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ABSTRACT: 
 
In the last twenty-five years a great number of vectorization methods were developed. In this paper we first give an overview about 
the most known methods, and then propose a vectorization algorithm based on Artificial Neural Network method. This algorithm is 
implemented by using C# programming language. Because distortions in size and location after vectorization are important for 
mapping applications, we tested our algorithm and software on a cadastral map. We also compared the results of our algorithm with 
the results of Sparse Pixel Vectorization (SPV) algorithm. Although SPV algorithm delivers better results, our algorithm also 
givesacceptable results, which are suitable for mapping purposes. 
 
 

 

1. INTRODUCTION 

Vectorization or raster-vector conversion is no doubt a central 
part of graphics recognition. It deals with converting the 
scanned image to a vector form that is appropriate for further 
processing and analysis. Many vectorization algorithms have 
been developed since the computer technology was available 
for this purpose, and a number of software products are in the 
market. Because many software packages are available, the 
raster-vector conversion problem may be considered to be 
solved. Nonetheless, there are still problems of precision, 
robustness and stability of the vectorization processes (Tombre 
and Tabbone, 2000).Vectorization can be divided into low-level 
vectorization and high-level vectorization. The former deals 
with the recognition of the basic graphic objects, including 
straight lines, arcs, circles and curves. The latter deals with the 
structural analyses by domain knowledge (Song et al, 2002a). 
For instance, Optical Character Recognition (OCR) and graphic 
object recognition are such applications where high-level 
vectorization are needed (Wenyin  and Dori, 1999).Most of the 
vectorization algorithms are developed to be versatile for many 
types of engineering drawings, such as maps, mechanical 
drawings, and electronic drawings (Song et al, 2002b). Most of 
the algorithms give good results if graphic objects are isolated, 
but are error prone if they intersect or touch one another (Song 
et al, 2002c). A typical problem is that line following will stop 
when a crossing on the line is countered, so that the line will be 
recognized as several lines separated by crossing on it. To 
reconstruct the original line, post-processing is needed to 
analyze crossings and connect the collinear lines. If the 
thickness of the original line is not consistent because of noise 
and degradation, it is complicated to reconstruct the line 
appropriately (Song et al, 2000). Compared to raster images, 
vectorized images are an economic alternative (Xu and Bai, 

2000; Bai and Xu, 2001). Vector files have following benefits 
in mapping applications (Fernandez, 1998): 
•Much less storing capacity is required. 
•They can be scaled to any size without losing resolution. 
•They can be modified with CAD/GIS programs. This is an 
important aspect, because we can add a new road or bridge to a 
map without redrawing it from scratch. 
 
Because of the increasing use of the computer technology for 
mapping purposes there is a need to digitize existing hardcopy 
maps. Vectorization is an alternative to manual digitizing, 
which is a time consuming method. Maps have an exact scale, 
and the objects on it have certain sizes and exactly defined 
locations.  Therefore the accuracy of vectorization is crucial for 
mapping. 
 
In this paper we first give state of the art on the current works 
we reached. Among these works we did not found any 
application on map vectorization that is implemented with 
artificial neural networks (ANN) method that we use. We 
discuss our ANN algorithm, which is implemented with our 
own developed program, named VecNET. It was tested with a 
test image, which is a cadastral map consisting of 203 parcels 
with complex boundaries. Our test is primarily conspired to 
judge the positional accuracy of our algorithm. Therefore we 
plotted a vector drawing (cadastral map), and then scanned it; 
finally we vectorized it with VecNET. We then compared the 
vectorized drawing with the original drawing (ground truths). 
Additionally we vectorized the map with MDUS program 
developed by Wenyin and Dori (1997) that includes SPV 
algorithm. We compared the results in the same way. Although 
the results from MDUS seem to be more accurate, VecNET also 
delivers good vector drawings with acceptable distortions in 
size and position, which is crucial for mapping purposes. 
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2. VECTORIZATION METHODS 

Most of the vectorization methods were developed in the last 25 
years. The methods we introduce here are Hough 
Transformation based methods, thinning based methods, 
contour based methods, run graph based methods and sparse 
pixel based methods. 
 
The Hough transformation (HT) is a well-known method for 
recognizing geometric primitives from raster images. The basic 
version of the algorithm just detects lines but it can simply be 
generalized to extract more complex objects. The major 
advantage of the algorithm is that it can extract desired graphic 
objects from a noisy environment, but it handles every pixel at 
least once, and needs a considerable amount of computation 
time (Song et al, 2002a; Xu and Bai, 2000). Wenyin and Dori 
(1999) discusses the application of HT for vectorization of 
straight-line images by transforming spatially extended patterns 
in binary image data into spatially compact features in a 
parameter space. Since this algorithm visits every pixel once, its 
time complexity is linear with the total number of pixels 
(Wenyin and Dori, 1999). 
 
HT detects parameterized curves in images by mapping the 
image edge pixels into manifolds in the parameter space. The 
parameters that are consistent with many types of the curves in 
image and methods finding peaks in the parameter space can be 
used to detect the image curves (Olson, 1999). 
 
The term “skeleton” has been used in general to denote a 
representation of a pattern by a collection of thin (or nearly thin) 
arcs and curves. Some authors refer to a thinned image as a line 
drawing representation of a pattern that is usually elongated. 
The terms “thinning” and “skeletonization” have become 
almost synonymous in the literature, and “skeleton” is used to 
refer to the result, apart from the shape of the original pattern or 
the method used (Lam et al, 1992). 
 
Thinning or skeleton based methods usually make use of an 
iterative boundary erosion process to remove outer pixels, until 
only one-pixel-wide skeleton stays. Then, the pixels on the 
skeleton are linked by using a line following procedure. Finally, 
every graphic object is recognized by extending and fitting 
from the point chains. Drawbacks of thinning include lost of 
line thickness information and difficulties in handling 
distortions at intersections. The frequent pixel access and 
numerous merging operations of short lines also slowdown the 
speed of vectorization (Song et al, 2002c). 
 
Thinning is also a crucial preprocessing step of feature 
extraction in many pattern recognition systems. In the OCR 
applications, for instance, the stroke extraction process usually 
follows thinning process. Thinning also plays an essential role 
in reducing the complexity of data acquired for vectorization of 
a binary line drawing, such as maps and mechanical drawings 
(Xu and Bai, 2000). 
 
The contour based methods first follow the contours and then 
detect corresponding contours to identify line-like areas. Medial 
axes, mostly represented as point chains, are created between 
these contour pairs. These methods generally consist of four 
main steps: (i) extraction of the contour vectors, (ii) matching of 
them, (iii) creation of medial axis, and (iv) junction processing 
(filling the gaps remained after matching process). (Tombre and 
Tabbone, 2000 ; Song et al, 2002c.) 
 

A remarkable disadvantage of contour based methods is missed 
pairs of contour lines at junctions, resulting in gaps that break 
the vectors. Keeping line widths compensates this disadvantage, 
which is important for post-processing. Moreover, in non-line-
like areas (intersections and degraded parts), the matching of 
contour is generally not one-to-one, but rather one-to-many or 
even many-to-many, which makes the analysis more complex 
(Song et al, 2002c; Dori and Wenyin, 1999). 
 
Run graph based methods examine the raster image in either 
row or column direction to calculate the run length encoding. 
The runs then analyzed to create a graph structure. The 
midpoint of runs in a line-like area is polygonalized to form a 
point chain, which becomes an edge in the graph structure, and 
a non-line-like area becomes a node connecting the adjacent 
edges. Finally, graphic object recognition is performed on the 
graph structure. These methods are not robust when the image 
quality is degraded. Furthermore, the dependence on the 
scanning direction leads to unsatisfactory performance for 
diagonal lines. They work well for sparse line images 
containing mainly horizontal and vertical lines, however (Song 
et al, 2002a; Song et al, 2002c). 
 
The most common technique among run graph based methods 
is Run Length Encoding (RLE) (Song et al, 2002a).  Run graph 
based methods are considered to be able to solve the problem of 
having both the connectivity and the line width information, 
because they record the node areas (junctions). A run graph 
representation can be viewed as a semi vector representation, 
because it employs nodes corresponding to the end points of 
vectors, along with a set of adjacent runs to express the digital 
segment between these two nodes. A polygonalization 
procedure is applied to the middle points of the set of runs 
representing the vector to find out its attributes.  Like most 
vectorization methods, run graph based methods are vulnerable 
by noise and may cause unsatisfactory results at junctions, since 
the intersection points are not precisely located during the 
construction of the run graph representation (Dori and Wenyin, 
1999). 
 
The basic idea of Orthogonal Zig-Zag (OZZ) method is to 
follow the course of a one-pixel wide ‘beam of light’, which 
turns orthogonally each time it hits the edge of the area covered 
by the black pixels, such as a bar area. The midpoint of each 
run, which is the intersection of the light beam and the area 
within the area, is saved. If a run is longer than a predefined 
threshold the run stops there, an orthogonal run is made and its 
midpoint is recorded. This may happen when tracking along a 
nearly horizontal or vertical area (Wenyin and Dori, 1999). 
Based on the OZZ idea, Wenyin and Dori developed the Sparse 
Pixel Vectorization (SPV) algorithm. SPV improves the OZZ 
method in these ways: a) the general following procedure 
begins with a reliable starting medial axis point found by a 
special procedure for each black area; b) a general following 
procedure is used to handle all three cases of OZZ, i.e. 
horizontal, vertical and diagonal. Hence, only one pass of 
screening is needed, and the combination of the two passes is 
avoided, which makes SPV faster than OZZ; and c) a junction 
recovery procedure is applied wherever a junction is 
encountered during line following (Wenyin and Dori, 1999). 
The aim of the Sparse Pixel Vectorization (SPV) is to improve 
the efficiency and accuracy via the sparseness of pixel 
examination. The result is a sparse skeleton, and 
polygonalization is needed to fit the line. With this method 
break of lines can be partially avoided. (Song et al, 2002b).  
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As we have already mentioned in section 1, we did not reach 
any work, which implements the ANN method for map 
vectorization. But we can cite some interesting papers that use 
methods based on artificial intelligence. Song & Civco (2004) 
use support vector machines for road extraction from aerial 
imagery. Zheng et al (2005) use Hidden Markov Model for 
detecting parallel lines in images consisting of text and rule 
lines. Their approach works, even if the documents are 
degraded. Dori & Velkovitch (1998) applied ANN method for 
segmentation and recognizing texts located in engineering 
drawings. In (Dias et al., 1995), a 8x8 ANN is used. The 
preferred ANN is trained by objects, which has corners in 
center of 4x4 pixel of the 8x8 window and which has no corners 
by randomly selected objects. This algorithm, only finds 
corners, and does not makes a line tracking. In (Sanchiz et al, 
1996), Freeman chain code is used by normalizing it in 0-1 
range. The presented algorithm evaluates every boundary pixel 
by its 12 or specified size of neighbour, boundary pixels. It uses 
neighbour pixels chain code as the input of ANN, and decides if  
pixel is a corner by the output of ANN. Fort he post processing, 
it merges detected corner points by specified methods. In (Tsai, 
1997), a novel boundary-based corner detection approach using 
artificial neural networks (ANNs) is presented. Two neural 
networks are proposed: one for detecting corner points with 
high curvature, and the other for detecting tangent points and 
inflection points that generally have low curvature. 
 
 

3.  ARTIFICAL NEURAL NETWORKS 

Artificial neural networks (ANNs) supply a general practical 
method for learning real-valued, vector-valued and discrete-
valued functions from examples. ANNs has been inspired from 
biological information processing systems (Mitchell, 1997). 
They are mostly developed to do a nonlinear mapping from a 
set of inputs to a set of outputs. ANNs are designed to attain a 
biological system type performance that is based on a dense 
interconnection of simple processing elements similar to 
biological neurons. ANNs, which are information driven rather 
than data driven, are non-programmed adaptive information 
processing systems that can autonomously develop operational 
capabilities in response to an information environment, and are 
ideal in cases where the necessary mapping algorithm is not 
known and tolerance to faulty input information is required. 
ANNs contain electronic processing elements (PEs) connected 
in a particular fashion. The behavior of the trained ANN 
depends on the weights, which are also referred to as strengths 
of the connections between the PEs. ANNs provide certain 
benefits over conventional electronic processing techniques that 
are the generalization capability, parallelism, distributed 
memory, redundancy and learning. ANN learning is suitable to 
problems, in which the training data corresponds to noisy, 
complex sensor data, such as inputs from cameras and 
microphones. It can also be applied to problems for which more 
symbolic representations are often used (Mitchell, 1997). 
 
 

4. ALGORITHM 

Our algorithm works in three steps. First, the image file is 
opened, converted to binary image and prepared for thinning. 
Thereafter the image is converted to an intermediate image, in 
which all lines are represented in one-pixel width. In the second 
step, the lines, whose width is one pixel, are tracked by ANN, 
and then the critical points for each object are determined. 
These points are saved in a point table. In the third step the 

objects that can be recognized as noisy are eliminated, the lines 
are simplified and the output file in vector format is created. 
 
4.1 Thinning 

Our thinning step is based on the conventional way. The most 
significant advantage of our algorithm is that it delivers the 
skeleton in one step, instead of working repeatedly. Doing so, 
the speed is increased.  
 
In our algorithm, at first, 3 by 3 median filter is applied on the 
image, because the noisy pixels can cause that the pseudo lines 
are recognized. After applying the median filter, the image is 
scanned in left-right direction, row by row, until the first black 
pixel is found. Thereafter, beginning from that pixel, the white 
pixels in four main directions are sought. The number of black 
pixels in each direction is then saved. Thinning is performed in 
the direction, in which the number of black pixels is minimum 
(Fig.1). In this direction all black pixels are marked for deletion 
except the one being in the middle (Fig.2).  In the next steps, 
the marked pixels are not processed, so the working speed is 
increased.  
 
 

 
 

Figure1. Thinning step 
 

 
 

Figure2. Achieved line after the thinning 
 

4.2 Line tracking with ANN and vectorization 

Vectorization and line tracking is performed after thinning. In 
this step, processed data that contains one pixel wide skeleton is 
used. The goal is to find the critical points of the objects, and to 
represent these objects in vector format.  
 
In this study, we use a supervised back-propagation to construct 
the ANN model. The proposed back-propagation neural 
network comprises an input layer, a hidden layer and one output 
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layer. Each layer is fully connected to the succeeding layer. The 
outputs of nodes in one layer are transmitted to nodes in another 
layer through links (Fig.3). The link between nodes indicates 
flow of information during recall. The ANN model uses 
“supervised learning” algorithm in learning phase. During 
learning, information is also propagated back through the 
network and used to update the connection weights between 
nodes. It has 25 inputs and 12 outputs (Fig.4). The neuron 
number of the hidden layer is 25. Sigmoid function is used as 
threshold function. 
The ANN’s learning table is given in table 1. 
 

   
 

Figure 3. Used ANN model 
 

 
 

Figure 4. ANN model’s output layer 
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Table 1. Learning set of ANN’s 
 

The “line tracking with ANN” is performed in following steps 
(Fig.5): (Px: current x position on the image; Py: current y 
position on the image) 
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Figure.5 Flowchart for line tracking with ANN 
 
1-Beginning with the first row, image is scanned row by row to 
find a pixel, which belongs to a line (simply a black pixel). 
When this pixel is found, Px and Py values are saved to show 
this pixel. 
 
2-Input matrix is filled from the neighbor of the found line pixel 
on position (Px, Py). And current line pixel is deleted (“set to 
white”) for being not to reprocess at step 1. 
3-After input matrix is filled, ANN is worked and ANN’s 
output layer is set by new values. In this step the algorithm is to 
answer two questions: 
 
a.Is this pixel a critical point? 
 
b.Where is the next pixel that belongs to a line? 
 
Algorithm answers first question by evaluating the first 8 of 12 
outputs of ANN. Seven of 8 outputs values are approximately 
“0”, and one of 8 values is approximately “1”. The output 
whose value is approximately “1” shows the tracking line’s way 
in 8 way chain code. If this chain code is different from the 
chain code, which is previously found, this point is then marked 
as critical. It means that the direction of the line has been 
changed at this pixel. 
 
Algorithm answers second question by evaluating the last 4 of 
the 12 outputs of ANN. If 9th output value is approximately “1”, 
x position of the next line-pixel equals Px+1. If 10th output 
value is approximately “1”, x position of the next line-pixel is 
Px-1. If 11th output value is approximately “1”, y position of 
next line-pixel is then Py+1. If 12th output value is 
approximately “1”, y position of next line-pixel then is Py-1. If 
all these values are “0”, nothing is done.  
 
For example: (O denotes outputs); 
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4- After next line-pixel is found, it is checked whether it is a 
line-pixel or not. If this pixel is a line-pixel, the algorithm goes 
to step 2. If not, the algorithm searches for a line-pixel in “n x 

n” neighborhood, where n can be set parametrically (typically 
5). If a line-pixel is found in this neighborhood, Px and Py are 
set and algorithm goes to step 2. Otherwise, algorithm goes to 
step 1. 
 
4.3 Slope Based Critical Point Elimination: 

The critical points obtained during the line tracking with ANN 
are saved in a table. In this table it is marked that which point 
belongs to which object. This table is transferred to next stage, 
where non-critical points are eliminated using a slope-based 
approach (Fig.6). 
 

 
Figure6. Critical and Non-critical points 

 
At this process, a point is selected being the base for slope. 
Initially, this point is the first point of the object. Then, the first 
base slope is determined with the second point in the table. In 
the next step, using the base point, the local slope for the third 
point is determined. Similarly, the slopes for the other points 
are calculated from the base point. If the difference between the 
base slope and the local slope of any point is bigger than a 
specified threshold value, this point is marked as critical, so the 
next base point will be this point. If not, this point is assumed as 
non-critical and is deleted. Then the steps above are repeated 
(Fig.7).   
 

 
Figure7. Finding critical points with gradient difference 

 
At this stage the remaining points are the exact corners, i.e. the 
real critical points. Here it is possible that the intersecting lines 
in the image do not intersect after vectorization. To minimize 
this effect, the first and the last pixels of every object are tested 
if there are other critical points in a specified range. If there are 
such points, the coordinates are averaged, so the nodes are 
clustered. Doing so, incomplete parts at some objects can be 
avoided.  Finally, the critical points of the objects that remain in 
the point table are transferred to a file in DXF-format. Doing so 
a 2D drawing is created. 
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5. APPLICATION 

5.1 Software Development 

In order to implement and to test the vectorization algorithm 
explained above, a program was developed with the 
programming language C#.  The software developed in this 
study is called VecNET. 
 
5.2 Test of the Proposed Algorithm 

In order to test of the algorithm proposed here, a digital vector 
map - a 1:1000 scale cadastral map showing  parcels only – is 
chosen (Fig.8). The content of the vector file is plotted, and 
then scanned. So we have the ground truths (original 
coordinates in the vector file).  The image size is 14396x11798 
pixels. It contains 203 parcels. The sizes of the parcels vary 
from 23.77 to 14054.17 m2 (on ground). Average area is about 
1317 m2. This image is then vectorized with our program 
VecNET and MDUS by Wenyin & Dori (1997). MDUS 
(Machine Drawing Understanding System) includes three 
algorithms: sparse pixel vectorization algorithm, stepwise 
recovery arc segmentation algorithm, and dashed line detection 
algorithm. In this study we only used the sparse pixel 
vectorization algorithm of MDUS. Additionally, the vectorized 
data is transformed to initial coordinate system by using affine 
transformation method. The affine transformation is defined by 
using the grid marks on the image. So we define a 
transformation between the pixel coordinate system and the 
initial coordinate system of the original vector file. The RMS 
error of the affine transformation is ±5.3 cm for VecNET and 
±4.7 cm for MDUS on the ground. 
 
Using the vectorized data, areas of the parcels were calculated 
after vectorization (VecNET and SPV), and were compared 
with the ground truths. The area changes for VecNET and SPV 
were calculated as percentage rates (Fig.9, Fig.10 and table 2). 
 

 
Figure 8: Test image 

 
To determine how the absolute positions of the parcels are 
changed after vectorization,minimum bounding rectangles 
(MBR) of the parcels are used. The center points of MBRs after 
vectorization (VecNET and MDUS) were compared with the 
ground truths. In table 3, Fig.11 and Fig.12 the displacements, 
in x and y direction, of the center points of MBRs are given. 
Fig.11 shows the histogram of changes (ds) after vectorization 
(VecNET). Fig.12 shows the histogram of changes (ds) after 
vectorization (MDUS). 

 
Figure 9: Changes in area after vectorization with VecNET 

percent 
 

 
Figure 10: Changes in area after vectorization with MDUS in 

percent 
 
 

 Objec

t  

No 

Max.  

Value 

Min. 

Value 

Mean 

Value 

Standard 

Deviation

VecNE

T 

203 14 -8 1.31 3.12 

SPV 203 13 -3 -0.27 1.64 

 
Table 2: The maximum, minimum, mean and standard deviation 

values of the parcel areas after Vectorization (VecNET and 
MDUS) 
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dx: displacement in x  direction 
dy: displacements in y direction 
ds: displacement  of the center points of MBRs 
xv, yv: Coordinates after vectorization 
xg, yg: Initial coordinates (ground truth) 
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Figure 11: Histogram of displacement for the center points of 
MBRs of the vectorized (VecNET)  parcels with the ground 

truths 
 

 
Figure 12: Histogram of displacement for the center points of 

MBRs of the vectorized parcels with respect to the ground 
truths (MDUS) 

 
 

 Object  

No 

Max.  

Value 

(cm) 

Min. 

Value 

(cm) 

Mean 

Value 

(cm) 

Standard 

Deviation 

(cm) 

VecNET 203 123.0  3.0 30.1  22.5  

SPV 203 170.0 1.00 19.2 15.6  

 
Table 3: The maximum, minimum, mean and standard deviation 

values of the displacements of MBRs of parcels after 
Vectorization (VecNET and MDUS) 

 
The mean of the displacements of MBRs is 19.25 cm with a 
standard deviation of 15.60 cm for MDUS. The mean of the 
displacements of MBRs is 30.1 cm with a standard deviation of 
22.49 cm for VecNET. It is slightly greater than the common 
drawing error (0.2mm on the map, 20 cm on the ground), but no 
significant displacements of the parcels are observed as seen in 
Fig.13. 
 
The area changes of the parcels show both increasing and 
decreasing trends. The mean of the changes is 1.31% with a 
standard deviation of 3.12%. If we think of a parcel with a size 
of 1000 m2, these values are 14 m2 and 30.6 m2, respectively. 

The area changes of the 185 parcels vary –5% and 5%. For 
other 18 parcels the area changes and sizes are shown in table 4. 
It can be seen from the table that these errors (percentages 

 
 

Figure 13: Initial parcels (green line) and vectorized parcels 
(brown lines) 

 
greater than %5) occur in parcels with different sizes, i.e. these 
errors do not depend on the parcel size. Additionally, the 
positional distribution of them is diverse (Fig.14).  
 

Parcel Area  

(m2 on ground)

The area 

changes 

(as percentages) 

95.764 12 

105.173 6 

111.027 9 

120.983 14 

127.012 9 

131.911 8 

155.592 6 

295.454 8 

348.915 6 

463.86 7 

476.803 6 

678.163 10 

743.587 11 

806.758 7 

808.474 -8 

1205.33 10 

1896.999 10 

Table 4: The area changes and sizes for other 18 parcels 
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Figure 14: The distribution of the parcels, which have area 

changes greater than %5. 
 

6. CONCLUSION 

In recent two decades a great number of vectorization 
algorithms have been published, which we summarized in the 
first and second section. Among these methods, an approach 
with ANN is hardly to be found. Our vectorization algorithm is 
based on ANN, which is a powerful algorithm to solve 
problems like vectorization. We developed our own software, 
which uses our algorithm and tested the software with a test 
image. The accuracy of vectorization is a key issue for mapping 
purposes. The accuracy should be considered in two ways: size 
and location. It is important to know how big the distortions in 
size and in location after vectorization are. Therefore we tested 
our algorithm with an image, which is actually gained by using 
a vector drawing. We compared the values obtained from 
vectorized drawing with the ground truths. The changes in size 
and location after vectorization are found to be acceptable for 
mapping purposes, which confirms the applicability of our 
algorithm. 
It is obvious that the MDUS program delivers better results than 
our program VecNET, but the results of the VecNET seem to 
be acceptable. Additionally we also observed that the VecNET 
produces acceptable results in the crossings of the parcel 
boundaries. 
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