping of saltcedar 
distribution and abundance in a timely manner plays a central role to assist the undertaking of an effective control. Current studies have 
largely concentrated on the large-area detection with coarse resolution remote sensing data. Nevertheless, it is lacking of studies that 
systematically evaluate the respective potential of high spatial resolution satellite imagery, airborne hyperspectral imagery, as well as 
moderate resolution imagery for mapping saltcedar’s extents, distribution and monitoring its spread over time. Such cost and benefit 
analysis will be particularly invaluable to the regional or national scale study, in which selection of an appropriate image type to 
maximize the outcome plays an important part. In this study, a comprehensive test was designed and carried out to examine the ability 
to integrate multi-temporal and multi-resolution imagery: including very-high spatial resolution (QuickBird), hyperspectral resolution 
imagery (AISA), and moderate resolution satellite imagery (Landsat TM), in differentiating saltcedar from other riparian vegetation 
types in the Rio Grande river basin. Two types of analyses were fulfilled: first, five pixel-based classification methods were adopted for 
assessing effectiveness of QuickBird and AISA, respectively, i.e., the Maximum Likelihood Classifier (MLC), Neural Network 
Classifier (NNC), Support Vector Machine (SVM), Spectral Angle Mapper (SAM), and Maximum Matching Feature (MMF); Second, 
Landsat TM imagery was synthesized from AISA and tested for mapping abundance of saltcedar with four linear spectral unmixing 
methods and three back-propagation neural network methods. Results indicated that AISA outperformed QuickBird imagery in 
differentiating saltcedar from other riparian vegetation species. SVM achieves the highest classification accuracy among all the five 
classifiers. Linear spectral unmixing method exhibited similar mapping accuracy with neural network methods in estimating abundance 
of saltcedar at a spatial resolution of 30 by 30 square meters, but with significantly better computing efficiency. Overall, this study 
reflects the maximum capability of contemporary remote sensing in assisting reconnaissance of saltcedar, the most threatening invasive 
species in southwest United States.  
 
 

1. INTRODUCTION 

Since 1837, eight species of Tamarix (family Tamaricaceae) 
have been introduced into the U.S. from Europe, Asia, and Africa 
for ornamentals, windbreaks, and erosion prevention of stream 
banks (Baum, 1967). In the arid and semiarid southwestern 
United States, three common naturalized Tamarix species are: T. 
Parviflora, T.chinensis, and T. ramosissima. Given the fact that 
variations among the three species are not constant and hardly to 
be discerned even in the field, saltcedar has been used to as a 
universal name to refer to all the three species in most ecological 
studies. Saltcedar has extensively invaded riparian sites and 
quickly assumed dominance in the southwestern U.S. and 
northern Mexico with its superior capability to tolerate drought 
and produce high leaf area as well as high density stands 
(Cleverly et al.1997). In the Rio Grande basin, where was 
recently identified as the most vulnerable site to saltcedar in the 
nation (Morisette, JT et al. 2006), saltcedar has deteriorated the 
existing water shortage problem as it consumes more water than 
the native vegetation it replaced. Estimates on water 
consumption by saltcedar and associated species vary greatly 
depending on location, maturity, density, and depth of 
groundwater. An accurate method is therefore urgently needed to 
take inventory of such noxious plants, allowing the identification 
of location, density, and mass of invasive species in comparison 
to native species. The efficient control of such dynamic 
non-native species also demands timely discovery and 
continuous monitoring of their spread.  

Remote sensing provides a unique tool to map and monitor 
invasive species and provides a mean to detect major land cover 
changes and quantify the rate of change. To date, remote sensing 
has been applied for mapping and modeling some of canopy 
dominant invasive species with imagery acquired at different 
spatial and spectral resolution. Since 1999, high-spatial 
resolution data become available from commercial satellite such 
as IKONOS and Quickbird. Both IKONOS and Quickbird 
sensors have been used for detecting giant reed and spiny aster in 
southern Texas (Everitt and Yang, 2004), and detect malaleuca 
trees (Malaleuca quinquinervia) in south Florida (Fuller, 2005). 
In the later, the author reported that IKONOS was limited in 
detecting small stands of scattered seed trees, which would be 
necessary in the predictive models. High spatial resolution 
satellite image has the merit of repetitive coverage of a large 
spatial area with low costs. However, the efficacy of such 
imagery in saltcedar mapping has not yet been fully investigated.  
 
Compared to the multi-spectral remote sensing data, 
hyperspectral sensors are capable of capturing much finer 
spectral information reflected off the plant, and thus, adding in 
power to the species discriminations. To date, several invasive 
species have been successfully detected with hyperspectral 
sensors including iceplant (Carpobrotus edulis), jubata grass 
(Cortaderia jubata) (Underwood et al., 2003), leafy spurge 
(O’Neill, 2000; William and Hunt, 2002; Glenn et al., 2005), 
Brazilian pepper (Lass and Prather, 2004), spotted knapweed and 
babysbreth (Lass et al. 2005). However, as far as saltcedar was 
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concerned, it is surprising to note that no study has been 
conducted by using hyperspectral remote sensing data. Such fact 
may result from two reasons. First, there are fewer hyperspectral 
sensors that can be chosen from compared to its counterpart with 
the multispectral sensor. Among the limited hyperspectral 
sensors, EO-1 is the only viable space-borne sensor. But given its 
coarse spatial resolution (30 meter), low signal-to-noise ratio as 
well as the inflexibility for scheduling the flyover, it may be 
suitable for assessing the saltcedar abundance within a 30 meter 
square, but not possible to derive the species level saltcedar 
information. Whereas, airborne hyperspectral sensors, among 
which AVIRIS, CASI and AISA are the three mostly popular 
ones, can provide hyperspectral information at very fine spatial 
resolution ranging from 1 meter to 4 meters. The accrued spectral 
and spatial resolution may suffice the task to map species-level 
saltcedar information. Nevertheless, to apply airborne 
hyperspectral sensors in wide geographical regions is 
cumbersome given the limited coverage by the airborne sensor 
and high cost incurred in the acquisition process.  
 
If the entire lower Rio Grande region, which journeyed through 
several hundreds of miles, is to be tasked for assessing spatial 
spread of saltcedar, imagery like QuickBird or AISA, will not 
suffice a feasible solution due to enormous costs. At this scale, 
moderate resolution satellite imagery, such as Landsat TM, is an 
ideal source of input given its wide spatial coverage and low 
acquisition costs. Recent advancements in sub-pixel mapping 
from Landsat TM have allowed quantifying sub-pixel percentage 
(abundance) of species coverage. The underlying rationale to 
correspond species abundance to sub-pixel mapping is that 
mixed pixels from remote sensing are resulted from a systematic 
combination of component spectra (end-members) present in the 
sensor's instantaneous Field of view (IFOV) (Adams et al., 1993). 
The relative contribution of component spectra is then 
determined by the inversion of mixture models. Previously, 
Landsat TM/ETM+, has been found useful for mapping large 
dense patches of weeds, but when applied to small stands, these 
methods have limited capability for weed detection.  
 
In short, saltcedar has been commonly treated as one of the 
several most threatening invasive species in U.S. in the next ten 
years (saltcedar consortium). Accurate mapping of its 
distribution and abundance in a timely manner play a pivotal role 
to assist the undertaking of an effective control. Currently, it is 
lacking of studies that systematically evaluate the respective 
potential of the emerging high spatial resolution, hyperspectral 
resolution imagery, and moderate resolution imagery in 
reconnaissance of saltcedar distribution as well as monitoring its 
temporal spread. Such cost-andbenefit analysis will be 
particularly invaluable to the regional or national scale study in 
which selection of an appropriate image type to maximize the 
outcome plays an important part. To this end, the objectives in 
this study are two-fold: 1) Comparing classification performance 
of QuickBird and Hyperspectral AISA sensor. Through the 
comparison, We aim to derive a general conclusion of the merit 
and drawback of the aforementioned two types of remote sensing 
images in species-level saltcedar mapping; 2) Comparing four 
Linear Spectral Unmixing (LSU ) methods and three neural 
networks methods for mapping sub-pixel abundance of saltcedar 
and associated native species with Landsat TM imagery.  
 

2. STUDY SITES AND DATA PREPARATION 

2.1 Study sites 

The study site is located in the middle Rio Grande River, near the 
town of Candelaria, TX (Figure 1). Canyons and small valleys 

comprise the physical geography of this stretch. The climate in 
this region is arid and semi-arid, with average annual 
precipitation less than 10 inches (most of which falls during the 
summer growing season), and average temperatures around 90_F. 
The majority of the lands bordering this stretch are private 
ranches and rangeland, with some residential land. The 
vegetation on both banks of the river is composed of mostly 
saltcedar (Tamarix Chinensis L.) with some mixes of willow 
(Salix ssp). As one moves into the uplands, the honey mesquite 
(Prosopisssp) is found, although it is generally mixed with other 
bushes, weeds and saltcedar. A giant saltcedar species (Tamarix 
aphylla (L.) Karst, also athel tamarisk) is also present in this 
study site, although in very sparse occurrences along the uplands. 
The athel tamarisk is an evergreen tree of up to 12 meters in 
height when mature with not overlapping (strongly clasping) 
leaves.  
 
2.2 Data preparation  

One scene of Spaceborne Quickbird image was acquired on Dec. 
8, 2004. This image covers an area of 5-by-10 kilometers 
centered at 30.12oN latitude and 104.69oW longitude. The 
image was radiometric- and geometrically calibrated using the 
standard remote sensing package ENVI v4.1 (Research System 
Inc. 2004). In order to take advantage of both the multispectral 
and panchromatic bands, a pansharpening process was run to 
produce multispectral bands with the maximum allowed spatial 
resolution (0.61m). The image, when delivered by the vendor, is 
already in geo-referenced format. However, further registration 
was carried out through ground control points colleted on site 
with GPS units delivering data at sub-meter accuracy.  
The acquisition of a hyperspectral AISA image was carried out 
on Dec 23, 2005. The Airborne Imaging Spectroradiometer for 
Applications (AISA) sensor system was calibrated to measure 62 
bands of spectral information in the range of 430 to 1000 nm at 
the spatial resolution of 1m. Because the swath of the sensor is 
much narrower than that of QuickBird’s, five strips of images 
were mosaiced to cover the entire area. The AISA mosaic was 
co-registered with the QuickBird’s pan sharpened image.  
 
One Landsat TM image (only bands 1-4) was synthesized from 
QuickBird owing to the fact that the spectral characteristics of 
QuickBird and Landsat ETM+ sensors at bands 1-4 are 
comparable. Therefore, no further spectral re-sampling was 
required, but only spatial re-sampling. The synthesized Landsat 
TM image was produced by aggregating the pixels of each 
QuickBird image. Disjoint windows of 12-by-12 pixels were 
used, resulting in a spatial resolution of 28.8m, which 
approximates that of landsat sensors.   
 
Two field trips (Nov. 17-19, 2004, Dec.17-19, 2005) were 
arranged to collect sufficient ground truthing data in the study 
sites. GPS polygon samples were drawn along dense patches of 
several species located in the area. The second field campaign 
was concurrent with the AISA image acquisition. Hyperspectral 
measurements were taken using a portable hand-held 
spectro-radiometer (ASD VNIR Field Spectrometer). These 
measurements are useful for image spectral analysis and 
calibration.  
 
Based on our field observations, a detailed classification system 
was designed (Table 1). This classification system is meant to 
cover the most important species and land cover types found in 
the study site. Splitting of saltcedar in three Categories was 
necessary in order to avoid misclassification errors due to 
phenology variability.    
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Figure 1. Geographic location of the study site 

 

 
Table 1. Land cover classes used in the classification of the study 

site 
 

3. METHODOLOGY 

3.1. Band Selection  

Selecting appropriate bands is an important step that leads to 
successful classification. This is particularly true for 
classification of hyperspectral imagery. In this study, different 
band combinations were devised and tested for QuickBird and 
AISA (Table 2). Band selection for Quickbird consists of both 
the original and pan-sharpened multispectral bands. 
Pan-sharpened bands were produced using the Gram-Schmidt 
spectral sharpening tool built in ENVI system (v4.2). The 
pan-sharpened image was co-registered and wrapped to the 
AISA imagery to end up with 1m resolution image. Additionally, 
QuickBird multispectral bands were synthesized from AISA. 
Synthesis of QuickBird was carried out using the ENVI’s 
spectral resampling tool with predefined QuickBird filter 
functions; then, pixels were spatially aggregated to mach the 
QuickBird resolution (2.4m). The synthesized QuickBird were 
incorporated in this test with an aim to remove possible 
atmospheric and phenological factors that could have influenced 
the performance of 2004 QuickBird data.   

Band selection for the ASIA sensor was done in several ways. 
The first way uses all the 61 narrow bands in the VNIR region. 
The second way uses only four bands: band 11 (481.39nm), band 
20 (563.17nm), band 30 (656.99) and band 46 (823.25), which 
have wavelength centers that coincide with those of Quickbird 
imagery (485, 560, 660 and  830nm, respectively). The third 
band selection strategy is based on results from a linear 
discriminant analysis (LDA). The objective of LDA is to 
determine the optimal bands, computed as linear combinations 
from the original bands that maximize the linear separability of 
the training data. Since many of the relative weights, used to 
compute each new band (LDA band), are small with respect to 
the maximum weight, they can be set to zero. Thus, 
multiplications and additions can be saved for the 
non-contributing bands. In our case, we set zero for all the 
weights falling bellow half of the maximum weight for each 
LDA band. A fourth band selection strategy is through the 
minimum noise fraction (MNF) transform. The MNF transform, 
like the principal component analysis (PCA), is used to 
determine the intrinsic dimensionality of the data. However, 
unlike PCA, the MNF is not orthogonal. The axes of the MNF 
transform are aligned along the axis of minimum noise fraction 
(maximum signal to noise ratio), rather than along the principal 
components (directions of maximum variance).   
 
3.2.Image classification for QuickBird and AISA 

 Five pixel-based methods were tested in this research. They are: 
Maximum Likelihood Classifier (MLC), Neural Network 
classifier (NN), Support Vector Machine (SVM), Spectral Angle 
Mapper (SAM), and Maximum Matching Feature (MMF).   
 
The MLC method maximizes the posterior probability that a 
pixel site is covered with a land cover class, given the observed 
spectral information of the pixel (Richards and Jia 1999). The 
final output of the MLC method is the class that has the largest 

 
Table 2. Different band combinations and classifiers 

 
probability. For this method to be operable, an assumption is 
made that all the classes have a multivariate Gaussian 
distribution defined in the feature space. This assumption 
simplifies the classification problem, to the point where only the 
mean vector and the covariance matrix are required for each class. 
The performance of the MLC method is generally acceptable for 
multispectral data sets where the number of bands is usually 
below ten. For large number of bands, this method turns 
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impractical, as it requires a great number of training samples for 
the estimation of the covariance matrix.   
 
The SAM method represents an alternative when dealing with 
large number of bands (Kruse et al.1993). In this case, the 
spectral information of each pixel is considered as a vector of 
dimensions equal to the number of bands. The geometrical 
concept of angle between vectors is then extended to such higher 
dimensional space. The SAM method uses the (spectral) angle as 
a similarity measure to classify every pixel. The logic of this 
method is similar to that of a minimum distance classifier, where 
the class having the minimum distance to (or highest similarity 
with) a end-member is selected. A end-member is a single vector 
(or spectral signature) that is representative of the class; for 
example, the average of the training data. The advantages of 
SAM method are 1) it can operate with large number of bands, 2) 
it is insensitive to scaling of the spectral values, caused by 
changes in the illumination. The major limitations are that: 1) the 
angle has no physical interpretation, and 2) it treats all the classes 
in the same way, e.g., having same variability.  
 
The use of NN method is generally suggested when the 
discriminating surfaces in the feature space are too complex, or 
when the Gaussian assumption is violated (Benediktsson et al. 
1990, Kavzoglu nd Mather 2003). This occurs, for example, 
when two or more categories having different spectral signature 
are aggregated in a single class. NNC are network structures 
composed of basic processing elements called neurons, usually 
arranged in layers. In isolation, neuron units perform linear 
combinations of the input and compares the result by 
differencing with a threshold (also called activation level). The 
residual from the comparison is evaluated through a transfer 
function (also called activation function) that has the shape of a 
sharp step. The result is then a binary value that can be 
interpreted as: the input belongs (high output), or does not belong 
(low output) to a class. Weight and threshold parameters are 
adjusted by a process known as training. In practice, since most 
training methods are based on gradient search strategy, they 
require derivable transfer functions, such as the sigmoid function. 
The NNC used here was a feed forward network with two hidden 
layers. The network was trained in MATLAB system (v6.5.1) 
using a resilient back-propagation (RBP) algorithm. The RBP 
learning rule uses gradient direction, without the magnitude, to 
adjust the weight parameters using a fixed learning rate. This 
method was selected because it trains faster than traditional 
gradient descendent methods and works generally well with 
categorical values.  
 
SVM is a classification method derived from statistical learning 
theory. It was originally designed for binary classification, but 
can function as a multiclass classifier by combining several 
binary classifiers (Wu et al. 2004). Each binary SVM classifier 
separates two classes with a decision surface that maximizes the 
margin between the classes. The surface is often called the 
optimal hyperplane, and the data points closest to the hyperplane 
are called support vectors. The support vectors are the critical 
elements of the training set, as they alone define (support) the 
optimal hyperplane. If the two classes are non-linearly separable, 
the method uses a kernel function to map the data to a higher 
dimension where the data is linearly separable. The hyperplane 
found in the higher dimensional space results in a complex 
non-linear boundary when projected back a lower dimensional 
space. As with neural networks, the processing of large datasets 
through SVM method requires a lot of computation time. Here 
we used the implementation  available in ENVI 4.3 System, 
which provides a hierarchical, reduced-resolution classification 

process that improves performance without significantly 
degrading results.  
 
The MMF selects the class that has maximum abundance derived 
using the so-called matched filtering (MF) technique (Boardman 
et al. 1995). MF finds the abundances of user-defined 
end-members using a partial unmixing. Unlike full linear 
unmixing techniques, MF is not restricted to the knowledge of all 
end-members in the image. This technique maximizes the 
response of the known end-member and suppresses the response 
of the composite unknown background, thus matching the known 
signature. It provides a rapid means of detecting specific 
materials based on matches to library or image end-member 
spectra and does not require knowledge of all the end-members 
within an image scene.  
 
 3.3. End-member selection  

In this study, three end-members were devised: Invasive species, 
Native species and Clear. Spectral reflectance for each 
end-member was derived from the training data collected in the 
field and AISA image. The end-members are plotted in figure 2. 
This figure shows the location of end-member on the plane 
spanned by the two principal components, which explain 99.6% 
of the total variance. It also shows the two-dimensional 
histogram of mixed pixels (background image) and points from a 
set of signatures for sixteen land-cover classes laid out in table 
1(labeled crosses). These signatures were selected from the 
original AISA imagery with the aid of GPS points acquired in the 
field. The signatures were re-sampled to match the TM spectral 
characteristic and then projected onto the PCA plane. Each 
land-cover type in table 1 was assigned to one of the tree 
categories used (as indicated by the color): Invasive (red), Native 
(green) and Clear (blue). The two-dimensional plot reflects the 
major data distribution, thus revealing that the end-member for 
the Invasive category is interior to the cloud of mixed pixels.   

 
 
Figure 2: Location of image end-members and land cover spectra 

on the plane spanned by the two principal components. 
 
3.4. Species abundance mapping with linear and non-linear 
spectral unmixing   

Four LSU and three NN mixture models were adopted to derive 
sub-pixel abundance of saltcedar. The general LSU mixture 
model is expressed in Equation (1): 
 

y=Xα + ∈        (1) 
Where the matrix X is formed by three end-members, y stand for 
the observed mixed pixels, α is the abundance or land cover 
fractions to be estimated, and ε represents residual that is not 
explained by the three end-members.  
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Given end-members and mixed pixels are known, equation (1) 
can be solved using four formulations: first, unconstrained least 
square solution as introduced by Ravishanker (2002); second, 
classical constrained least square that considers the ‘sum-to-one’ 
constraint (Heinz and Chang, 2001; Hu et al., 1999), termed in 
this paper as SCLSU; Third, a ‘non-negativity’ constrained LSU, 
termed as NCLSU (Chang and Heinz, 2000); Last, a fully 
constrained (both ‘sum-to-one’ and ‘non-negativity’) least 
square LSU (Heinz and Chang, 2001), termed as FCLSU.   
 
A BPNN is a multi-layered feed-forward neural network trained 
by the so-called back-propagation algorithm (Rumelhart et al., 
1986). This learning algorithm is an iterative gradient descent 
training procedure. The network weights are first randomly 
initialized. Then, the input data are presented to the network and 
propagated forward to estimate the output value for each training 
example. The difference (error) between known and estimated 
outputs is minimized by updating the weights in the direction of 
the descent gradient. The process is repeated, with weights being 
recalculated at each iteration until the error is minimal or lower 
than a given threshold. For the unmixing problem, the BPNN 
associates spectral signatures to land cover fractions by learning 
from training sets. After training, the neural network system fixes 
all the weights and maintains the original learning parameters. 
Then, a similar process takes place in which fractions are 
predicted from image pixels using the parameters learned from 
the training set. It has to be noted within this setting, the network 
cannot explain how mixed pixels are related to end-members. 
Before training a BPNN, many design parameters need to be 
selected either experimentally or from previous experience. 
These parameters include the number of hidden layers, neurons 
per layer, number of training iterations, etc.  In this study, three 
BPNN were trained with one hidden layer of 5, 10 and 20 
neurons, respectively (hereafter referred to as BPNN5, BPNN10 
and BPNN20). One input node per band (four inputs) and one 
output neuron per class (two outputs) were employed. Only the 
classes Invasive and Native are predicted by the network, 
whereas the class Clear is determined from the sum-to-one 
condition. Each neuron computes a log-sigmoid function of the 
weighted sum of its input. The updates of the weights and 
activation level parameters were carried out using the resilient 
back-propagation optimization method (trainrp, Riedmiller and 
Braun, 1993), with early stop strategy for better generalization 
behavior. The early stop criterion prevents over-fitting of the 
training data by monitoring the errors committed on independent 
validation data. The early stopping is controlled by the number of 
time the validation performance increased since the last time it 
decreased (max fail). This parameter was set to 20. Another 
stopping criterion is controlled by the number of iterations 
(epochs). This parameter was set to 1500.       
 
 

4. RESULTS AND DISCUSSION 

4.1 Classification performance of QuickBird  

The results for the QuickBird image are summarized in Table 3. 
The user and producer accuracies correspond to the aggregated 
class consisting of the three saltcedar classes in Table 1. Three 
classifiers: MLC, NNC, and SVM performed very similarly, yet 
MLC achieved the highest overall accuracy. Given its simplicity, 
the MLC method was selected for testing the incorporation of the 
panchromatic band. The results indicate inclusion of 
panchromatic band does not improve classification accuracy, 
instead, it tends to enlarge the spectral confusion, resulting in 
lower user and producer accuracies. The MLC method was also 
applied to the synthetic QuickBird image. The results indicate 

that the atmospheric effects play a significant role in the 
classification accuracy of the acquired QuickBird. Specifically, 
the overall accuracy from the synthetic image increased more 
than 10% with respect to the acquired QuickBird.  
 

 
Table 3. Classification accuracies for QuickBird (accuracies for 

saltcedar categories only) 
 

4.2. Classification performance of AISA  

The results for the AISA image are summarized in Table 4. Since 
the AISA image contains more detailed spectral information, 
higher overall and individual classification accuracies were 
expected. However, results indicate that the processing of 
hyperspectral data has to be done with much care. Those methods 
that use all the hyperspectral bands (SAM and MMF) performed 
poorer, when compared with the results from QuickBird. Band 
selection generally increased the performance, even in the case of 
the selection of the four narrow bands aligned with the 
QuickBird band-pass filters. The best band selection method was 
the MNF. The SVM gave the highest accuracy when the MNF 
band selection was adopted. Yet, the MLC performed very close 
to SVM. A reason for this may be due to the fact that all the 
classes defined in this study does not exhibit complex spectral 
variability. In fact, the spectral variability of saltcedar was 
largely avoided by differentiating three sub-classes: Saltcedar 
green-brown, Saltcedar orange-brown and Giant saltcedar 
(evergreen), which present distinct spectral characteristics.   
 

 
Table 4. Classification accuracies (* Accuracies from saltcedar 

categories only) 
 
Table 5 shows the weights (after weight thresholding and vector 
normalization) of the optimal linear transformation derived from 
LDA. Each LDA band is responsible for discrimination of two or 
more land cover classes. In particular, band LDA3 is responsible 
for discriminating most of the apparent Saltcedar. This can be 
observed by visual correlation of the known saltcedar stands with 
the values in LDA3. Not surprisingly, the most significant AISA 
bands used for computing the LDA3 band fall in the visible range, 
specifically in the green and orange regions of the visible 
spectrum. The band LDA3 band can be interpreted as the 
difference between two slopes. The first slope occurs in the 
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region 520-545nm (near the green edge) and the other in the 
region 600-640nm (near the orange edge). These two regions are 
associated with the green vegetation reflectance peak and red 
absorption peak. 
 
4.3.LSU results  

Table 6 presents the RMSE performance of four LSU methods 
for predicting reflectance and sub-pixel area. These results show 
that all LSU models can predict accurately the reflectance of 
mixed pixels (with standard errors under 1% in most cases). 
However, none of them can lead to accurate sub-pixel area 
estimation. Even the best performed methods (FCSLU, TLSU 
and NCLSU) can lead to errors that are in the order of 28% the 
pixel size. This means that small fractions could not be 
accurately mapped with none of these LSU methods. In summary, 
the abundances derived from FCLSU are the most accurate, 
followed by TLSU and NCLSU. .  
 

 
Table 6 Results of four LSU methods 

 
4.4.Comparison of BPNN and LUS results  

Among three BPNN methods, BPNN5 performed the best. A 
comparison was then made between the best performed LSU 
method (FCLSU) and the best performed BPNN method 
(BPNN5). Tables 7(a) and (b) present the sub-pixel confusion 
matrices, a new sub-pixel assessment tool proposed by Silvan 
and Wang (2008). The most significant difference between the 
matrices is noted at the intersection of the first and second rows 
with the first column. BPNN5 presents higher agreement for 
Invasive class (79.2%) than FCLSU (59.5%). This is also 
portrayed in the user and producer accuracies shown in Table 
7(c). Note the higher difference in producer accuracies from 
FCLSU with respect to producer accuracies from BPNN5. A 
marginal improvement of around 2% was obtained from BPNN5, 
as given by the overall accuracy (OA). The number of parameters 
and computer time required by each classifier are presented in 
Tables 7(d). The CPU time required for the training and testing 
were measured in MATLAB. The processing used a laptop 
SONY VAIO with Pentium 4 CPU running at 2.8GHz and 
512MB of RAM memory. The training time for FCLSU consists 
of the computation time of the end-members, which was 
negligible since training data was available, whereas the training 
time for the BPNN5 was around 8 seconds. In contrast, FCLSU 
required much more time than BPNN5, in nearly a factor of sixty. 
 
 

5. CONCLUSIONS 

In order to examine the potential of contemporary remote sensing 
in mapping saltcedar at different spatial scales, a comprehensive 
study was conducted using multi-resolution multi-source remote 
sensing imagery encompassing QuickBird, AISA, and Landsat 
TM. Results indicated that AISA hyperspectral imagery 

outperformed QuickBird imagery in differentiating saltcedar 
from other riparian vegetation species. SVM achieves the highest 
classification accuracy among all the five adopted classifiers. 
Linear spectral unmixing method exhibited similar mapping 
accuracy with neural network methods in estimating abundance 
of saltcedar at a spatial resolution of 30 by 30 square meters, but 
with significantly better computing efficiency, one important 
factor that has to be taken account in order to tackle regional 
scale saltcedar spread from remote sensing. Overall, this study 
investigates almost the best capability of contemporary remote 
sensing in assisting reconnaissance of saltcedar, the most 
threatening invasive species in southwest United States. 
 

 
Table 5. coefficients for the optimal linear transformation from 

LDA. Blanks represent zeroes. 
 

 
a 

 
b 
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Table 7 Comparison of LSU and BPNN (a) Sub-pixel confusion 
matrix for FCLSU; (b) Sub-pixel confusion matrix for BPNN5; 
(c) Accuracy indices for each method; (d) Computation cost 
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