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ABSTRACT: 
 
In this paper, we introduce the idea of documenting operational chains for land degradation assessment using ontologies. We believe 
that this will help end-users in better understanding the land degradation characteristics and evaluate the results of the assessment 
process. Since the application domain is wide, various operational chains for land degradation assessment and their associated 
documentation exist, according to different options. This parameterization causes the development of different ontologies, which, 
nonetheless are to a certain extent linked because of the common software components of the corresponding operational chains. We 
therefore propose a hierarchical structure of these ontologies; so that several requirements such as understanding of expert 
knowledge interconnections and application domain variety, documentation, assimilation of new expert knowledge, and reusability 
of software components become feasible. 
 

                                                                 
 

1. INTRODUCTION 

The objective of the research is the use of ontologies in land 
degradation assessment applications monitored by satellite 
images. The motivation behind the use of ontologies, in such an 
endeavour, is to help dissemination and usage of software 
components among a range of scientists and users of 
environmental applications. We believe that the ontology-based 
documentation of the operational chains end-users have to 
pursue will facilitate both the assessment of land degradation 
and the understanding of its characteristics. Actually, ontologies 
enable the community of users of an operational chain to 
understand how the various processes of the chain are 
interrelated since they document the various parameterisations 
needed in this type of applications. The main quality of 
ontologies is that they make problem-solving knowledge 
explicit to end-users, by providing a common vocabulary and 
by giving to it a clear-cut meaning.  
 
Among the different types of ontologies that are presented in 
Guarino (1998), and Gomez-Perez and Benjamins (1999), we 
isolate herein: the task, method and application ontologies. A 
task-ontology provides a systematic vocabulary of the terms 
used to solve problems associated with tasks. A method-
ontology provides definitions of the relevant concepts and 
relations used to specify a reasoning process in order to achieve 
a particular task And finally an application-ontology contains 
the necessary knowledge for modelling a particular application. 
As it can be induced from these definitions, a method ontology 
can be considered as a subcategory of a task ontology.  
 
Since the application domain of land degradation is wide, 
various operational chains for land degradation assessment and 
their associated documentation exist, according to different 
options. These options comprise of: different data sources 
(AVHRR, MODIS,…) with various spectral, spatial and 

temporal characteristics; different applicative goals: 
desertification, deforestation, erosion, etc.; different sites of 
interest, such as Brazil, South Africa etc.; and different 
algorithms with associated data structures, e.g. representing a 
land use label by membership functions, or as a collection of 
spectral samples, etc.  
 
For each previously mentioned option an operational chain is 
defined according to a specific parameterisation of the software 
components. A comprehensive documentation is required for 
each of these operational chains, since they are most often 
developed by scientists, but operated by end-users. The latter 
need to process them easily and as automatically as possible, 
while at the same time be able to have control and complete 
understanding of the intermediate processes so that they can 
interpret the results. These operational chains are, to a certain 
point, linked because they have several software components in 
common.  
 
As mentioned, each operational chain is defined according to a 
parameterization that reflects a specific set of options. This 
parameterization process underlies the development of different 
ontologies, which, nonetheless, can be organized in a specific 
configuration, corresponding to an oriented and hierarchical 
tree structure. The ontologies of the operational chains 
constitute the lower level of this tree. Within this configuration, 
ontologies at one level are directly obtained from those at the 
previous level after defining some of the software components 
and parameterizations. Therefore, this hierarchical structure 
enables automatic derivation of ontologies compatible with the 
chosen software components and parameterizations (Oberle, 
2005) that constitute an operational chain, for each type of 
application under a given context. 
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Additionally, through the proposed structure we answer, as it 
will be further shown in the paper, the questions of: a) how new 
knowledge, when and if acquired, can be incorporated in an 
existing operational chain and therefore update it, and b) how a 
more detailed operational chain can be developed using this 
new knowledge. 
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Finally, we seek, herein, to prove that the organization of 
ontologies in a hierarchical structure meets several other 
requirements. More specifically, it: a) provides an 
understanding of the underlying variety of the available 
operational chains, b) establishes interconnections so that 
different parts of knowledge, belonging to the same context, 
become coherent and shared by scientists and end-users, and c) 
enables end-users to select, among a variety of choices, the 
operational chain that meets best their needs. 
 
 

2. DEFINING AND EXPLAINING THE TREE  

In this section, we define what is included in the tree (figure 1). 
At the top (level 0), there is the ontology which corresponds to 
the learning phase. This ontology represents problem-solving 
knowledge and the available methodologies for executing the 
required tasks. At lower levels are the ontologies for specific 
environmental applications (e.g., deforestation or desertification) 
parameterized for different datasets (e.g., MODIS or NOAA) 
(corresponding to levels 1 and 2). At the lowest level are fully 
parameterized ontologies in the context of a specific geographic 
area (each corresponding to a specific operational chain; for 
instance an ontology for identifying deforestation areas by 
analyzing MODIS data for the Taquari basin in Brazil as the 
one presented in section 4). Thus, end-users, using the 
appropriate ontology are able to retrieve the operational chain 
that fits the specific application context, data, location, etc.  
 
How does the tree structure helps meeting the objectives 
presented in the introduction? In what follows we discuss the 
main benefits of such a structure. First, when having such a 
hierarchical structure scientists are able to understand the 
interdependencies among different parts of knowledge, by 
going from the upper to the lowest level. This is so, because the 
processing chains (and, therefore, the corresponding ontologies), 
due to the software components that underlie them, become 
more and more specialized, parameterized and calibrated to 
account for the specific data, location context etc. Hence, 
scientists are able to reason about the different parts of 
knowledge contained at each level of the tree structure. Within 
this type of structure, the ontologies, but more importantly the 
different underlying operational chains are coherent. Since the 
relations that exist in the tree structure are well known and 
articulated, it becomes feasible to analyze the results of a land 
degradation assessment process according to the algorithmic 
choices represented by the path from the root to the lowest level 
of the tree; where the operational chains are located. 
 
 
 

 
 

Figure 1: The tree structure of ontologies. 
 
A second advantage is the ability to add new parts of 
knowledge. If, at one point, scientists perfect their knowledge 
about the application domain by refining choices among 
methodologies or types of data, then it is just necessary to add 
new parts in the structure (most probably a complete 
intermediate level) to represent the newly acquired components 
of knowledge. Each leaf of the tree corresponds to a set of 
choices, which has to be made in the process of defining 
operational chains for end-users. Therefore, the refinement of 
the choices leads to inserting additional leaves or even levels in 
the tree. 
 
A third advantage is that the tree structure enables updating of 
the operational chains. Suppose end-users employ an 
operational chain (therefore, the associated ontology) and at one 
point they decide to make modifications to the chain, due to 
their experience. In this case, ontologies have to be modified 
accordingly. Then these modifications should be transmitted on 
the tree structure; upward, and then downward to be shared by 
others. Consequently the key-idea, here, is to update the 
ontologies both horizontally and vertically along the tree 
structure. 
 
One consequence of the previous points is that ontologies 
included in the structure and their associated operational chains 
can be reusable. This practically means that if an operational 
chain is defined for one application on one geographic location, 
it will be easy to adapt it for another geographic location and/or 
for another application and to derive the corresponding 
ontology, because, in such case, problem-solving knowledge is 
significantly the same. Hence, software components are also 
reused, allowing reducing programming effort from the 
developer’s point of view. 
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3. ISSUES IN DEVELOPING THE HIGHEST LEVEL 

ONTOLOGY  

This section explains the development of the ontology at the 
highest level and the theoretical issues met during its 
development. This highest level concerns the general 
undertaken methodology to be followed during the learning 
phase, that is, a data analysis phase whose results serve as 
inputs to operational land degradation monitoring and 
assessment. The corresponding ontology is generic and includes 
all the necessary components of a method-ontology 
(Chandrasekaran et al., 1998 and Rajpathak & Motta, 2004) 
such as: Initial state, Goal(s), Tasks, Result(s), Methodology, 
Parameters, Constraints, Input(s), Output(s). 

 
In developing ontologies for describing a methodology or a 
sequence of tasks, we face several theoretical issues of the 
learning phase, which are presented in the following 
subsections. The initial choices are fully up to the users, 
supported or not by different objective criteria, which allow 
justifying and quantifying the preferred alternative (e.g. choice 
of geographic site, of classification method). Further choices 
are supported by automated tasks, as the determination of the 
low-resolution nomenclature. The latter choices will constitute 
the core of the learning phase, the purpose of which being to 
end-up with the full parameterization of an operational chain. 
 
3.1 The initial parameterization 

The initial parameterization consists of setting the application 
type and its geographic location. Therefore:  
1. The first choice concerns the application type. The 

application refers to different land degradation assessment 
cases such as deforestation, erosion, or desertification. 
This choice is simple. The user knows in advance the type 
of the application. 

2. The second choice concerns location/site of land 
degradation. The studied geographic location or site is 
defined; e.g. Brazil, Northern Africa, or Southeast Asia. 

 
At this point, a whole range of open questions needs to be 
answered for constructing the operational chain by the means of 
the available software components. Part of this process will be 
done on a human-based method if no quantitative criteria can be 
defined at that time for allowing automating the choice; other 
questions will be solved by an automatic process.  
 
3.2 Further alternatives and parameters 

The following list displays the different other parameters that 
have to be set by users before the automated part of the learning 
takes place (see subsection 3.3). 
 
3. The third choice concerns the sensor type. The sensor 

refers to the type of satellite acquisitions that are going to 
be selected and processed. The criteria to be considered for 
this option are: availability of data (location, period…), 
data quality, resolution, acquisitions’ size, compatibility 
between acquisition channel and studied phenomenon etc. 
In this paper, we are interested by land degradation 
analysis with remote sensing data for large areas of the 
Earth’s Surface. We, therefore, use low-resolution satellite 
data acquired by sensors such as NOAA or MODIS, which 
have a large spatial coverage.  

4. According to the selected sensor, different products can be 
used among those available. For instance, if the sensor 
choice is MODIS, the available products range from: a) 
MODO9GQK: daily red and near infrared reflectance, 
250m, quality and orbit coverage metadata, b) 
MODO9GST: 1km, quality metadata, (products a and b go 
together) c) MOD13Q1: 1) 250m, red – infrared 
reflectance, 16days, 2) 250m, NDVI, 16days, 3) 250m, 
EVI, 16days. Criteria for choosing among them are: the 
quality of the temporal profiles we get after pre-processing, 
the need for daily acquisitions or not, the availability of the 
data, the cost of pre-processing etc.  

5. Next is the choice of pre-processing, which aims 
suppressing noise from the chosen data (e.g. cloud 
correction, apply mask of atmospheric quality, etc). 

6. Another option concerns the kind of image analysis to 
pursue. Should the analysis be conducted for pure pixels 
only (see point 8 of the next subsection to understand what 
a pure pixel is) or for all pixels in the images? One 
criterion for this choice could be the ratio of pure pixels to 
mixed pixels in the training data. 

7. Following this decision, another issue that arises is which 
method to use if we decide an all pixels analysis. One 
alternative for analyzing mixed pixels could be to consider 
the three main classes around it and then “un-mix” this 
pixel by computing the proportion of these classes within it. 
Another alternative is to “un-mix” the pixel with all the 
available. A criterion for selecting one or the other method 
is the homogeneity of the neighbourhood.  

 
3.3 The automated part of the learning phase; the final 
parameterization process 

The following paragraphs demonstrate the core choices of the 
learning phase, supported by automated tasks. The objective is, 
three-fold: 
• Definition of the land use labels L  that can be observed on 

low-resolution satellite images sequences; 
L

                                                                

• Definition of the characteristics (features) of the temporal 
profiles for each identified land use label;  

• Selection and training of a classification method for the 
low-resolution images sequences. 

 
The initial resources consist of at least one high-resolution 
satellite image acquired over the learning area 1 , classified 
according to a high-resolution nomenclature, which corresponds 
to different types of land use). This high-resolution 
classification image constitutes a snapshot of the area and does 
not inform on any dynamic process such as land degradation. 
The second input of the learning phase is the sequence of low-
resolution satellite acquisition over the area of interest (chosen 
in step 4), including the learning area documented by the 
classification.  
 
8. This parameterization step reflects the first objective of 

defining a low-resolution nomenclature; the labels LL, 
associated to the low-resolution images, corresponding to 
different types of land use that have distinct spectral and 
temporal characteristics in these images. This 
nomenclature is usually different from the high-resolution 

 
1  A small part of the study area, for which high-resolution 

satellite images are available and a number of data acquired 
during field campaigns.  

705



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008 

nomenclature LH. To do this, the tasks that should be 
undertaken are: 

• Finding pure pixels in the low-resolution satellite images, 
pure pixels contain only one high-resolution land-use label 
LH.  

• Computation of the temporal profile of the Normalized 
Difference Vegetation Index (NDVI) for each pure pixel. 
These curves are computed if the product (chosen in step 4) 
concerns red and infrared reflectance. If the product is a 
vegetation index, nothing further has to be done.  

• Cloud-screening and temporal filtering of NDVI profiles. 
• For each high-resolution label LH testing of the profiles of 

all the low-resolution pixels belonging to that label to find 
the potential existence of any common characteristic of 
these profiles, so that the low-resolution land-use label L , 
defined with the LH value, can be easily discriminated from 
others. 

L

• Comparison of the temporal profiles of the remaining 
classes, which can result into: 
a) Class splitting; has input the pure pixels belonging to 

one high-resolution class and results in two or more 
groups, defining different classes. This splitting is due 
to the heterogeneity of the set of temporal profiles of 
the high-resolution class. Splitting is only done on the 
original high-resolution classes. 

b) Class merging; has input the pure pixels of two 
different classes and results into one class due to the 
similarity of the temporal profiles of the pixels.  

 
The result of this process is the identification of the low-
resolution labels LL, using the high-resolution nomenclature as a 
guide.  
 
9. The second issue is the selection of features on the 

temporal profiles for each low-resolution label. To do this, 
the tasks that should be undertaken are: 
• Fit of the temporal profiles by mathematical curves 

(polynomials), in view of filtering the remaining noise, 
and mostly to provide a mathematical representation 
of profiles from which high-level features can be 
computed. 

• Computation, from the algebraic expression of fit 
profiles, of:  
a) Features describing the whole temporal profile, e.g. 
number of modes, duration and growth of main 
growth/decrease period, amplitude of NDVI variation, 
mean NDVI, etc. 
b) Features per mode (if number of modes>1), each 
mode being described by e.g. date of maximum, 
amplitude, duration, etc. 

• Different methods are possible for the final selection 
of features, aiming to minimize intra-label variance 
and to maximize inter-label variance. The selection of 
the most adapted method is highly dependent on the 
statistical distribution of features and their 
correlations: Expectation-Maximization, Discriminant 
Analysis, decision trees are examples of such methods.  

 
10. The third issue is the selection of the classification method, 

its training and its testing. Hence, we need to be informed 
on the characteristics of classification methods and to be 
provided with criteria for the selection. To do this, the 
tasks that should be undertaken are: 
• Choice of a classifier method, according to different 

criteria of the specific application, e.g.:  

a) Maximum likelihood if a large number of training 
samples is at hand, if features are uncorrelated and 
normally distributed (this is rarely the case in 
practical remote sensing problems); 

b) Decision-trees if clear cut-off values can be applied to 
individual features for class separation; 

c) Fuzzy-logics based methods, if some features present 
saturated histograms, or when some features provide 
information for specific classes only (and hence must 
not be used for other classes): the distribution of 
features per class is described by membership 
functions. Fuzzy toolboxes are at hand to model 
saturated as well as normally distributed features. The 
membership functions are finally merged using 
information-fusion paradigms (e.g. Dempster-Shafer 
combination rule). 

• Choice of a training sample for the land degradation 
label. This is performed by analysing change 
detection between two high-resolution images. 

• Training of the classifier, by analyzing the training 
samples to provide the required input data to the 
classifier. In the case when fuzzy classification has 
been selected, the training consists of: 

a) Identifying the relevant features for each low 
resolution class; 

b) Modelling the feature distribution by membership 
functions; 

c) Parameterizing the rule of combination for 
membership functions, generating class likelihood 
values. 

• Application of the classifier and tuning of a threshold 
to be applied on the computed class likelihood, to 
discard pixels classified with low confidence (so 
called non-classified pixels). 

• Test of the classification performance; produces the 
confusion matrix of a test area.  

• Eventually, processing of the non-classified pixels; 
within these pixels, the percentage of content for the 
different low-resolution labels is computed using a 
linear mixture model. 

 
The process of developing the ontology for this first level is 
crucial. It supports scientists in further defining the operational 
chains, for different applications, by giving a clear view and a 
complete understanding of the choices that have to be made to 
address the specificities of each case.  
 
 

4. PARAMETERIZATION OF THE GENERIC 
ONTOLOGY; STEPPING DOWN THE TREE  

This section illustrates the derivation of ontologies from the top 
to the last level of the tree. At the top (level 0) is the generic 
ontology for detecting land degradation, which documents all 
the choices that have to be made in the context of land 
degradation assessment using Earth Observation means, as well 
as the sequence of making the choices. As demonstrated, the 
ontology documents the available expert knowledge for land 
degradation assessment cases in general. It does not provide any 
specific answers of what choices have to made, does not 
“favour” any methodologies against others, and does not 
exclude any possibilities. What it, nonetheless, does is to reveal 
and justify the whole range of choices, methodologies, and their 
subsequent results. The parameterization starts at lower levels 
of the tree, as we shall see in what follows.  
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At the first level, we consider different types of land 
degradation. For making the tree finite we consider only three; 
erosion, deforestation and desertification. Regarding these 
applications, one main difference is the speed of the 
degradation process, which corresponds to different data 
requirements. Desertification and erosion are slow and 
progressive processes of vegetation and soil removal, requiring 
analysing time-series of satellite images over several years; 
deforestation on the contrary is an abrupt process (forest cut or 
burning) only requiring a year of data, in which sudden 
vegetation removals are looked for. Thus, erosion, deforestation, 
and desertification correspond to different operational chains 
and associated ontologies. In this paper, we chose deforestation 
as the case study application for illustrating the method.  
 
The second level reflects the choice of location/site for the 
application. Land degradation phenomena happen in different 
locations around the world, Brazil, Nigeria, South Africa, 
among others. Our case study is conducted for Taquari basin in 
Brazil2. 
 
At the third level, two data source types are available, MODIS 
or NOAA, each with its own set of parameters and values. 
Regarding data sources, as the spectral content and the spatial 
resolution (1km for NOAA, 250m for MODIS) of both sources 
are different, the data do not carry the same information on the 
occurring processes. This implies using different methodologies, 
as for instance sub-pixel modelling for getting spatial details 
despite the low spatial resolution of NOAA. MODIS data are 
used in the following.  
 
This process of choosing between different options goes on for 
all the remaining levels of the tree reflecting the set of choices 
described in the previous section. When all choices are made, 
we are left with a complete task ontology, which corresponds to 
an operational chain that can be pursued by an end-user. The 
next section presents in detail the development of the 
operational chain we use as the case study.  
 

5. THE LOWEST LEVEL; THE OPERATIONAL 
CHAIN 

This section gives an example of the lowest tree level; the 
ontology of an operational chain for identifying deforestation in 
Brazil with MODIS data. This operational chain is implemented 
for detecting deforestation areas in the Taquari basin. The 
following subsections explain the methodology used to assess 
the deforestation areas. 
 
5.1 The methodology for deforestation assessment in the 
Taquari basin 

Daily MODIS red and near infrared reflectance at 250m 
resolution have been processed to monitor the Taquari area. The 
temporal profiles acquired by MODIS have been cloud-filtered 
and approximated by polynomials. Afterwards features haven 
been computed from these polynomials, finally the detection of 
deforestation has been performed in the associated vector space. 
An example of deforestation detection is shown on figure 2. 
The results can be validated with high resolution Landsat 
images, as illustrated in figure 3, where MODIS pixels, detected 
as deforested, are validated by examining the same area on 
Landsat images acquired before and after the detected event. 
The cut of the forest is clearly visible in the most recent Landsat 

                                                                 
2 The case study is partly funded by a INRIA/CNPq project 

image, and has the same shape as the detected deforested 
MODIS pixels. 

 
 

Figure 2: Example of detected deforested areas (in red). 
 

 
 

 
 

Figure 3: Validation of deforestation detection with Landsat 
images acquired before the deforestation process 
(above) and after (below). 

 
5.2 The ontology of the operational chain 

In turn, we have developed an ontology that documents and 
explains to the end-users the process of identifying the 
deforested areas from satellite images time series. It is an 
ontology of the operational chain; namely it documents the 
sequence of steps that have to be executed in order to achieve 
the above-described goal. 
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The developed ontology belongs to the class of task ontologies, 
it is addressed to the end-users, and it clarifies significantly the 
operational chain. It was created in the OWL (McGuinness & 
van Harmelen, 2004) language using Protégé Ontology Editor 
(2006). 
 
Initially, the different tasks or steps of the operational chain 
were identified and, in accordance with them, the corresponding 
class task and its subclasses were created in Protégé: e.g. build 
sequences, cloud correction, mask generation, etc. Every task 
corresponds to a software component of the operational chain. 
This set of components was documented in the ontology by 
creating the class command and its subclasses. Several other 
classes were included in the ontology such as input, output, 
parameter, etc. 
 
Similarly, the attributes of these classes were created. The most 
essential are:  
• Has prerequisite task/is prerequisite task of (define the 

sequence of tasks/steps)  
• Has input/is input of  
• Gives output/is output of  
• Is executed by command/executes (define the 

correspondence of each task/step to a specific command, 
which in turn corresponds to a software component) 

 
For each class the necessary conditions/restrictions were 
determined. Namely to each class properties and relations 
between these were ascribed, that is why we can speak of an 
ontology and not of a simple taxonomic structure of the task/ 
steps. For making the ontology better documented and for the 
understanding, by the end-users, of its various classes, 
comments were introduced to each class. 
 
After this process had been completed, the html files of the 
ontology were created for each one of the ontology elements 
(class, property etc). These constitute a web site, which can be 
given to the end-users so that they can consult it each time they 
follow the specific process of identifying deforestated areas. 
Several connections between the html files are generated 
automatically, when generated by Protégé; others were added 
manually, when believed necessary for the better understanding 
of the user. 
 
 

6. CONCLUSIONS AND FURTHER WORK  

In this paper, we presented a methodology for documenting, 
using ontologies, satellite images-based land degradation 
monitoring. We propose adopting a tree structure for organizing 
these ontologies since this structure allows the understanding of 
the interdependencies among the different possible operational 
chains and permits updating and refining expert knowledge.  
 
This research has proven that the tree structure gives solutions 
to the question of reusability of: a) the ontologies themselves, b) 
the documented knowledge therein, and c) the software 
components run in the applications. Moreover, it has, revealed 
that extendibility (adding new parts of knowledge to the 
structure) is, through this approach, feasible.  
 
We identify though, two future directions of research. The first 
involves theoretical issues of ontology development addressing 
the question of how generic we can be at level 0. Generic 
ontologies are always subject of research and are therefore, 
susceptible to modifications. We could get more abstract, 

extending the tree upwards, leaving more room for 
parameterisation, and reasoning about things to the next levels 
of the hierarchy.  
 
The second one concerns automation of ontology retrieval from 
the tree. The issue, here, is to automate the process of deriving 
the ontologies in the lower levels from the generic one. We can 
also envision that this automatic derivation of ontologies will be 
coupled with the creation of the operational chain by linking the 
choice and parameterization of the software components with 
the choices performed within the tree.   
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