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ABSTRACT:

In this paper we present an approach realizing the integration of data sets of different origin and with different resolution levels. The
underlying idea is to reveal semantic correspondences between object classes of different geo-ontologies only by analysis of spatial
and geometrical characteristics of instances of the data sets. As a result we derive transformation rules with Data Mining methods,
which subsequently allow the semantic connection between data sets. For our case study we use data sets with similar thematic focus,
but different semantic and geometric resolution: on the one hand building objects from cadastral data in a scale about 1:1K (detailed
data set) and on the other hand settlement areas from topographic data in a scale about 1:25K (less detailed data set). To derive links
between instances from the detailed data set to the more general one by geometric overlay it is required that the data sets are available
in the same geographical extent. Then we generalize the detailed data set by using the object boundaries in the less detailed data set
as a constraint for the generalization and generate an ’intermediate data set’ that is in a similar spatial resolution. We enrich the given
information with additional attributes representing spatial relations and implicit or intrinsic given instance properties (e.g. object size),
in order to derive transformation rules. These rules can be further used for classification of settlement areas of unknown regions in the
target data set.

1 INTRODUCTION AND OVERVIEW

With the growing automation in spatial data capture and the in-
creasing accessibility of geodata via web services, a huge num-
ber of geospatial data sets are available. A combination of all
these data is desirable, in order to improve the quality of single
data sets, enable interdisciplinary analysis procedures, and thus
promote interoperability. However, data integration can be diffi-
cult, when the data not only differ in thematic focus, resolution
and quality, but also have different data models with often a poor
documentation and no explicit semantics. So it is not possible to
identify semantic correspondences in the ontologies without ex-
pert knowledge. Since this knowledge is not always available,
our approach derives these semantic relations by the analysis and
exploitation of geometrical and topological properties of object
instances themselves. Using these and additionally determined
geometrical characteristics transformation rules between the data
sets on schema level will be derived automatically by means of
Data Mining methods. Already Volz (2005) has used instances
of different road data sets in order to derive corresponding object
classes in different schemas using statistical analysis. Also Duck-
ham and Worboys (2005) analyse instances of data sets, but in
contrast by methods of lattice theory. The rules derived from our
approach can be applied for classifying other, unknown regions of
the data sets, where the classification is still missing. First results
of applying this approach to data of similar scale have been pro-
duced using frequency analysis (Kieler, 2007). In this paper we
focus on identifying semantic correspondences across different
scales. First thoughts on this topic are already included in Kieler
et al. (2007). Now the challenge is that it is no longer possible
to match individual object instances, as they differ in semantic
and geometric granularity. Therefore generalization operations
have to be applied to bring both data sets to a comparable level of
detail.

The paper is structured as follows. In the next section the back-
ground of the research is outlined and references to the used

methods are given. Then, the used data sets are briefly in-
troduced. In section 4 the approach that enables the identi-
fication of semantically similar object classes in two different
geo-ontologies and the derivation of powerful classification rules
across scales are presented. After presentation and discussion of
first results in section 4, the paper concludes with an outlook on
future work.

2 RELATED WORK

2.1 Semantic data integration

There is a lot of research dealing with semantic data integration,
semantic annotation of geodata (Klien, 2007) and especially with
detection of semantic similarities in different ontologies. Kokla
(2006) presents a paper, that analyzes and compares existing inte-
gration approaches and describes the principal directions to per-
form semantic integration of geographic ontologies. One option
to identify semantic correspondences is to do it manually by care-
ful inspection of given object catalogues or ontologies. But such a
manual process is no longer feasible, if we aim at an integration of
arbitrary data sets that can be loaded via the internet. Another op-
tion is to determine semantic similarity measures, in order to es-
tablish the degree of potential semantic interoperability between
data of different origin. Because a common theory on semantic
similarity does not exist, Schwering (2008) summarizes the ex-
isting approaches for the measurement of semantic similarity. In
addition to the presentation of the five different classifications of
similarity measures: geometric, feature, network, alignment and
transformational measure, also the different mathematical foun-
dations, knowledge presentations and notions of similarity are
presented in detail. Especially the semantics of geospatial ob-
jects are complex and should not be detected solely by a term
comparison. These objects are typically described by spatial and
geometrical properties, attributes and relations and therefore it is
desirable to use all these information improving the derivation
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of semantic relationships of different data sets, using similarity
measures for a successful data integration.

2.2 Data Mining

The term Data Mining refers to extracting or ’mining’ knowledge
from large amounts of data, and is also known as knowledge ex-
traction, knowledge discovery in databases (KDD) or data/pattern
analysis (Fayad et al., 1996). Typical functionalities are con-
cept description, association analysis, classification and predic-
tion, cluster and also outlier analysis (Han and Kamber, 2001).
Specific algorithms for analysing geographic data sets are de-
veloped and coined as Spatial Data Mining (Miller and Han,
2001). Among these, classification methods are also known in the
field of Machine Learning as supervised or unsupervised learning
techniques (learning from examples). These are two step proce-
dures. In the first step, a model is built to describe the set of data
classes or concepts based on the examples of a training data set.
In the second stage, this model is used to predict the resulting
class of new data items (Russell and Norvig, 2003). Different
methods to derive classification rules and to represent them are
known, but one of the most famous is the induction of decision
trees, especially the ID3 algorithm (Quinlan, 1986) or its further
developments (e.g. C4.5) (Quinlan, 1993). These algorithms di-
vide the examples in a top-down recursive manner into branches
with nodes and leafs at the end using an entropy-based measure -
also known as information gain - as a heuristic approach to sepa-
rate the samples into individual classes (Han and Kamber, 2001).
Entropy is a fundamental concept in information theory repre-
senting ”a measure of how much ’choice’ is involved in the se-
lection of an event” (Shannon, 1948). That means higher entropy
involves more choices and information, and is not good for clas-
sification. Recursively therefore, the algorithms of decision trees
are trying to discover the lowest entropy, less choices and infor-
mation, for the best classifications.

3 DATA SOURCES

In the work presented here, we use two geodata sets in vector for-
mat describing topographic objects in different resolutions. On
the one hand we use settlement areas of ATKIS data (the German
Authoritative Topographic Cartographic Information System) in
1:25K and on the other hand building objects of ALK data (the
digital German cadastral map) in 1:1K. In Figure 1 a small part
of the investigated region is displayed.

The following textual descriptions will illustrate the difficulty in
detecting semantic similarities or correspondences across differ-
ent scales only from the object class definitions.

1. The textual catalogue descriptions of the analyzed ATKIS
object classes of settlement areas (AdV, 2008):

• 2111: Area with buildings, predominantly or solely
used for residential purposes. Besides these residen-
tial buildings also shops to supply this area, non-
disturbing craft producers, facilities for religious, cul-
tural, social and sanitary purposes are allowed.

• 2112: Area with buildings, predominantly or solely
used for industrial or craft producing purposes. This
includes e.g. shopping malls, warehouses / depots,
large-scale commercial farms, processing and dis-
posal plants and trade fair facilities.

• 2113: Area with buildings without a typical purpose
of the buildings. This includes especially areas with

2111 2112 2113 2114

931 932 933 1101

Figure 1: Data sources: ATKIS - less detailed data set with
4 types of settlement areas (top) and ALK - detailed data set with
4 classes of building objects (bottom).

a rural character, e.g. agricultural or forestry com-
panies, residential buildings and central areas in a city
with commercial buildings and vital economic and ad-
ministrative facilities.

• 2114: Area with buildings of certain purposes. This
includes purposes of administration, health and so-
cial affairs (hospital), education, research (university),
culture (church), safety and order (penitentiary), vaca-
tion or weekend homes and national defense.

2. The textual catalogue descriptions of ALK object classes of
building objects (VKV, 2008):

• 931: Private building (residential building).

• 932: Private building (outbuilding).

• 933: Subterranean building.

• 1101: Public building.

The descriptions are very fuzzy and imprecise regarding the
building object classes, that only distinguish very general be-
tween private, public or subterranean buildings. Without de-
tailed knowledge about the data sets that for example hospitals or
schools have to be classified as public buildings, it is not possible
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to identify semantic relationships between the object descriptions
of both data sets. The problem will be more complex, if the de-
scriptions of the object classes are entirely missing or the terms
of the object classes consist only of arbitrary combinations of let-
ters and numbers. Therefore a mapping regarding to terms of the
object class is not reliably possible in each case. For this reason
the approach presented here relies on the power of the spatial and
geometrical properties of data instances themself, in order to es-
tablish rules, making it possible to infer AKTIS settlement use
types from the ALK building objects.

4 APPROACH

In order to identify semantically similar object classes between
the presented data sets only by analysis of geometrical and topo-
logical properties of object instances, we have to preprocess the
data. The preprocessing is the most expensive and effort con-
suming step in the knowledge discovery process (Bogorny et al.,
2006). Our kind of preprocessing is described in the next sub-
section in more detail. After this step we use the edited data as
training data for learning classification rules by means of the J48
algorithm in the WEKA Data Mining software1. A simple exam-
ple for such a classification rule could be:

IF parcel area ≥ 10.000 m2 ∧ contain only
private buildings THEN parcel type = residential.

We can apply these derived rules subsequently to a test data set
in order to pursue the following two purposes. The first purpose
is to find the connection of semantically similar object classes
of investigated ontologies and the second to classify unknown
regions of the more general data set, referred to as generalization.

4.1 Preprocessing

The derivation of meaningful transformation rules by directly
linking the instances across the different scales and subsequently
counting and analyzing of the respective combinations is diffi-
cult. Therefore, we generated in a preprocessing step an interme-
diate data set I . The following example illustrates the situation,
which has been investigated within this study: Parcels with dif-
ferent building types (private, public, ...) will be aggregated into
different types of settlement areas. Depending on most occuring
building types in an aggregated area, either an industrial area or
a residential area will be created. Thus, a correspondence be-
tween individual parcels and the aggregated areas will not yield
to unique correspondence types. Therefore, we produce the in-
termediate data set I with a similar geometric resolution to the
less detailed data set by means of generalization. Specifically, we
generalize the detailed data set (ALK - building objects) with the
object boundaries of the less detailed data set (ATKIS - settlement
areas) as a constraint. That means all objects of ALK data that
spatially overlap with objects of ATKIS are merged and form in-
termediate objects. The new intermediate data set I has the same
number of instances and the geometry of the ATKIS data set. The
ALK instances are considered as attributes (see Figure 2). The
following short example should illustrate the linking of instances
across the whole data sets, before the preprocessing step: 4590 x
2111 → 931 , 127 x 2112 → 931, 3830 x 2113 → 931, ... and
afterwards concerning of the blue marked object of ATKIS class
2114→{3 x 931, 4 x 932, 2 x 1101}(see Figure 2).

For the further analysis using Data Mining, we have to determine
relevant properties of corresponding instances, because these are

1Waikato Environment for Knowledge Analysis;
http://www.cs.waikato.ac.nz/ml/weka

2111 2112 2113 2114
931 932 933 1101

Figure 2: Intermediate data set I formed by spatial overlay of
both data sets.

used to infer the rules later on. The strength of the different prop-
erties and the effect of the attributes to the quality of the results
will be discussed in the next subsections.

For the evaluation of our approach we use a training data set, in
the following referenced as Train, for training and extracting the
classification rules and a test data set referenced as Test for test-
ing and validating the definitions. The Train data set covers an
area of 17 km2 and the Test data set encompasses 11 km2. The
distribution of each object class in both data sources regarding to
the Train and Test sets are listed in Table 1.

Class Type # Class Type #
ATKIS Instances ALK Instances
2111 335 931 8740

Train 2112 21 932 4209
2113 257 933 185
2114 121 1101 454
2111 365 931 6483

Test 2112 41 932 5317
2113 15 933 51
2114 31 1101 161

Table 1: The total number of instances regarding to the object
classes separated by Train and Test data sets.

4.2 Determination of spatial relations and geometrical at-
tributes as an indication for semantic similarity

For the derivation of correct and strong transformation rules, con-
sisting of geometrical instance properties, we use the J48 algo-
rithm, because J48 can classify numeric attributes and is not re-
stricted to nominal attribute types like the ID3 algorithm. The
algorithm requires an attribute list for each instance of I as input.
This list must have at least one nominal attribute, for example
the object class type as a classifier. As a numeric attribute we
introduce the spatial relation ’containment’ by determining the
number of buildings lying within one parcel. Also the kind of
building type may be of particular interest. The mixture of differ-
ent building types in a parcel provides information about the land
use type. The statement, that a residential area always consists
exclusively of private buildings is not true in each case. But what
is the global definition of a residential area? The mere presence
of one single building type does not give rise to the correct type
of settlement area. Additional hints for a relation are provided by
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geometric properties of the instances, for example the size or the
shape of buildings and parcels.

In our analysis we calculate for each instance in the intermediate
data set I the following itemised attribute values according to the
different source data sets. This attribute list does not raise the
claim of completeness, but is sufficient for our current purposes.

1. ATKIS - settlement areas

(a) ATKIS Class TypeN : The settlement type N = 2111,
2112, 2113, 2114.

(b) ATKIS Area: The area size of the parcel in square me-
ters.

(c) # AKTIS Neighbors TypeN : The total number of
neighbors separated for each settlement type N .
This attribute can only be considered if the neighbors
are already classified.

2. ALK - building objects

(d) # ALK TypeM : The total number of buildings for each
building type M = 931, 932, 933, 1101.

(e) ALK Area TypeM : The total area in square meters for
each building type M within a ATKIS parcel.

(f) Ø ALK Area TypeM : The average area for each build-
ing type M within a ATKIS parcel.

(g) ALK Overlay Ratio TypeM : The overlay ratio in per-
cent between the total area for each building type M
to the area of the ATKIS parcel.

4.3 Derivation of transformation rules using J48 algorithm
and discussion of the results

For an effective classification of AKTIS settlement types as func-
tion of several attributes, the attribute list has to be converted in
the ARFF-format, which is necessary for using WEKA. For the
minimal example of three ATKIS instances (black bordered in
Figure 2) one input file for WEKA has to be structured as pre-
sented in Figure 3. In order to preserve the clarity, we use, for this
example, only three of the above introduced attributes, namely
the ATKIS Class TypeN as nominal attribute and classifier, as well
as the ATKIS Area and the # ALK TypeM .

@relation Train

@attribute ATKIS Class TypeN {2111, 2112, 2113, 2114}
@attribute ATKIS Area real
@attribute # ALK Type931 real
@attribute # ALK Type932 real
@attribute # ALK Type933 real
@attribute # ALK Type1101 real

@data
2111, 24391.04, 40, 26, 0, 0
2112, 35974.70, 34, 28, 1, 0
2114, 16162.61, 3, 4, 0, 2

Figure 3: Example for input-file in ARFF-format.

In the following the change of the accuracy by altering attributes
has been examined. At this point it should be noted that the ac-
curacy of the classification of the Test set is influenced by the
precision of the learned rules from the Train set. The quality
of these rules is in turn depending on the chosen parameter set

and has to be set for each classifier algorithm. This especially
includes the confidence factor (in our case 0.25) and the specifi-
cation of the minimum number of instances per leaf (10) in the
decision tree. Moreover, the quality of the used attributes is im-
portant for the final quality.

The overall accuracy AO , calculated from the number of cor-
rectly classified instances regarding to the total number of in-
stances of all object classes, is summarized for the Train and
Test sets in Table 2 and presented for the analyzed attribute com-
binations.

Attributes Train [%] Test [%]
(a),(d) 64 78
(a),(d),(e) 74 71
(a),(d),(e),(f) 76 77
(a),(d),(e),(f),(g) 76 83
(a),(b) 53 47
(a),(b),(d) 69 40
(a),(b),(d),(e) 75 68
(a),(b),(d),(e),(f) 78 75
(a),(b),(d),(e),(f),(g) 76 82
(a),(b),(c),(d),(e),(f),(g) 84 85

Table 2: The overall accuracies AO of the Train and Test sets
for different attribute combinations.

Consequently the highest accuracy value for the Train set
yielded the combination (a),(b),(c),(d),(e),(f),(g) with 84%. This
combination includes all introduced attributes of both data sets,
in contrast to the combination (a),(b) with 53% which uses only
attributes of the ATKIS data sets. The right mixture of attributes
from both data sets influences the accuracy. Also, a high overall
accuracy is no guarantee, that the accuracy for the test data set is
also high. Comparing the accuracies of Table 2 shows that in 50%
of the cases the accuracies for the Test set are lower than those
of the Train set. But the AO is not always an adequate indicator
for a good classification for all classes, because the accuracy is
depending on the correctly classified instances of all classes. For
that reason we have to consider also the accuracies AClassType,
with respect to the single object types. For the evaluation on the
Test set AClassType are represented for the same attribute com-
binations in Table 3.

Attribute combinations 2111 2112 2113 2114
(a),(d) 90 0 13 71
(a),(d),(e) 75 32 40 81
(a),(d),(e),(f) 84 32 40 81
(a),(d),(e),(f),(g) 88 59 27 74
(a),(b) 56 10 20 10
(a),(b),(d) 41 10 33 71
(a),(b),(d),(e) 72 32 47 81
(a),(b),(d),(e),(f) 80 32 40 81
(a),(b),(d),(e),(f),(g) 88 49 33 74
(a),(b),(c),(d),(e),(f),(g) 91 59 27 74

Table 3: The single accuracies AClassType for the Test set and
for different attribute combinations.

Comparing the AO of the attribute combinations (a),(d) and
(a),(d),(e),(f) in the Test area in Table 2 there is only a differ-
ence of 1%. Considering also the single AClassType of these
combinations, it is obvious that the two classes 2112 and 2113,
that were classified very bad or not at all for the first attribute
combination, increased their accuracies using the latter combina-
tion. On the other hand a decrease of the accuracy of class 2111
is the effect of the change of the attribute combination. To gain
satisfying results it is necessary to consider the pros and cons
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of certain attributes for the specific task. Although the attribute
combination (a),(b),(c),(d),(e),(f),(g) has the best accuracies it is
not suitable for the classification of unknown data sets, because
the attribute (c) is included, requiring the knowledge of the set-
tlement type of the neighboring parcels. But this attribute can be
used for example for the improvement of the results in a further
iterative process, if a first classification has been carried out. An-
other scenario could be, if a parcel should be newly classified,
because there were changes in the construction of a parcel. For
that case, the types of land use are known of the neighboring ob-
jects and can be taken into account.

The most accurate combination without (c) with respect to the
global accuracy is (a),(d),(e),(f),(g). For this case study the sin-
gle accuracies and the corresponding detailed classification ma-
trix with the instance numbers are displayed respectively in Table
Table 4 and Table 5. On the main diagonal of the matrixes the val-
ues of the correctly classified instances are highlighted in bold.

2111 2112 2113 2114
2111 88 0 9 2
2112 2 59 37 2
2113 53 7 27 13
2114 13 3 10 74

Table 4: Test set: Classification statistics of AClassType in %
for the (a),(d),(e),(f),(g) attribute combination.

2111 2112 2113 2114 # Instances
2111 323 0 33 9 365
2112 1 24 15 1 41
2113 8 1 4 2 15
2114 4 1 3 23 31

Table 5: Test set: Classification matrix with the instance num-
bers for the (a),(d),(e),(f),(g) attribute combination.

In the following the classification rules for the attribute combina-
tion (a),(d),(e),(f),(g) are shown.

IF (g)931 ≤ 8.56 ∧(d)1101 ≤ 0∧(e)932 ≤ 1328.59∧(e)931 >
154.16 ∨ (g)931 > 8.56 ∧ (e)932 ≤ 828.27 ∧ (g)1101 ≤
6.51∧(f)931 ≤ 625.89∧(d)931 ≤ 1∨(g)931 > 8.56∧(e)932 ≤
828.27 ∧ (g)1101 ≤ 6.51 ∧ (f)931 > 625.89 ∧ (e)931 ≤
4512.69 ∨ (g)931 > 8.56 ∧ (e)932 > 828.27 ∧ (f)932 ≤ 66.46
THEN ATKIS Class Type = 2111.

IF (g)931 ≤ 8.56 ∧ (d)1101 ≤ 0 ∧ (e)932 > 1328.59
THEN ATKIS Class Type = 2112.

IF (g)931 ≤ 8.56 ∧(d)1101 ≤ 0∧(e)932 ≤ 1328.59∧(e)931 ≤
154.16 ∨ (g)931 > 8.56 ∧ (e)932 ≤ 828.27 ∧ (g)1101 ≤
6.51∧(f)931 ≤ 625.89∧(d)931 > 1∨(g)931 > 8.56∧(e)932 ≤
828.27 ∧ (g)1101 ≤ 6.51 ∧ (f)931 > 625.89 ∧ (e)931 >
4512.69 ∨ (g)931 > 8.56 ∧ (e)932 ≤ 828.27 ∧ (g)1101 >
6.51 ∨ (g)931 > 8.56 ∧ (e)932 > 828.27 ∧ (f)932 > 66.46
THEN ATKIS Class Type = 2113.

IF (g)931 ≤ 8.56 ∧ (d)1101 > 0
THEN ATKIS Class Type = 2114.

Whereas on the top of Figure 4 the allocation of the ATKIS Class
Type for the Test data set is illustrated, the correctly and incor-
rectly classified instances are shown together at the bottom of the
figure.

In Table 5 it is noticeable that there is just a small misclassifi-
cation to class 2112 due to a precise class definition. Most of
the misclassifications take place in class 2113. This leads to the

conclusion that the description of this class is very fuzzy (com-
pare the class definition in section 3) and that the attributes are
not strong enough to separate this class from the others. Because
in class 2113 most of the wrongly classified instances belong to
2111 and 2112 it seems that this class is a combination of these
two classes. Comparing the textual definitions this assumption is
confirmed, because 2113 holds objects of a mixed use land type,
including as well as residential building from 2111 and outbuild-
ings from 2112.

2111 2112 2113 2114

correctly classified incorrectly classified 

Figure 4: On the top: The overview about the ATKIS Class Type
in the Test set. At the bottom: The presentation of the cor-
rectly and incorrectly classified instances in the Test set using
the (a),(d),(e),(f),(g) attribute combination.

The derived transformation rules make a connection between the
ATKIS and ALK data sets possible. These can also be used in or-
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der to control or to refine the semantic description of the different
object definition with more details, for example the proportion of
private objects in residential areas.

5 CONCLUSIONS AND FUTURE WORK

This paper presented a way to include geometrical attributes and
spatial relations between instances of different data sets for the
semantic connection of the geo-ontologies as precondition for an
improved interoperability. Transformation rules are derived by
means of a Data Mining algorithm. These rules can also be used
for the classification of an unknown data set. With the investi-
gation of our test data sets, we reveal, that the accuracies of the
derived rules are influenced by a lot of factors, e.g. attribute lists
or fuzzy class definitions. The work regarding to these problems
is still in progress. In the future the results can be improved on
the one hand by adding additional attributes with respect to the
detailed data sets. For example, the dominant building type size,
the arrangement of buildings as perimeter block development or
also linear buildings seem to be very significant for residential
areas and could be useful for a clearly distinction to mixed used
areas.

In addition the identified transformation rules between the two
data sets with different resolutions can be used for an updating
of the more general data set. If objects in the detailed data set
change, it is possible to adapt the land use type. It is also possi-
ble to expand the presented process to an iterative process. That
means, in a first stage, classifications yielding good results could
be applied. After this pre-classification also further classifications
that take neighborhood information into account, can be com-
puted. Because it is obvious, that the type of neighboring objects
can be an indicator for the most probable classification. On the
one hand clusters of the same land use types are very clearly vis-
ible as shown on the top of Figure 4 and on the other hand the
principles of urban planning do not allow an industrial area sur-
rounded only by residential areas.
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