
A NEURAL NETWORK ALGORITHM FOR VECTORIZATION OF 2D MAPS

 H. Karaborka, B.Kocerb, I.O. Bildiricia, F.Yildiza, E.Aktasc

aSelcuk University, Faculty of Engineering, Department of Geodesy & Photogrammetry, 42075 Kampus, Konya,
Turkey - hkarabork@hotmail.com, (bildirici, fyildiz)@selcuk.edu.tr

bSelcuk University, Faculty of Engineering, Department of Computer Engineering, 42075 Kampus, Konya, Turkey -
bariskocer@selcuk.edu.tr

cKahramanmaras Sutcu Imam University, Faculty of Engineering, Department of Electric & Electronic Engineering,
Maras, Turkey - eaktas@ksu.edu.tr

Commission II, WG II/3

KEY WORDS: Spatial Information Sciences, Analysis, Artificial_Intelligence, Accuracy, CAD, Image, Information, Tracking

ABSTRACT:

In the last twenty-five years a great number of vectorization methods were developed. In this paper we first give an overview about
the most known methods, and then propose a vectorization algorithm based on Artificial Neural Network method. This algorithm is
implemented by using C# programming language. Because distortions in size and location after vectorization are important for
mapping applications, we tested our algorithm and software on a cadastral map. We also compared the results of our algorithm with
the results of Sparse Pixel Vectorization (SPV) algorithm. Although SPV algorithm delivers better results, our algorithm also
givesacceptable results, which are suitable for mapping purposes.

1. INTRODUCTION

Vectorization or raster-vector conversion is no doubt a central
part of graphics recognition. It deals with converting the
scanned image to a vector form that is appropriate for further
processing and analysis. Many vectorization algorithms have
been developed since the computer technology was available
for this purpose, and a number of software products are in the
market. Because many software packages are available, the
raster-vector conversion problem may be considered to be
solved. Nonetheless, there are still problems of precision,
robustness and stability of the vectorization processes (Tombre
and Tabbone, 2000).Vectorization can be divided into low-level
vectorization and high-level vectorization. The former deals
with the recognition of the basic graphic objects, including
straight lines, arcs, circles and curves. The latter deals with the
structural analyses by domain knowledge (Song et al, 2002a).
For instance, Optical Character Recognition (OCR) and graphic
object recognition are such applications where high-level
vectorization are needed (Wenyin and Dori, 1999).Most of the
vectorization algorithms are developed to be versatile for many
types of engineering drawings, such as maps, mechanical
drawings, and electronic drawings (Song et al, 2002b). Most of
the algorithms give good results if graphic objects are isolated,
but are error prone if they intersect or touch one another (Song
et al, 2002c). A typical problem is that line following will stop
when a crossing on the line is countered, so that the line will be
recognized as several lines separated by crossing on it. To
reconstruct the original line, post-processing is needed to
analyze crossings and connect the collinear lines. If the
thickness of the original line is not consistent because of noise
and degradation, it is complicated to reconstruct the line
appropriately (Song et al, 2000). Compared to raster images,
vectorized images are an economic alternative (Xu and Bai,

2000; Bai and Xu, 2001). Vector files have following benefits
in mapping applications (Fernandez, 1998):
•Much less storing capacity is required.
•They can be scaled to any size without losing resolution.
•They can be modified with CAD/GIS programs. This is an
important aspect, because we can add a new road or bridge to a
map without redrawing it from scratch.

Because of the increasing use of the computer technology for
mapping purposes there is a need to digitize existing hardcopy
maps. Vectorization is an alternative to manual digitizing,
which is a time consuming method. Maps have an exact scale,
and the objects on it have certain sizes and exactly defined
locations. Therefore the accuracy of vectorization is crucial for
mapping.

In this paper we first give state of the art on the current works
we reached. Among these works we did not found any
application on map vectorization that is implemented with
artificial neural networks (ANN) method that we use. We
discuss our ANN algorithm, which is implemented with our
own developed program, named VecNET. It was tested with a
test image, which is a cadastral map consisting of 203 parcels
with complex boundaries. Our test is primarily conspired to
judge the positional accuracy of our algorithm. Therefore we
plotted a vector drawing (cadastral map), and then scanned it;
finally we vectorized it with VecNET. We then compared the
vectorized drawing with the original drawing (ground truths).
Additionally we vectorized the map with MDUS program
developed by Wenyin and Dori (1997) that includes SPV
algorithm. We compared the results in the same way. Although
the results from MDUS seem to be more accurate, VecNET also
delivers good vector drawings with acceptable distortions in
size and position, which is crucial for mapping purposes.

473

2. VECTORIZATION METHODS

Most of the vectorization methods were developed in the last 25
years. The methods we introduce here are Hough
Transformation based methods, thinning based methods,
contour based methods, run graph based methods and sparse
pixel based methods.

The Hough transformation (HT) is a well-known method for
recognizing geometric primitives from raster images. The basic
version of the algorithm just detects lines but it can simply be
generalized to extract more complex objects. The major
advantage of the algorithm is that it can extract desired graphic
objects from a noisy environment, but it handles every pixel at
least once, and needs a considerable amount of computation
time (Song et al, 2002a; Xu and Bai, 2000). Wenyin and Dori
(1999) discusses the application of HT for vectorization of
straight-line images by transforming spatially extended patterns
in binary image data into spatially compact features in a
parameter space. Since this algorithm visits every pixel once, its
time complexity is linear with the total number of pixels
(Wenyin and Dori, 1999).

HT detects parameterized curves in images by mapping the
image edge pixels into manifolds in the parameter space. The
parameters that are consistent with many types of the curves in
image and methods finding peaks in the parameter space can be
used to detect the image curves (Olson, 1999).

The term “skeleton” has been used in general to denote a
representation of a pattern by a collection of thin (or nearly thin)
arcs and curves. Some authors refer to a thinned image as a line
drawing representation of a pattern that is usually elongated.
The terms “thinning” and “skeletonization” have become
almost synonymous in the literature, and “skeleton” is used to
refer to the result, apart from the shape of the original pattern or
the method used (Lam et al, 1992).

Thinning or skeleton based methods usually make use of an
iterative boundary erosion process to remove outer pixels, until
only one-pixel-wide skeleton stays. Then, the pixels on the
skeleton are linked by using a line following procedure. Finally,
every graphic object is recognized by extending and fitting
from the point chains. Drawbacks of thinning include lost of
line thickness information and difficulties in handling
distortions at intersections. The frequent pixel access and
numerous merging operations of short lines also slowdown the
speed of vectorization (Song et al, 2002c).

Thinning is also a crucial preprocessing step of feature
extraction in many pattern recognition systems. In the OCR
applications, for instance, the stroke extraction process usually
follows thinning process. Thinning also plays an essential role
in reducing the complexity of data acquired for vectorization of
a binary line drawing, such as maps and mechanical drawings
(Xu and Bai, 2000).

The contour based methods first follow the contours and then
detect corresponding contours to identify line-like areas. Medial
axes, mostly represented as point chains, are created between
these contour pairs. These methods generally consist of four
main steps: (i) extraction of the contour vectors, (ii) matching of
them, (iii) creation of medial axis, and (iv) junction processing
(filling the gaps remained after matching process). (Tombre and
Tabbone, 2000 ; Song et al, 2002c.)

A remarkable disadvantage of contour based methods is missed
pairs of contour lines at junctions, resulting in gaps that break
the vectors. Keeping line widths compensates this disadvantage,
which is important for post-processing. Moreover, in non-line-
like areas (intersections and degraded parts), the matching of
contour is generally not one-to-one, but rather one-to-many or
even many-to-many, which makes the analysis more complex
(Song et al, 2002c; Dori and Wenyin, 1999).

Run graph based methods examine the raster image in either
row or column direction to calculate the run length encoding.
The runs then analyzed to create a graph structure. The
midpoint of runs in a line-like area is polygonalized to form a
point chain, which becomes an edge in the graph structure, and
a non-line-like area becomes a node connecting the adjacent
edges. Finally, graphic object recognition is performed on the
graph structure. These methods are not robust when the image
quality is degraded. Furthermore, the dependence on the
scanning direction leads to unsatisfactory performance for
diagonal lines. They work well for sparse line images
containing mainly horizontal and vertical lines, however (Song
et al, 2002a; Song et al, 2002c).

The most common technique among run graph based methods
is Run Length Encoding (RLE) (Song et al, 2002a). Run graph
based methods are considered to be able to solve the problem of
having both the connectivity and the line width information,
because they record the node areas (junctions). A run graph
representation can be viewed as a semi vector representation,
because it employs nodes corresponding to the end points of
vectors, along with a set of adjacent runs to express the digital
segment between these two nodes. A polygonalization
procedure is applied to the middle points of the set of runs
representing the vector to find out its attributes. Like most
vectorization methods, run graph based methods are vulnerable
by noise and may cause unsatisfactory results at junctions, since
the intersection points are not precisely located during the
construction of the run graph representation (Dori and Wenyin,
1999).

The basic idea of Orthogonal Zig-Zag (OZZ) method is to
follow the course of a one-pixel wide ‘beam of light’, which
turns orthogonally each time it hits the edge of the area covered
by the black pixels, such as a bar area. The midpoint of each
run, which is the intersection of the light beam and the area
within the area, is saved. If a run is longer than a predefined
threshold the run stops there, an orthogonal run is made and its
midpoint is recorded. This may happen when tracking along a
nearly horizontal or vertical area (Wenyin and Dori, 1999).
Based on the OZZ idea, Wenyin and Dori developed the Sparse
Pixel Vectorization (SPV) algorithm. SPV improves the OZZ
method in these ways: a) the general following procedure
begins with a reliable starting medial axis point found by a
special procedure for each black area; b) a general following
procedure is used to handle all three cases of OZZ, i.e.
horizontal, vertical and diagonal. Hence, only one pass of
screening is needed, and the combination of the two passes is
avoided, which makes SPV faster than OZZ; and c) a junction
recovery procedure is applied wherever a junction is
encountered during line following (Wenyin and Dori, 1999).
The aim of the Sparse Pixel Vectorization (SPV) is to improve
the efficiency and accuracy via the sparseness of pixel
examination. The result is a sparse skeleton, and
polygonalization is needed to fit the line. With this method
break of lines can be partially avoided. (Song et al, 2002b).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

474

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

As we have already mentioned in section 1, we did not reach
any work, which implements the ANN method for map
vectorization. But we can cite some interesting papers that use
methods based on artificial intelligence. Song & Civco (2004)
use support vector machines for road extraction from aerial
imagery. Zheng et al (2005) use Hidden Markov Model for
detecting parallel lines in images consisting of text and rule
lines. Their approach works, even if the documents are
degraded. Dori & Velkovitch (1998) applied ANN method for
segmentation and recognizing texts located in engineering
drawings. In (Dias et al., 1995), a 8x8 ANN is used. The
preferred ANN is trained by objects, which has corners in
center of 4x4 pixel of the 8x8 window and which has no corners
by randomly selected objects. This algorithm, only finds
corners, and does not makes a line tracking. In (Sanchiz et al,
1996), Freeman chain code is used by normalizing it in 0-1
range. The presented algorithm evaluates every boundary pixel
by its 12 or specified size of neighbour, boundary pixels. It uses
neighbour pixels chain code as the input of ANN, and decides if
pixel is a corner by the output of ANN. Fort he post processing,
it merges detected corner points by specified methods. In (Tsai,
1997), a novel boundary-based corner detection approach using
artificial neural networks (ANNs) is presented. Two neural
networks are proposed: one for detecting corner points with
high curvature, and the other for detecting tangent points and
inflection points that generally have low curvature.

3. ARTIFICAL NEURAL NETWORKS

Artificial neural networks (ANNs) supply a general practical
method for learning real-valued, vector-valued and discrete-
valued functions from examples. ANNs has been inspired from
biological information processing systems (Mitchell, 1997).
They are mostly developed to do a nonlinear mapping from a
set of inputs to a set of outputs. ANNs are designed to attain a
biological system type performance that is based on a dense
interconnection of simple processing elements similar to
biological neurons. ANNs, which are information driven rather
than data driven, are non-programmed adaptive information
processing systems that can autonomously develop operational
capabilities in response to an information environment, and are
ideal in cases where the necessary mapping algorithm is not
known and tolerance to faulty input information is required.
ANNs contain electronic processing elements (PEs) connected
in a particular fashion. The behavior of the trained ANN
depends on the weights, which are also referred to as strengths
of the connections between the PEs. ANNs provide certain
benefits over conventional electronic processing techniques that
are the generalization capability, parallelism, distributed
memory, redundancy and learning. ANN learning is suitable to
problems, in which the training data corresponds to noisy,
complex sensor data, such as inputs from cameras and
microphones. It can also be applied to problems for which more
symbolic representations are often used (Mitchell, 1997).

4. ALGORITHM

Our algorithm works in three steps. First, the image file is
opened, converted to binary image and prepared for thinning.
Thereafter the image is converted to an intermediate image, in
which all lines are represented in one-pixel width. In the second
step, the lines, whose width is one pixel, are tracked by ANN,
and then the critical points for each object are determined.
These points are saved in a point table. In the third step the

objects that can be recognized as noisy are eliminated, the lines
are simplified and the output file in vector format is created.

4.1 Thinning

Our thinning step is based on the conventional way. The most
significant advantage of our algorithm is that it delivers the
skeleton in one step, instead of working repeatedly. Doing so,
the speed is increased.

In our algorithm, at first, 3 by 3 median filter is applied on the
image, because the noisy pixels can cause that the pseudo lines
are recognized. After applying the median filter, the image is
scanned in left-right direction, row by row, until the first black
pixel is found. Thereafter, beginning from that pixel, the white
pixels in four main directions are sought. The number of black
pixels in each direction is then saved. Thinning is performed in
the direction, in which the number of black pixels is minimum
(Fig.1). In this direction all black pixels are marked for deletion
except the one being in the middle (Fig.2). In the next steps,
the marked pixels are not processed, so the working speed is
increased.

Figure1. Thinning step

Figure2. Achieved line after the thinning

4.2 Line tracking with ANN and vectorization

Vectorization and line tracking is performed after thinning. In
this step, processed data that contains one pixel wide skeleton is
used. The goal is to find the critical points of the objects, and to
represent these objects in vector format.

In this study, we use a supervised back-propagation to construct
the ANN model. The proposed back-propagation neural
network comprises an input layer, a hidden layer and one output

475

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

layer. Each layer is fully connected to the succeeding layer. The
outputs of nodes in one layer are transmitted to nodes in another
layer through links (Fig.3). The link between nodes indicates
flow of information during recall. The ANN model uses
“supervised learning” algorithm in learning phase. During
learning, information is also propagated back through the
network and used to update the connection weights between
nodes. It has 25 inputs and 12 outputs (Fig.4). The neuron
number of the hidden layer is 25. Sigmoid function is used as
threshold function.
The ANN’s learning table is given in table 1.

Figure 3. Used ANN model

Figure 4. ANN model’s output layer

Input

Values

O
ut

pu
t1

O
ut

pu
t 2

O
ut

pu
t 3

O
ut

pu
t 4

O
ut

pu
t 5

O
ut

pu
t 6

O
ut

pu
t 7

O
ut

pu
t 8

O
ut

pu
t 9

O
ut

pu
t 1

0

O
ut

pu
t 1

1

O
ut

pu
t 1

2

1

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

1

0

 1

0

0

0

0

0

0

0

1

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1

0

1

0

0

0

1

0

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

1

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

0

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

1

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

Table 1. Learning set of ANN’s

The “line tracking with ANN” is performed in following steps
(Fig.5): (Px: current x position on the image; Py: current y
position on the image)

476

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

Figure.5 Flowchart for line tracking with ANN

1-Beginning with the first row, image is scanned row by row to
find a pixel, which belongs to a line (simply a black pixel).
When this pixel is found, Px and Py values are saved to show
this pixel.

2-Input matrix is filled from the neighbor of the found line pixel
on position (Px, Py). And current line pixel is deleted (“set to
white”) for being not to reprocess at step 1.
3-After input matrix is filled, ANN is worked and ANN’s
output layer is set by new values. In this step the algorithm is to
answer two questions:

a.Is this pixel a critical point?

b.Where is the next pixel that belongs to a line?

Algorithm answers first question by evaluating the first 8 of 12
outputs of ANN. Seven of 8 outputs values are approximately
“0”, and one of 8 values is approximately “1”. The output
whose value is approximately “1” shows the tracking line’s way
in 8 way chain code. If this chain code is different from the
chain code, which is previously found, this point is then marked
as critical. It means that the direction of the line has been
changed at this pixel.

Algorithm answers second question by evaluating the last 4 of
the 12 outputs of ANN. If 9th output value is approximately “1”,
x position of the next line-pixel equals Px+1. If 10th output
value is approximately “1”, x position of the next line-pixel is
Px-1. If 11th output value is approximately “1”, y position of
next line-pixel is then Py+1. If 12th output value is
approximately “1”, y position of next line-pixel then is Py-1. If
all these values are “0”, nothing is done.

For example: (O denotes outputs);

yPyP
xPxP

O
O
O
O

=
+=

⇒

≈
≈

≈

≈
1

012

011

010

19

; 1
1

012

111

110

09

+=
−=

⇒

≈
≈

≈

≈

yPyP
xPxP

O
O
O
O

4- After next line-pixel is found, it is checked whether it is a
line-pixel or not. If this pixel is a line-pixel, the algorithm goes
to step 2. If not, the algorithm searches for a line-pixel in “n x

n” neighborhood, where n can be set parametrically (typically
5). If a line-pixel is found in this neighborhood, Px and Py are
set and algorithm goes to step 2. Otherwise, algorithm goes to
step 1.

4.3 Slope Based Critical Point Elimination:

The critical points obtained during the line tracking with ANN
are saved in a table. In this table it is marked that which point
belongs to which object. This table is transferred to next stage,
where non-critical points are eliminated using a slope-based
approach (Fig.6).

Figure6. Critical and Non-critical points

At this process, a point is selected being the base for slope.
Initially, this point is the first point of the object. Then, the first
base slope is determined with the second point in the table. In
the next step, using the base point, the local slope for the third
point is determined. Similarly, the slopes for the other points
are calculated from the base point. If the difference between the
base slope and the local slope of any point is bigger than a
specified threshold value, this point is marked as critical, so the
next base point will be this point. If not, this point is assumed as
non-critical and is deleted. Then the steps above are repeated
(Fig.7).

Figure7. Finding critical points with gradient difference

At this stage the remaining points are the exact corners, i.e. the
real critical points. Here it is possible that the intersecting lines
in the image do not intersect after vectorization. To minimize
this effect, the first and the last pixels of every object are tested
if there are other critical points in a specified range. If there are
such points, the coordinates are averaged, so the nodes are
clustered. Doing so, incomplete parts at some objects can be
avoided. Finally, the critical points of the objects that remain in
the point table are transferred to a file in DXF-format. Doing so
a 2D drawing is created.

477

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

5. APPLICATION

5.1 Software Development

In order to implement and to test the vectorization algorithm
explained above, a program was developed with the
programming language C#. The software developed in this
study is called VecNET.

5.2 Test of the Proposed Algorithm

In order to test of the algorithm proposed here, a digital vector
map - a 1:1000 scale cadastral map showing parcels only – is
chosen (Fig.8). The content of the vector file is plotted, and
then scanned. So we have the ground truths (original
coordinates in the vector file). The image size is 14396x11798
pixels. It contains 203 parcels. The sizes of the parcels vary
from 23.77 to 14054.17 m2 (on ground). Average area is about
1317 m2. This image is then vectorized with our program
VecNET and MDUS by Wenyin & Dori (1997). MDUS
(Machine Drawing Understanding System) includes three
algorithms: sparse pixel vectorization algorithm, stepwise
recovery arc segmentation algorithm, and dashed line detection
algorithm. In this study we only used the sparse pixel
vectorization algorithm of MDUS. Additionally, the vectorized
data is transformed to initial coordinate system by using affine
transformation method. The affine transformation is defined by
using the grid marks on the image. So we define a
transformation between the pixel coordinate system and the
initial coordinate system of the original vector file. The RMS
error of the affine transformation is ±5.3 cm for VecNET and
±4.7 cm for MDUS on the ground.

Using the vectorized data, areas of the parcels were calculated
after vectorization (VecNET and SPV), and were compared
with the ground truths. The area changes for VecNET and SPV
were calculated as percentage rates (Fig.9, Fig.10 and table 2).

Figure 8: Test image

To determine how the absolute positions of the parcels are
changed after vectorization,minimum bounding rectangles
(MBR) of the parcels are used. The center points of MBRs after
vectorization (VecNET and MDUS) were compared with the
ground truths. In table 3, Fig.11 and Fig.12 the displacements,
in x and y direction, of the center points of MBRs are given.
Fig.11 shows the histogram of changes (ds) after vectorization
(VecNET). Fig.12 shows the histogram of changes (ds) after
vectorization (MDUS).

Figure 9: Changes in area after vectorization with VecNET

percent

Figure 10: Changes in area after vectorization with MDUS in

percent

 Objec

t

No

Max.

Value

Min.

Value

Mean

Value

Standard

Deviation

VecNE

T

203 14 -8 1.31 3.12

SPV 203 13 -3 -0.27 1.64

Table 2: The maximum, minimum, mean and standard deviation

values of the parcel areas after Vectorization (VecNET and
MDUS)

gyvydygxvxdx

dydxds

−=−=

+=

;

22

dx: displacement in x direction
dy: displacements in y direction
ds: displacement of the center points of MBRs
xv, yv: Coordinates after vectorization
xg, yg: Initial coordinates (ground truth)

478

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

Figure 11: Histogram of displacement for the center points of
MBRs of the vectorized (VecNET) parcels with the ground

truths

Figure 12: Histogram of displacement for the center points of

MBRs of the vectorized parcels with respect to the ground
truths (MDUS)

 Object

No

Max.

Value

(cm)

Min.

Value

(cm)

Mean

Value

(cm)

Standard

Deviation

(cm)

VecNET 203 123.0 3.0 30.1 22.5

SPV 203 170.0 1.00 19.2 15.6

Table 3: The maximum, minimum, mean and standard deviation

values of the displacements of MBRs of parcels after
Vectorization (VecNET and MDUS)

The mean of the displacements of MBRs is 19.25 cm with a
standard deviation of 15.60 cm for MDUS. The mean of the
displacements of MBRs is 30.1 cm with a standard deviation of
22.49 cm for VecNET. It is slightly greater than the common
drawing error (0.2mm on the map, 20 cm on the ground), but no
significant displacements of the parcels are observed as seen in
Fig.13.

The area changes of the parcels show both increasing and
decreasing trends. The mean of the changes is 1.31% with a
standard deviation of 3.12%. If we think of a parcel with a size
of 1000 m2, these values are 14 m2 and 30.6 m2, respectively.

The area changes of the 185 parcels vary –5% and 5%. For
other 18 parcels the area changes and sizes are shown in table 4.
It can be seen from the table that these errors (percentages

Figure 13: Initial parcels (green line) and vectorized parcels
(brown lines)

greater than %5) occur in parcels with different sizes, i.e. these
errors do not depend on the parcel size. Additionally, the
positional distribution of them is diverse (Fig.14).

Parcel Area

(m2 on ground)

The area

changes

(as percentages)

95.764 12

105.173 6

111.027 9

120.983 14

127.012 9

131.911 8

155.592 6

295.454 8

348.915 6

463.86 7

476.803 6

678.163 10

743.587 11

806.758 7

808.474 -8

1205.33 10

1896.999 10

Table 4: The area changes and sizes for other 18 parcels

479

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

Figure 14: The distribution of the parcels, which have area

changes greater than %5.

6. CONCLUSION

In recent two decades a great number of vectorization
algorithms have been published, which we summarized in the
first and second section. Among these methods, an approach
with ANN is hardly to be found. Our vectorization algorithm is
based on ANN, which is a powerful algorithm to solve
problems like vectorization. We developed our own software,
which uses our algorithm and tested the software with a test
image. The accuracy of vectorization is a key issue for mapping
purposes. The accuracy should be considered in two ways: size
and location. It is important to know how big the distortions in
size and in location after vectorization are. Therefore we tested
our algorithm with an image, which is actually gained by using
a vector drawing. We compared the values obtained from
vectorized drawing with the ground truths. The changes in size
and location after vectorization are found to be acceptable for
mapping purposes, which confirms the applicability of our
algorithm.
It is obvious that the MDUS program delivers better results than
our program VecNET, but the results of the VecNET seem to
be acceptable. Additionally we also observed that the VecNET
produces acceptable results in the crossings of the parcel
boundaries.

ACKNOWLEDGEMENT

The authors wish to acknowledge for the cooperation and the
financial assistance given by the Scientific Research Found
(BAP) of Selcuk University.

REFERENCES

Bai, Y. B., Xu, X. W., 2001. Object Boundary Encoding- A
New Vectorisation Algorithm For Engineering Drawings,
Computers In Industry 46 (2001), 65-74

Dias P.G.T., Kassim A.A. and Srinivasan V., 1995., Neural
Network Classifier for Detecting Corners in 2D Images,
Systems, Man and Cybernetics Intelligent for the 21st
Century,vol.1,pp.661-666

Dori, D., Wenyin, L., 1999. Sparse Pixel Vectorization: An
Algorithm and Its Performance Evaluation, IEEE Transactions
on Pattern Analysis and Machine Intelligence 21(3), 202-215

Dori, D.,Velkovitch Y., 1998. Segmentation and Recognition of
Dimensioning Text from Engineering Drawings, Computer
Vision And Image Understanding Vol. 69, No. 2,196–201
Fernandez, X., Riveiro, F., Lopez., O.M., 1998. A Vectorizer
For Color Topographic Maps, Proceeding of the IASTED

International Conference Signal and Image Processing, Las
Vegas, Nevada-USA

Lam, L., Lee, S.W., Suen, C.Y, 1992. Thinning Methodologies-
A Comprehensive Survey, IEEE Transactions on Pattern
Analysis and Machine Intelligence 14(9), 869-885

Mitchell, T. M., 1997. Machine Learning, McGraw-Hill
Companies, Singapore, 414pp

Olson, C.F., 1999. Constrained Hough Transforms for Curve
Detection, Computer Vision and Image Understanding 73(3),
329-345

Sanchiz J.M., Inesta J.M. and Pla F., 1996, A Neural Network-
Based Algorithm to Detect Dominant Points From the Chain-
Code of a Contour, Pattern Recognition Proceeding of ICPR,
vol. 4, pp. 325-329

Song MJ., Civco D., 2004, Road Extraction Using SVM and
Image Segmentation, Photogrammetric Engineering and
Remote Sensing 70 (12): 1365-1371
Song, J., Cai, M., Lyu, M. R., Cai, S., 2002a. Graphics
Recognition From Binary Images: One Step or Two Step, 16 th
International Conference on Pattern Recognition (ICPR’02) 3,
Quebec City, QC, Canada

Song, J., Su, F., Chen, J., Cai, S., 2000. A Knowledge-Aided
Line Network Oriented Vectorisation Method For Engineering
Drawings, Pattern Analysis & Applications (2000)3, 142-152

Song, J., Su, F., Li, H., Cai, S., 2002b. Raster to Vector
Conversion Of Construction Engineering Drawings,
Automation in Construction 11(2002), 597-605

Song, J., Su, F., Tai, C.L., Cai, S., 2002c. An Object-Oriented
Progressive-Simplification-Based Vectorization System For
Engineering Drawings: Model, Algorithm, and Performance,
IEEE Transactions on Pattern Analysis and Machine
Intelligence 24(8), 1048-1060

Tombre, K., Tabbone., S., 2000. Vectorization in Graphics
Recognition: To Thin or not to Thin, International Conference
on Pattern Recognition (ICPR’00)- 2, Barcelona, Spain

Tsai D.M, 1997, Boundary-Based Corner Detection Using
Neural Networks, Pattern Recognition,vol.30no.1,pp.85-97

Wenyin, L., Dori, D., 1999. From Raster to Vectors: Extracting
Visual Information From Line Drawings, Pattern Analysis &
Applications (1999) 2, 10-21

Wenyin, L., Dori, D. (1997) A protocol for performance
evaluation of line detection algorithms, Machine Vision and
Applications (1997) 9, 240–250.
 Xu, X. W., Bai, Y. B., 2000. Computerising Scanned
Engineering Documents, Computers In Industry 42(2000), 59-
71
Zheng Y., Li H., Doermann D., 2005, A Parallel-Line Detection
Algorithm Based on HMM Decoding, IEEE Transactions On
Pattern Analysis and Machine Intelligence, Vol. 27, No. 5, 777-
792

480

	1. INTRODUCTION
	2. VECTORIZATION METHODS
	3. ARTIFICAL NEURAL NETWORKS
	4. ALGORITHM
	4.1 Thinning
	4.2 Line tracking with ANN and vectorization
	4.3 Slope Based Critical Point Elimination:

	5. APPLICATION
	5.1 Software Development
	5.2 Test of the Proposed Algorithm

	6. CONCLUSION
	REFERENCES

