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ABSTRACT: 
 
This is a cooperative work between the Chair of Photogrammetry and Remote Sensing of ETH Zurich and the Research department 
of Ordnance Survey, called “Quality Assessment of 3D Building Data”. The project aims to derive methods to calculate metrics for 
the quantitative evaluation of 3D building models, which are assumed to be basic elements of a given 3D city model. The developed 
metrics should respond to customer (of Ordnance Survey) requirements and should be independent of the method of data capture. 
The input model (3D building data) is co-registered to the verification data using a 3D surface matching method. The 3D surface 
matching evaluates the Euclidean distances between the verification and input data sets. The Euclidean distances give appropriate 
metrics for the 3D model quality. The proposed method can favourably address the following quality criteria: reference system 
accuracy, positional accuracy and completeness.  
 
 

                                                                 
*  Corresponding author.  

1. INTRODUCTION 

In the recent decade the paradigm of man-made object 
extraction has been shifted to 3D city model generation. 3D 
city models are in high demand by many public and private 
organizations.  
 
Airborne imagery and LIDAR are the basic data sources. None 
of them is solely enough when the automation is concerned. 
The existing geodata and knowledge (such as 2D ground plans 
and maps) are mostly used as ancillary data (Haala and Brenner, 
1999; Brenner, 2000; Suveg and Vosselman, 2004). Usage of 
high resolution satellite imagery is also examined (Fraser et al., 
2002; Lee et al., 2003). Comprehensive reviews can be found 
in Mayer (1999), Baltsavias et al. (2001), Baltsavias and Gruen 
(2003) and Baltsavias (2004).  
 
At the Chair of Photogrammetry and Remote Sensing of ETH 
Zurich the topic has been initially addressed with a joint 
project, which aims to develop reliable and geometrically 
precise image analysis methods towards the Automation of 
Digital Terrain Model (DTM) Generation and Man-Made 
Object Extraction from Aerial Images (AMOBE). The topics of 
the research focus on 3D metric and integrative aspects of 
aerial image processing, in particular on methods for fully 
automated extraction of DTMs and of man-made objects 
(Henricsson et al., 1996). The core of the AMOBE project 
consists of a fully automatic system (ARUBA – Automatic 
Reconstruction of Buildings from Aerial Images) for 3D 
reconstruction of buildings from aerial images (Henricsson and 
Baltsavias, 1997).  
 
However, due to the complexity of natural scenes and the lack 
of performance of image understanding algorithms, the fully 
automated methods can still not guarantee results that are 

stable and reliable enough for practical use (Gruen and Wang, 
1998; Foerstner, 1999; Vosselman and Veldhuis, 1999). Early 
realization of this fact has led to substantial research on the 
semi-automated methods. The semi-automated methods are a 
compromise where the image understanding (more specifically 
object identification and localization) task is undertaken by the 
operator, while the final topology of the building is established 
by the algorithm. Sinning-Meister et al. (1996) introduce a 
semi-automatic approach, including a topology builder 
algorithm, which automatically fits roof planes to manually 
measured roof points. Later on, this idea is organized into a 
more compact form called TOBAGO (Topology Builder for 
the Automated Generation of Objects from 3D Point Clouds) 
system (Gruen, 1998). The TOBAGO software essentially 
solves the automated structuring of 3D point clouds by fitting 
generic building models (from a roof catalogue) to the roof 
points using the constraint-based reasoning. This later 
progressed to CC-Modeler (CyberCity Modeler), which is a 
generalization of the TOBAGO system. CC-Modeller is a 
generic topology generator, in which the problem of fitting 
planar faces to point clouds is treated as a consistent labelling 
by probabilistic relaxation, and can also be used for other 
objects, e.g. roads, rivers, parking lots (Gruen and Wang, 1998). 
The CC-Modeler is indeed a 3D GIS system which is far 
beyond of conventional CAD systems. A recent EuroSDR 
comparison shows the superior success of CC-Modeler 
(Kaartinen et al., 2005).  
 
While the performance of the methods is improving, the quality 
evaluation of 3D building data has become an important issue. 
It is mostly calculated through the metrics either using pixels 
based on 2D projections (Henricsson and Baltsavias, 1997; 
Ameri, 2000; Suveg and Vosselman, 2002; Boudet et al., 2006), 
or using voxels, considering buildings as volumetric data 
(McKeown et al., 2000; Schuster and Weidner, 2003; Meidow 
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and Schuster, 2005). Qualitative and visual evaluation based 
methods are also preferred (Rottensteiner and Schulze, 2003; 
Durupt, Taillandier, 2006). Elberink and Vosselman (2007) 
introduced an end-to-end quality analysis (of 3D reconstructed 
roads) using error propagation applied to the stochastic 
properties of input data. Detailed reviews can be found in 
McKeown et al. (2000) and Sargent et al. (2007).  
 
Over the last few years, Ordnance Survey has initiated several 
projects to look into how the quality of 3D data, particularly 
building models, can be assessed. In this paper we are 
designing quality assessment measures that have meaning to 
users, so as to ensure that we are capturing data to users’ 
requirements and that users understand the fitness of our 3D 
data for their purposes. We are also testing assumptions made 
in 3D modelling research about how best to represent real-
world detail from the point of view of user requirements 
(Sargent et al., 2007). 
 
In 2007, a cooperative project was started between the Chair of 
Photogrammetry and Remote Sensing of ETH Zurich and the 
Research department of Ordnance Survey, called ‘Quality 
Assessment of 3D Building Data’. The project aims to derive 
methods to calculate metrics for the quantitative evaluation of 
3D buildings, which are assumed to be the basic elements of a 
given 3D city model. Metrics and methods should correspond 
to customers’ requirements (of Ordnance Survey) and should 
be independent of the method of data capture. 
 
The input data to be assessed are 3D building models provided 
in CC-Modeler (CyberCity AG, Zurich) format. The 
verification (reference) data is either airborne laser scanning 
(ALS) point cloud data and/or another 3D model that is given 
at a presumably higher quality level. 
 
In fact, 3D building data is in surface model form. Thus, pixel 
or voxel representations are sub-optimal. We propose a method, 
which directly works on 3D surface elements (surfels). The 
input model is co-registered to the verification data by use of 
the Least Squares 3D surface matching method (LS3D, Gruen 
and Akca, 2005). The LS3D method evaluates the Euclidean 
distances between the verification and input data sets. The 
Euclidean distances give appropriate metrics for the 3D model 
quality. 
  
 

2. QUALITY ASSESSMENT BY SURFACE 
MATCHING 

2.1 Least Squares 3D surface matching  

We propose a quality evaluation method for 3D building data 
by use of the least squares 3D surface matching method. It is a 
rigorous algorithm for the matching of overlapping 3D surfaces.  
 
The LS3D estimates the transformation parameters between 
two, or more, fully 3D surfaces, using the Generalized Gauss-
Markoff model, minimizing the sum of squares of the 
Euclidean distances between the surfaces. This formulation 
gives the opportunity of matching arbitrarily oriented 3D 
surfaces simultaneously, without using explicit tie points. The 
geometric relationship between the conjugate surfaces is 
defined as a 7-parameter 3D similarity transformation. This 
parameter space can be extended or reduced, as the situation 
demands it. The unknown transformation parameters are 
treated as stochastic quantities using proper a priori weights.  

 
The mathematical model is a generalization of the Least 
Squares image matching method, in particular the method 
given by Gruen (1985). It provides mechanisms for internal 
quality control and the capability of matching of multi-
resolution and multi-quality data sets. For details we refer to 
Gruen and Akca (2005).  
 
This method was originally developed for the co-registration of 
point clouds and surfaces. Recently, it has also been used for 
inspection, comparison and validation studies (Akca, 2007). 
 
The proposed method can address the following quality criteria:  
• Reference system accuracy: Due to differences in 

production techniques, the reference frames of the input 
and verification data sets may differ, e.g. positional shifts 
and angular tilts. The LS3D algorithm calculates any 
translational, rotational and scaling differences between 
the two data sets with their associated theoretical 
precision values.  

 
• Positional accuracy: The LS3D surface matcher 

establishes the 3D correspondences for each (point or 
surfel) element of the verification data onto the surfels of 
the input data. In fact, each correspondence is a 3D 
Euclidean distance vector. Assuming that the verification 
data are available at a higher quality level and in an 
appropriate point density, the Euclidean distances show 
the positional accuracy of the individual surfels of the 
input surface.  

 
• Completeness: The non-measured/missed 

points/features/buildings are the real problem. Currently, 
there is no practical way to check fully automatically for 
this deficiency. Only through comparison with 
verification data, or through visual checks, can one get 
quality measures. Assuming that the verification data set 
is complete, accurate and dense enough, the LS3D 
surface matcher can provide completeness criteria, 
including the omission (type I) and commission (type II) 
errors. For the 3D building case, the omission error 
describes the rejected or missing buildings (partially or 
entirely). This means that some elements of the 
verification data will not have a correspondence to the 
input data. Commission error is the acceptance of non-
building objects as buildings. They appear as some 
surfels of the input data, but will not receive a 
correspondence from the verification data.  

 
2.2 Quality assessment strategy 

Three procedural steps were followed in the experiments. At 
the first step, the LS3D software was run without any 3D 
transformation calculation. It was run for one iteration. Only 
the 3D spatial distances (Euclidean distances) from LIDAR 
points to the corresponding 3D building triangles were 
calculated. This step was to show the initial (spatial) agreement 
of both data sets before applying a 3D similarity transformation 
(Figure 1). At this stage, the errors are composed of at least two 
components: errors due to the reference system and the 
positional errors of individual buildings. These errors are 
factorized by the subsequent step.  
 
At the second step, a full LS3D surface matching was 
performed. It calculated any translational, rotational and scale 
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difference between the verification and test data sets. 
According to our preliminary tests, there are only translational 
differences (spatial shifts) between both data sets. The 
rotational and the scale differences are not significant. Then, 
the LS3D software was run in 3 degrees of freedom (DOF) 
mode. This step shows the reference system accuracy of the 
building models with respect to the coordinate system of the 
LIDAR data. The estimated 3D transformation parameters 
(held as a translation vector) were applied to the test data sets. 
Thus, the reference system errors were isolated from the 
individual building errors.  
 
At the third step, the last LS3D run was applied, but again 
without any 3D transformation calculation. Only the 
correspondences were computed. This final step shows the 
positional accuracy of individual buildings and the 
completeness.  
 
The procedure was implemented as a MS Windows application 
with a graphical user interface (GUI) using the C/C++ 
programming language.  
 
2.3 Correspondence search 

Correspondence search is the most computationally expensive 
part of every surface matching algorithm. There are many ways 
to reduce the search space, and thus the computational burden. 
In the basic implementation, we use a 3D boxing based search 
algorithm. See Akca and Gruen (2005) and Akca (2007) for the 
details.  
 
Searching the correspondence is guided by the 3D boxing 
structure, which partitions the search space into cuboids. For a 
given surface element, the correspondence is searched for only 
in the box containing this element and in the adjacent boxes. 
The correspondence is searched in the boxing structure during 
the first few iterations, and in the meantime its evolution is 
tracked across the iterations. Afterwards the search process is 
carried out only in an adaptive local neighbourhood according 
to the previous position and change of correspondence. In any 
step of the iteration, if the change of correspondence for a 
surface element exceeds a limit value, or oscillates, the search 
procedure for this element is returned to the boxing structure 
again.  
 
For the 3D building data quality assessment case, we keep the 
boxing method, but customized for the new task. For any point 
of the LIDAR data, the coincident box is calculated. All 
buildings (entirely or partially) situated in the coincident box or 
in its 28-neighbourhood are listed. The correspondence is 
searched only on the triangles of those building.  
 
2.4 Outlier detection 

Detection of false correspondences with respect to the outliers 
and occlusions is crucial. We use the following strategy in 
order to localize and eliminate the outliers and the occluded 
parts. In the course of iterations a simple weighting scheme 
adapted from Robust Estimation methods is used: 
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where (v)i is the i-th correspondence and is the standard 
deviation of the spatial distances of the current iteration. In our 

experiments K is selected as >2.5 or >3. For many application 
cases of Robust Estimation procedure, this is an over-strict 
number which brings the danger of exclusion of the inliers. On 
the other hand, when increasing the Robust weighting factor, 
for example to >6, the computation usually fails due to 
impairing effect of the non-relevant points, i.e. points 
belonging to ground or trees, etc. 
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3. EXPERIMENTAL WORK 

The results of our work provide measures of how well an entire 
building model matches reality and thus help to identify where 
it differs. This allows us to update our 3D model to create high 
quality data, for instance a verification building model for 
further quality assessment research.  
 
We have three test sites in the United Kingdom for the 
verification of the procedure  

• Avonmouth (AV)  
• Bournemouth test area 1 (BO1) 
• Bournemouth test area 2 (BO2).  

 
The experimental result of only two test sites (AV and BO2) 
are given here due to page limit of the paper.  
 
Each test site has LIDAR point cloud and 3D building polygon 
files. The LIDAR point clouds were acquired by Airborne 1 
Corporation using a Bravo 50K ALTM system carried on a 
helicopter platform. They are in 25point/m2 density and 
delivered in both ENZI and LAS formats. The LIDAR point 
clouds are used as verification data in all experiments. 3D 
building data were generated using the CC-Modeler software 
by photogrammetric processing of DMC imagery. The final 
polygon files delivered in standard CC-Modeler V3D file 
format.  
 
3.1 Results of test site AV 

Step 1. The standard deviation of the spatial distances (sigma 
naught) before the LS3D surface matching is 0.81 m. Blue 
indicates that model data (3D building data) are above the 
verification LIDAR data, while yellow-red indicates the 
opposite case (Figure 1a). Note that in Step 1 and Step 3, for all 
test sites, a 2.0 m threshold is used for the Robust re-weighting. 
This means that all the correspondences whose spatial distance 
is greater than 2.0 m are not considered in the calculation. This 
is mainly to exclude the non-relevant points, e.g. points on the 
terrain, trees, bushes, etc. Note that there is no coverage of 
LIDAR point clouds for a few houses as seen at the bottom 
right of Figure 1a.  
 
Step 2. The estimated translation parameters (associated with 
their theoretical precision values) between the LIDAR point 
cloud and building model reference systems are given below:  
 
Translations (m) +0.029 +0.064 −0.849 
(X0,Y0,Z0) ±0.002 ±0.002 ±0.001 
 
During the LS3D surface matching, all the correspondences 
whose spatial distance is greater than the 3 times of the sigma 
naught (of the current iteration) are excluded from the 
calculation (according the formula given in section 2.4). As 
seen from the Z component of the translation vector, the test 
V3D model is almost 85 cm higher than the reference LIDAR 
point cloud data (Figure 1a). This is most probably because of 
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the coordinate reference differences between the two data sets 
or any image restitution problem when generating the V3D 

data set.  

   
 (a) (b) 

 
Figure 1. (a) Test site AV before the LS3D surface matching. (b) Test site AV after the LS3D surface matching. The red circle shows 

a part of a building which has large differences between the model and the point cloud. Ordnance Survey © Crown copyright. All 
rights reserved. 

 

 
Figure 2. Zoom-in to upper-left part of Figure 1b. The red 

arrows show the missing chimneys and dormers in the V3D 

model data. Ordnance Survey © Crown copyright. All rights 
reserved. 

Step 3. The sigma naught is 0.60 m. The Robust threshold 
value is 2.0 m again. The dark red points at the edges of the 
buildings (Figure 1b) are due to non-relevant (disturbing) 
terrain points that the LS3D surface matcher considers to 
belong to the buildings due to their proximity. The number of 
the dark-red points is increased from Figure 1a to Figure 1b. In 
Figure 1a the V3D model is higher than the LIDAR point cloud. 
When applying the translation by Step 2, the V3D model is 
shifted to the ground direction, then more ground points come 
within the Robust threshold value. Thus, 0.60 m of the sigma 
naught is not solely related to the building inaccuracy. It also 
includes the effect from those (outlier) ground points. An 
appropriate strategy is needed to tackle the problem. This issue 
is discussed in Chapter 3. Red signs in Figure 1b and 2 show 
some missing parts of the model data as a concern of the 
completeness.  
 
3.2 Results of test site BO2 

Step 1. Standard deviation of the spatial distances (sigma 
naught) before the LS3D surface matching is 0.73 m. See 
Figure 3 for the graphical results.  
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Step 2. The Robust threshold value is set to 2.5 times of the 
sigma naught (of the current iteration). The translational 

reference system difference between the model V3D data and 
the reference LIDAR data is  

  
 (a) (b) 
 

Figure 3. (a) Test site BO2 before the LS3D surface matching. (b) Test site BO2 after the LS3D surface matching after which the 
errors due to the reference system differences are corrected. Ordnance Survey © Crown copyright. All rights reserved. 

 

  
 (a) (b) 
 

Figure 4. (a) Zoom-in of the central of Figure 3b (oblique view). The red arrow shows a building which was large differences 
between the model and the point cloud. (b) Zoom-in of the lower-left part of Figure 3b in oblique view. The missing dormers 

(indicated by the red arrows) can easily be identified by the LS3D surface matcher. Ordnance Survey © Crown copyright. All rights 
reserved. 

 
Translations (m) +0.213 −0.332 −0.481 
(X0,Y0,Z0) ±0.001 ±0.001 ±0.001  
 
Step 3. The sigma naught is 0.68 m. The Robust threshold 
value is 2.0 m again. See Figure 3b, 4a and 4b for the graphical 
results. From Step 1 to Step 3, the gain is 5 cm in terms of the 
sigma naught. But, as mentioned before, this is due to 
disturbing effect of the non-building points. Their magnitude is 
clearly visible as red buffers at the building borders in Figure 
3b. Note that the missing dormers can easily be detected by our 
approach (Figure 4a and 4b).  
 

4. CONCLUSIONS 

2D city maps have rapidly been replaced by 3D city models. 
While the general emphasis has been to develop tools and 
methods for automatic city modelling, the concept of quality 
evaluation has also gained high importance. In this project we 
have conducted in-depth research into this issue and proposed a 
practical method, together with GUI-based software. Our 
method can successfully assess the 3D building data in terms of 
reference system accuracy, positional accuracy and 
completeness.  
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When using the LIDAR point clouds as the verification data, 
handling of the non-relevant points (points which do not belong 
to buildings) needs an appropriate strategy. The Robust 
weighting factor alone cannot solve the problem. Potential 
solutions which might be considered include:  
 
(a) filtering the LIDAR point cloud data prior to the processing 
by a standard algorithm,  
(b) intersection of the LIDAR data and building data along the 
vertical direction and excluding all non-overlaying LIDAR 
points,  
(c) in addition to the Robust weighing factor, a second strategy, 
which determines the LIDAR points belonging to buildings, is 
embedded to the correspondence search.  
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