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ABSTRACT: 
 
In recent years the Space-Time Autoregressive Moving-Average (STARMA) model family has been proven a useful tool in 
modelling multiple time series data that correspond to different spatial locations (which are called space-time series). The STARMA 
model family is a statistical inductive model that can be used to describe stationary (or weak stationary) space-time processes. 
However, in real applications STARMA model can not be applied directly because of the non-stationary nature of most space-time 
processes. To overcome this deficiency, a novel approach to model non-stationary space-time series is proposed in this study. It uses 
artificial neural network (ANN) to develop a non-parametric, robust model to extract the large-scale nonlinear space-time structures, 
then uses STARMA model to extract the small-scale stochastic space-time variations. The proposed approach has been applied to the 
forecasting of china annual average temperature at 137 international meteorological stations in China. The experimental results 
demonstrate that the forecasting using ANN+STARMA method obtains better forecasting accuracy than using conventional pure 
STARMA method. It proves the mixture of the data-driven ANN and the model-driven STARMA can become a very useful and 
efficient tool for space-time modelling and prediction of environment data with temporal and spatial dependence. 
 
 

                                                                 
*  Corresponding author.  

1. INTRODUCTION 

The Space-Time AutoRegressive Moving-Average (STARMA) 
models have gained widespread popularity in many domains, 
including imaging, transport, business and economics, and 
hydrology, etc. For example, Pace et al. (1998) introduced a 
space-time autocorrelation (STAR) model that predicted house 
prices by capturing the effect of both spatial and temporal 
information on real estate prices. Using data on housing prices, 
they showed that substantial benefits could be obtained by 
modelling both the data’s spatial and temporal dependence. The 
improved performance of the STAR model was confirmed by 
comparing it with the traditional indicator-based model. 
Moreover, Kamarianakis and Prastacos (2005) applied space-
time autoregressive integrated moving average (STARIMA) 
methodology to represent traffic flow patterns. Traffic flow data 
are in the form of a spatial time series, and are collected at 
specific locations at constant intervals of time. The experiment, 
in the centre of the city of Athens, Greece, showed that the 
STARIMA model can be used for the short-term forecasting of 
space-time stationary traffic-flow processes, and to assess the 
impact of traffic-flow changes on other parts of a road network. 
More recently, Crespo et al. (2007) implemented an image 
sequence prediction system that offers the most probable image 
for a given series, using methods based on the space-time 
autocorrelative (STAR) model. The imaging neighbourhood 
structure in space and time is obtained from the great number of 
testing that are made. Comparison with the observed real 
images shows that the prediction is very successful. All these 
studies have demonstrated that STARMA can obtain better 
applications in modelling space-time dynamic processes when 
the processes can be treated as stationary.  

However, in real applications most space-time processes are 
non-stationary and also are nonlinear. Detrending and 
differencing are most common approaches to handle non-
stationary in spatial data analysis and time series respectively, 
but they are difficult to make space-time process stationary. 
Thus, it’s vital to subtract space-time patterns out prior to fitting 
STARMA model.  
 
In spatial data analysis a spatial process z  can be decomposed 
into two parts: large-scale deterministic spatial variation μ  
plus small-scale stochastic spatial variation e  (Haining, 2003; 
Kanevski and Maignan, 2004), then a space-time process also 
can be given by: 
 
 )(),()( tetitz ii +μ= ,   (1) 

 
where dRDi ⊂∈ and RTt ⊂∈ ; )(tzi  represents multiple 

time series of spatially location i  data; the function ),( tiμ  
represents the space-time patterns that explain large-scale 
nonlinear space-time variations and the residual term )(tei  is a 
zero mean space-time correlated error that explains small-scale 
stochastic space-time variations. The key idea proposed method 
is to use ANN to develop a non-parametric, robust model for 
the large-scale nonlinear space-time structures and then to use 
STARMA model for the analysis of residuals—modeling of 
small-scale stochastic space-time variations. The objective of 
the integrated models is two aspects: from one side ANN 
efficiently solves problems of space-time non-stationary by 
modeling large-scale nonlinear space-time variation, from 
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another side spatial weights matrix in the STARMA model is 
built based on variogram function, which can exactly express 
spatio-temporal dependence and variance of environmental data. 
 

The paper is organized as follows. Section 2 introduces the 
procedure and principles of the ANN and the STARMA for 
modelling non-stationary space-time series, which are 
continuous in geographic space and discrete in time.  Section 3 
applied the proposed approach to annual average temperature 
forecasting, which is compared with the observation data at 137 
international meteorological stations in China from 1993 to 
2002. Section 4 provides conclusions and directions for further 
research. 
 
 

2. PROCEDURE OF MODELING 

The procedure of modelling and forecasting non-stationary 
space-time series can be categorized into four stages: data 
preparation, data analysis, training and validating. In data 
preparation stage, outliers in data should be detected and 
removed from the data sets. In data analysis stage, exploratory 
space-time analysis should be made to diagnose whether data 
satisfy modelling conditions such as correlation and stationarity. 
The data are examined whether spatial and temporal patterns 
are existent using time series analysis and exploratory spatial 
data analysis (ESDA) methods. If nonexistent, it means data 
represent a space-time stationary process. Otherwise ANN 
model (see Section 2.1) can be performed on the data to capture 
the non-linear space-time trends. In training stage, ANN model 
(see Section 2.1) should be applied to discover non-linear 
space-time trends, then ANN residuals (observation values 
subtract ANN values) are examined whether correlation is 
existent using ESTA. If uncorrelated, it means ANN has 
modelled all space-time structures represented in the raw data. 
Otherwise candidate STARMA model (see Section 2.2) must be 
performed on the residuals to capture the correlations. When 
both ANN and STARMA have been fitted, space-time 
autocorrelation function of the residuals will be calculated for 
diagnostic checking whether the residuals are random. If the 
residuals still obtain obvious stochastic space-time variation 
structures, candidate STARMA model will again be adjusted till 
the residuals are approximately white noise. In validating stage, 
the trained ANN+STARMA model is used to predict non-
stationary space-time processes. The space-time forecasting 
values are obtained by a sum of ANN and the STARMA 
estimates (see Equation 1). The performance of the modelling is 
evaluated by the prediction accuracy.  
 
2.1 Artificial neural network Modelling for Space-Time 
(or Trend) Patterns 

Artificial neural network (ANN) models are known to be 
universal and flexible function approximators, and they have 
been used to simulate non-linear systems, and to describe all 
kinds of data (Hagan et al. 1996; Mitchell 2003; Acharya et al. 
2006).  
 
In spatial data analysis, ANN is used to discover spatial patterns 
(Kanevski et al. 1996; Bollivier et al. 1997; Li and Dunham 
2002; Kanevski and Maignan 2004). We think that, depending 
on its architecture, ANN can also capture space-time patterns 
on different scales, describing both linear and non-linear effects. 
In this study, an ANN with a back-propagation training 
algorithm is applied. The back-propagation algorithm is an 
iterative gradient and supervised learning algorithm that is 

designed to minimize the error measure between the actual 
output of the neural network and the desired output. Here, the 
large-scale nonlinear space-time pattern term )(tiμ (in (1)), 
which uses the ANN with one hidden layer, is modelled as a 
function in time and space: 
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where i , which represents spatial location (which has x  and 
y  as two dimensional spatial coordinates) and current time t , 

is regarded as the input of the neural network; n  is the number 
of the hidden layer nodes; μ̂  represents the forecasted value at 
spatial location i  at current time t , which is the output of the 
neural network; function f  is the non-linear activation 

function; kβ  is conjunctive weight; 0β  is threshold value. 
The model has very strong processing ability for non-linear 
spatial trends (or patterns). However, it is weaker in the time 
aspect because it can reflect only upward or downward 
temporal trends. The equation will be applied first for the fitting 
stage and later for the forecasting stage.  
 
2.2 STARMA Modelling for Stationary Space-Time 
Process 

The remaining space-time correlated error term )(tei
 (in (1)) 

represents small-scale stochastic variations. The STARMA is 
used to model the space-time correlated error term. The 
STARMA model class is a linear combination of past 
observations at location i  and their neighbours influence and 
its basic principle for a space unit forecasting at time t  is 
shown in Figure 1. In this case, the STARMA model consists of 
autoregressive term and moving average term and it takes the 
following form (Martin and Oeppen 1975; Pfeifer and Deutsch 
1980): 
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where 
 p is the autoregressive order,  
 q  is the moving average order, 

 kλ  is the spatial order of the thk autoregressive term, 

km  is the spatial order of the thk moving average term, 

klφ  is the autoregressive parameter at temporal lag 

k and spatial lag l , 

klθ  is the moving average parameter at temporal lag 

k and spatial lag l , 
)(lW  is the NN ×  matrix of weights for spatial order 

l ( IW =)0( ), 
)(tiε is the random normally distributed error vector at 

time t at location i  with conditions. 
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where condition (a) represents that expectation of )(tiε  is zero; 
condition (b) represents the assumptions commonly made with 
regard to the STARMA model is that the variance-covariance 
matrix is equal to I2σ  and s  represents nonzero temporal lag 
for the residuals; condition (c) represents that autocovariances 
at nonzero lags equal to 0. Various tests are available for testing 
the three conditions to determine whether the model does 
adequately represent the data such as exploratory spatial data 
analysis (ESDA), time series analysis and space-time 
autocorrelation function (Hamilton 1994; Haining 2003; Pfeifer 
and Deutsch 1980). In this study, space-time autocorrelation 
function of the residuals will be calculated for diagnostic 
checking of the residuals. If the residual term )(tiε  is 
approximately white noise, the mean of space-time 
autocorrelations of the residuals should be closer to zero and the 
variance should be closer to [ ] 1)( −− sTN . If the residual term 

)(tiε  is not random they may follow a pattern that can’t be 
represented by STARMA model (Pfeifer and Deutsch 1980). 
 
 

 
  

Figure 1. The basic principle of STARMA model for a space 
unit forecasting at time t . 

 
 

3. CASE STUDY 

3.1 Data Preparation 

The proposed framework is tested by forecasting the china 
annual average temperature (degree/year). The original data are 
based on annual average temperature at 194=N  international 
meteorological exchanging stations provided by national 
meteorological centre of P. R. China, which have 52=T  year 
observations from 1951 to 2002. Figure 2 (a) shows a map of 
International meteorological exchanging stations in China with 

194=N  monitoring stations under study. Figure 2 (b) shows 
52=T  sequence plots for stations Beijing, Guangzhou, and 

Urumchi, whose locations are indicated in Figure 2 (a).  In 57 
of 194 stations the measurements were of questionable quality 
after normal distribution checking so the information provided 
was discarded and the rest 137 stations remained. To train and 
validate the models, the data sets were be split into two subsets: 
80% as sample set to train the model, and 20% as validation set 

to test and validate the model. Therefore, in our case, the 
meteorological data between 1951 and 1992 (42 years in total, 
nearly 80% of 52 years) are chosen as the training dataset for 
the forecasting between 1993 and 2002 (10 years in total, nearly 
20% of 52 years).  
 
 

 
 

Figure 2. International meteorological exchanging stations in 
study area: (a) spatial location distribution of the 194 stations; 

(b) time series of annual average temperature from 1951 to 
2002 at the three stations of Beijing, Guangzhou, and Urumchi,  

which are marked in (a) 
 
3.2 Exploratory space-time analysis 
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Figure 3. Sequence mean temperature plot for the 

whole study area 
 
 

 
 

Figure 4. Maps of spatial distribution of annual average 
temperature for the years 1970, 1980, 1990, 1993, 1997, and 

2002 
 
Time series analysis and exploratory spatial data analysis deals 
with the following steps respectively: statistical analysis, 
temporal trend analysis, spatial trend analysis. This is an 
important stage of the study for the ANN and STARMA model. 
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Means and variances of whole 137 International Meteorological 
Stations from 1951-2002 are calculated and then the sequence 
mean temperature plot for the whole study area was drawn (see 
Figure 3). As is clearly depicted in Figure 3, sample means 
from 1951-1990 are upward trend and indicate that series are 
non-stationary. Structure analysis of sample data discovers 
explicitly spatial trend for use of kriging model (see Figure 4). 
This conclusion leads to use ANN for space-time trend 
modeling. 
 
3.3 The ANN model to predict the space-time (or trend) 
patterns 

The ANN model was built to capture non-linear space-time 
trends (see Section 2.1). The implemented neural network can 
be seen in Figure 5. The ANN model used had the following 
parameters: three input neurons with linear activation function 
of spatial coordinates longitude (x), latitude (y), and time t  
(year), which were normalized to a specified range [0, 1]; one 
hidden layer with five processors and a sigmoid activation 
function; an output neuron with sigmoid activation function, 
describing annual average temperature at spatial location 

),( yx  and time t . This choice was based on the analysis of the 
training and testing errors. 
 

 
 

Figure 5. Structure of the implemented ANN model. It should 
be noted with attention that training data were organized as a 

sample, the length of which is 137×42, and there are 137 
outputs at each year t , which represent annual average 

temperature forecast at 137 stations 
 
In the ANN model, the training data were organized as a sample 
in which length is 137×(42) and there are 137 outputs in each 
year t , which represent fitted annual average temperature at 
137 stations. The fitted results in 1970, 1980, and 1990 for 
large-scale deterministic space-time trends are presented in 
Figure 6, which shows that the ANN model captured non-linear 
space-time trends.  
 
 

 
 

Figure 6. Non-linear space-time trends captured by the ANN 
model 

3.4 The STARMA to model the space-time variances 

3.4.1 Define the spatial weight matrix  
First, ANN residuals are analyzed. The isotropic semi-
variogram model, )(hγ , with a gaussian function was used to 
analyze space-time variance structures of ANN residuals. Table 
1 shows the parameters of sample ANN residual spatial 
variance structures at different years.  
 

Range Partial 
Sill Nugget Sill C0/sill Year

(km) (C) (C0) (C0+C) (%) 
1951 1484.8 9.019 7.826 16.845 46.459 
1955 1493.8 6.262 4.090 10.352 39.509 
1960 1532.4 5.264 2.540 7.804 32.547 
1965 1463.2 6.671 1.312 7.983 36.435 
1970 1541.9 16.939 9.833 26.772 36.729 
1975 1552.3 4.245 2.510 6.755 37.158 
1980 1421.0 4.537 2.567 7.104 36.135 
1985 1502.9 4.780 2.841 7.621 37.279 
1990 1402.1 3.916 2.501 6.417 38.975 
 

Table 1  Summary of sample ANN residuals isotropic semi-
variogram analysis parameters in past several decades 

 
Then, weights were defined according to the Euclidean distance 
between two points as 
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where 

)(hw  is a weight function about distance h , 
)(hγ  is the gaussian semi-variogram function value, 

a  is the spatial correlation distance (or range),  
C  is partial sill value,  

0C  is nugget value,  

0CC +  is the sill or sample variance.  
 
Thus, )(hw  tends to decrease as h  increases. That is, if values 
are similar (distance smaller), weight will be close to 1, and if 
values are dissimilar (distance larger), weight will be close to 0. 
These weights are expressed as a hierarchical ordering of spatial 
neighbours. The definition of spatial order represents an 
ordering in terms of Euclidean distance of all stations 
surrounding the locations of interest. First order neighbours are 
those “closest” to the station point of interest. Second order 
neighbours should be “farther” away than first order neighbours, 
but “closer” than third order neighbours (Pfeifer and Deutsch 
1980). In the study, spatial order is defined as one according to 
range of spatial autocorrelation. 
 
3.4.2 STARMA Model 

To identify spatial lag and temporal lag order of STARMA 
model, the sample space-time autocorrelation and partial 
autocorrelation function of ANN residuals is presented in Table 
2 and Table 3. The sample residuals’ space-time 
autocorrelations appear to tail off with both space and time; the 
sample residuals’ space-time partial autocorrelations seem to 
cut off at temporal lag second, at spatial lag the zero and the 
first so that this can be identified as a STARMA (3,0), where 
STARMA stands for space-time autoregressive moving average 
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process, autoregressive order is 3, and moving average order is 
0. The candidate STARMA (3,0) model is defined with the 
form as follows: 
 

)()3()2(
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Thus, the ANN residuals taken at a specific point at time t  is 
modelled as a linear combination of the three previous ANN 
residual values at this point plus a weighted average of the 
ANN residuals taken from its first order neighbours at time 1−t , 

2−t , and 3−t  plus a constant term, and plus a random error 
term. The least squares estimates of the parameters are 
performed through a run of Matlab7.0 and the parameter values 
are depicted in Table 4. 
  

 
 
 
 
 
 
 
 
 

 
Table 2 Sample space-time autocorrelations 

  of the ANN residuals 
 

 
 
 
 
 
 
 
 
 
 

 
Table 3  Sample space-time partial autocorrelations  
  of the ANN residuals 

 
Variable 

10φ  20φ  30φ  

Coefficient 0.2967 0.4365 0.2632 
Std. Error 0.1021 0.0911 0.0086 
t-Statistic 2.9043 4.7874 3.0568 

Probability 0.0043 0.0000 0.0027 
Variable 

11φ  21φ  31φ  

Coefficient 0.4948 -1.3523 1.0118 
Std. Error 0.8855 0.7615 0.4469 
t-Statistic 5.5880 -1.7757 2.2643 

Probability 0.0504 0.0781 0.0252 
 
Table 4  Parameter estimation for the candidate 
 STARMA model 
 
After the parameters of model (5) were estimated, diagnostic 
checking of the model of the STARMA residuals was 
performed through a calculation of the space-time 
autocorrelations of the STARMA residuals. In the examined 
STARMA residuals T  is equal to 137 and N  is equal to 42 so 
that the standard deviation of the space-time autocorrelations of 

the STARMA residuals is approximately equal to 0.0132 (see 
(2)). From table 5, a calculation of mean and variance of the 
space-time autocorrelations of the STARMA residuals show the 
results approximately satisfy random normal distribution 
condition, which mean is close to zero and variance is 
approximately equal to 0.0132 so that the candidate STARMA 
model can adequately represent the ANN residual data. That is, 
the candidate STARMA model captured a majority of small-
scale stochastic space-time variances of sample (see Equation 
1). The fitted results of the ANN+STARMA model in 1970, 
1980, and 1990 for sample data are shown in Figure 7. 
 

 
 
 
 
 
 
 
 
 

 
Table 5 Space-time autocorrelations of the candidate  

STARMA model residuals 
 

 
 

Figure 7. Maps of ANN+STARMA model fitted results for the 
three years 1970, 1980, and 1990 

 
3.4.3 Validation 
The final stage is a validation of trained ANN model and 
estimated STARMA model. Figure 8 shows a resulting 
comparison between different models for the forecasted years 
1993, 1997, 2002 and performance evaluation is described in 
Table 6. 
 
 

 
 

Figure 8. Maps of Pure STARMA and ANN+STARMA model 
forecast results for the three years 1993, 1997, and 2002 

Space lag(l) 
Time lag(s) 

0 1 

1 0.934 0.059 
2 0.890 0.049 
3 0.860 0.047 
4 0.831 0.049 
5 0.799 0.043 

Space lag(l) 
Time lag(s) 

0 1 

1 -0.953  -0.713  
2 -0.012 -0.248  
3 -0.000 -0.027  
4 0.005 0.109  
5 -0.002 -0.121  

Space lag(l) 
Time lag(s) 

0 1 

1 0.029 0.021 
2 0.014 -0.022 
3 -0.011 -0.019 
4 0.009 -0.018 
5 -0.008 0.017 
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ANN+STARMA STARMA 
Year RMS

E 
Correlation 
Coefficient RMSE Correlation

Coefficient
1993 0.615 0.988 0.649 0.971 
1997 3.086 0.982 3.377 0.969 
2002 6.703 0.968 7.728 0.957 

 
Table 6  Performance of the different models on test sets 
 
As can be seen in the table 6, the RMSE errors increasingly 
become bigger and correlation coefficient is smaller than before 
over time evolution. We find performance of short term space-
time forecasting is better than metaphase and long term 
forecasting for the two models. It also indicates two models can 
be more suitable for short term space-time forecasting. 
However, it does show the improvement of the integrated 
ANN+STARMA model than the pure STARMA model in terms 
of the RMSE, especially for relatively longer-term prediction.  
 
 

4. CONCLUSIONS AND DISCUSSION 

In the study, we gave a beneficial attempt using Artificial 
neural network (ANN) to take non-linear space-time trends out 
from space-time non-stationary process. The ANN+STARMA 
model is a kind of semi-parametric method, which combines the 
data-driven ANN and the model-driven STARMA model and it 
is very useful for data set that is continuous in space and 
discrete in time. The proposed method has been applied to the 
forecasting of china annualaverage temperature, which is 
compared with the observation data at 137 international 
meteorological stations in China from 1993-2002. The 
comparison confirms that the forecasting using proposed 
method can obtain better forecasting accuracy than using the 
conventional pure STARMA method. It means that proposed 
model would be able to give useful forecasts for processes with 
strong non-linear and non-stationary components. In addition, 
the performance of short term space-time forecasting is better 
than metaphase and long term forecasting for the two models. It 
also indicates two models are more suitable for short term 
space-time forecasting. 
 
Besides, since ANN only is a statistic neural network so in the 
proposed approach it is not enough to forecast dynamic space-
time trend changes, although it can capture current space-time 
trends. A dynamic recurrent neural network (DRNN) might be a 
good choice. A dynamic recurrent neural network, which is a 
neural network with feedback connections, might be more 
appropriate for this case because in a DRNN the output depends 
not only on the current input to the network, but also on the 
previous inputs, outputs, and the state of the network. This 
feature makes the recurrent neural network particularly suitable 
for modelling dynamic behaviours, especially, in real time 
applications that to follow the dynamic changes in space (e.g., 
forest fires and temperature change). Thus, DRNN should be 
considered as a possible replacement for ANN in our next work. 
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