
DENSE IMAGE MATCHING IN AIRBORNE VIDEO SEQUENCES

M. Gerke

International Institute for Geo-Information Science and Earth Observation – ITC, Department of Earth
Observation Science, Hengelosestraat 99, P.O. Box 6, 7500AA Enschede, The Netherlands, gerke@itc.nl

ICWG III/V

KEY WORDS: Video, Surface, Matching, Resolution

ABSTRACT:

The use of airborne video data is gaining increasingly attention in the photogrammetric community. This interest is driven by the
availability of low-cost sensor platforms like UAV and low-cost sensors such as digital (video) consumer cameras. Moreover, a wide
range of applications are related to this kind of sensor data, e.g. fast mapping in case of disasters, where geometric and semantic
information on a particular scene has to be captured within a small timeframe.
The advantage of video data against wide baseline images is that tracking algorithms can be used to derive highly redundant tie point
information in a fully automatic manner. One drawback is that due to the reduced resolution and only short exposure time, the image
quality is worse compared to the quality provided by mapping cameras. However, the many-fold overlapping enables the use of
multiframe super resolution techniques to obtain higher quality textures.
In this paper the focus lies on the dense surface reconstruction using airborne video sequences. The first step in the approach consists
of retrieving the structure and motion of the cameras, also incorporating geometric knowledge on the scene. In the subsequent step a
dense surface reconstruction is applied. First, appropriate image combinations for the stereo matching are selected. After rectification,
the Semi-Global Matching technique is applied, using the Mutual Information approach for retrieving local energy costs. After the
matches are linked, super resolution images are computed and 3D point clouds are derived by forward intersection.
The results for two datasets show that the super resolution images have a higher nominal resolution than the original ones. As the
accuracy of the forward intersection depends on the actual image acquisition parameters, the unfiltered 3D point cloud could be noisy.
Therefore, some further improvements for the 3D point coordinates are identitied.

1 INTRODUCTION

For many applications dense surface reconstruction from images
is becoming an interesting alternative to laserscanning. In the
context of airborne remote sensing metric digital cameras are
available which are able to acquire high resolution images at high
overlapping ratio. This availability stimulates the development of
sophisticated approaches to dense matching and surface recon-
struction (Hirschmüller et al., 2005, Zebedin et al., 2006). The
advantage over LIDAR in those cases is that besides the deriva-
tion of a DSM, further products like (true) orthoimages of high
resultion are computable right away.

The dense surface reconstruction is also interesting in other fields;
in close range applications the focus is on the reconstruction of
single (man-made) objects or even whole cities. In those cases the
high overlapping is often achieved by using video data, see e.g.
(Pollefeys et al., 2004). The advantage of video over single wide-
baseline shots is the high redundancy of observations through the
high overlapping which can be exploited to retrieve correspon-
dences and thus camera pose and calibration information through
tracking algorithms (Shape from Motion).

In between those two domains – airborne remote sensing being
primarily used for mapping purposes and video based reconstruc-
tion of man-made object – one can find the field of airborne re-
mote sensing from low altitude platforms, like helicopters or Un-
manned Airborne Vehicles (UAVs) (Eisenbeiss and Zhang, 2006,
Förstner and Steffen, 2007). Due to its flexibility and low costs
for operation, UAVs are interesting for a lot of applications. Using
an UAV equipped with a video camera enables to combine hav-
ing an overview on a certain area of interest with the advantages
of using dense image sequences to retrieve geometric and seman-
tic information. The challenges one is facing when working with

this kind of data are manifold, e.g. the motion of the vehicle may
not be smooth, and the image scale might be smaller than in the
aforementioned cases, influencing the available accuracy and re-
liability.

The focus of this paper is on the implementation of a strategy
for dense image matching in airborne video sequences. The goal
is to derive two datasets: one are so-called super resolution im-
ages where the multiple observation of the scene of interest is
exploited to derive noise reduced images with a higher nominal
resolution than the original ones. The second dataset is a dense
3D point cloud as derived from forward intersecting the matched
points. The paper is meant as a case study where known ap-
proaches and algorithms are used to set-up a practical workflow
for the processing of airborne video data. The results will show
the potential of the applied techniques, but also reveal some open
issues.

The remainder of this paper is organised as follows: The next
section describes the established workflow to process the data,
including some links to the applied literature. In section 3 some
experiments are described: After the outlining of two different
datasets, the obtained results are shown and evaluated. Some con-
clusions from those case studies and an outlook to further work
are given in the last section.

2 WORKFLOW AND METHODS

The workflow as currently realized consists of the following steps
(cf. Figure 1):

1. Structure and motion recovery: After feature tracking across
the sequence the camera matrices are computed through bun-
dle adjustment.
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2. Dense stereo matching: From the sequence some stereo pairs

are chosen according to a pre-defined strategy, see next point.
The pairs are first rectified and afterwards the Semi-Global
Matching approach is applied to derive dense disparity in-
formation.

3. Linking of matches: The idea behind linking the stereo mat-
ches is to increase the effective baseline for forward inter-
section and to reach redundancy.

4. Computation of super resolution images: With the applied
strategy for matching and linking the pixels in the images
which participated in the matching process were observed
multiple times. This fact is exploited to compute images
preserving the same geometry as the original ones, but with
an enhanced image quality regarding the noise and the ef-
fective resolution.

5. Forward intersection: The correspondence information as
retrieved from the matching and the subsequent linking are
used for multi-view forward intersection to obtain 3D coor-
dinates for the matched points including colour information.

Figure 1: Workflow

2.1 Structure and motion recovery

In most cases where a procedure as described in this paper is ap-
plied, uncalibrated, non-metric cameras are used, and in contrast
to conventional (airborne) remote sensing, precise navigation in-
formation through GPS/IMU is normally not available. Thus, the
full information on the individual camera poses throughout the
sequence including intrinsic camera parameters need to be re-
covered from the images. The initial step consists in retrieving
image-to-image correspondences by feature tracking. Through
a subsequent bundle adjustment including self-calibration, the
scene can be reconstructed up to scale if no additional knowledge
on the scene geometry is available. Further information on the
structure and motion recovery can be found in several sources,
e.g. (Hartley and Zisserman, 2004, Pollefeys et al., 2004).

For the implementation of the workflow at hand, the commercial
software Boujou (2d3, 2008) is currently being used. Besides the
fully automatic reconstruction up to scale, it is possible to define
constraints on the actual scene geometry, like known distances
in object space between feature points. Further, the coordinate
frame can be fixed through the definition of plane constraints.
As an additional unknown the radial distortion coefficient is es-
timated and the possibility to compute undistorted images is of-
fered to the user. Refer to (Dobbert, 2005) for detailled informa-
tion on the approach as implemented in Boujou.

In the subsequent steps the undistorted images, 3D feature coor-
dinates, the corresponding image points and the individual pro-
jection matrices are used.

2.2 Matching strategy

The aim of the data processing described in this paper is to derive
two final datasets, namely so-called super resolution images and
a 3D representation of the scene which can be used e.g. for vi-
sualisation tasks. Both products require to establish dense image
correspondences. Apart from some special cases (Heinrichs et
al., 2007), matching is normally done in stereo image pairs, thus
it is required to link stereo correspondences across the sequence.
In this paper it is proposed to increase the reliability of match-
ing by applying two kinds of matches: long baseline matches and
short baseline matches, refer also to Figure 2. The basic idea is

Figure 2: Matching Strategy

that through the short baseline matches correspondences between
consecutive matches are established and linked, i.e. a matching
pair (mi, mi+1) in image i is linked with (mi+1, mi+2) and thus
establishing the additional match (mi, mi+2) if the respective
pixel mi+1 refers to an identical location in image i+1. Besides
this linking chain, the long baseline matches establish a direct
match between the pairs which are already connected through the
linked short baseline matches. This procedure results in a higher
redundancy of matches and thus helps to increase the reliability:
If for instance a correspondence (mi, mi+2) as derived through
short baseline matches does not fit to the direct match (m′

i, m
′
i+2)

from the long baseline match, the correspondences are regarded
as wrong and skipped in the subsequent processing.

2.3 Dense stereo matching

The approach to dense stereo matching as applied in the current
implementation is the Semi-Global Matching algorithm (Hirsch-
müller et al., 2005, Hirschmüller, 2008). The basic idea behind
this technique is to aggregate local matching costs by a global
energy function, which is approximated by an efficient pathwise
1-dimensional optimisation.

The local matching costs can be derived by several methods, like
cross-correlation or intensity differences; in the present case they
are computed using an hierarchical Mutual Information approach
(Viola and Wells, 1997). During cost aggregation not only the
local matching cost is considered, but additional penalties are
defined by considering disparities in the vicinity of a particular
pixel p with the aim to preserve smoothness and height jumps:
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Figure 3: Example for rectification and dense matching. In the upper row the original images are shown, below the rectified pair and
the computed disparity map.

one small additional cost P1 is added if small disparity changes,
e.g. 1 pixel, appear in adjacent pixels of p, whereas the larger cost
P2 is applied if larger disparity changes are appearing more far
away. The cost P1 preserves smoothness and due to P2, height
jumps are forced to appear at adjacent pixels, leading to sharp
edges in the disparity map. So, for every pixel of interest p of
the base image, the aggregated costs need to be computed for ev-
ery possible disparity, including the penalties from observing the
neighbourhood. Finding the final disparity image is equal to the
task of minimising the energy for the whole image. Such a pro-
cedure would be very inefficient as the complete image must be
traversed for every disparity. Instead, the problem is formulated
as a 1D-traversing algorithm which sums up the aggregated costs
at a particular pixel p and disparity recursively and in different
image directions only. In a last step the disparity for a pixel in
the base image is selected among all possible disparities as the
one causing the least summed-up cost. As subpixel accuracy is
desired, a quadratic curve is fitted through the neighboring dis-
parities and the corresponding costs. The minimum of the curve
is identified as the optimal disparity value.

To simplify the matching, the images are rectified beforehand.
For this purpose the approach proposed in (Oram, 2001) is ap-
plied. In contrast to most other techniques for rectification, this
approach estimates a non-linear transformation for both images
with the aim to minimise perspective distortion effects. Besides
the fundamental matrix, the algorithm uses the original matches
from the feature tracking to obtain an optimal transformation. In
order to further stabilise the transformation, additional features,
like available through SIFT (Lowe, 2004) in the case at hand, are
incorporated.

In Figure 3 an exemplary dense matching result is shown. The
upper row shows the original image from the UAV dataset as de-
scribed in section 3. The lower row shows the rectified image pair
and the disparity map as resulting from the Semi-Global Match-
ing algorithm.

2.4 Computation of super resolution images

In the context of this paper, super resolution images (SRI) refers
to the process of computing images preserving the same geome-
try as the original images from the sequence, but the colour values
are computed from the several matches where the image partici-
pated. Actually, in the current implementation, two different SRI
images are computed: one from the mean value of all correspond-
ing pixel values and one from the median images. As subpixel
accuracy is derived from the matching algorithm, the target scale
factor for the SRI can be selected larger than 1.

2.5 Forward intersection

A direct solution for the 3D points given observations in multiple
images is proposed e.g. in (McGlone et al., 2004, Section 11.1.5).
With an unknown 3D point symbolised by X , the corresponding
image coordinates in image i by xi and the respective projection
matrix by Pi, the constraint

[xi]×PiX = AiX = wi
!
= 0 (1)

is given ([xi]× defines the skew-symmetric matrix of xi).

All Ai are assembled in a common matrix A. The error wtw
needs to be minimised, resulting in an optimal point X . This op-
timal point is the right eigenvector of A belonging to its smallest
eigenvalue, computed through a singular value decomposition.
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3 EXPERIMENTS

The proposed workflow is demonstrated using two example video
datasets. The first dataset UAV was obtained from a Microdrone
(Microdrones, 2008) platform and captured near the ”Drachen-
fels” close to the city of Bonn (Förstner and Steffen, 2007). The
second dataset (FLI-MAP video) was captured from a helicopter
during a LIDAR flight over Enschede (Fugro, 2008), see Table 1
for some parameters. In that table, the baselength refers to two

Parameter UAV FLI-MAP
Flying height H (m) 30 275
Image scale 1 : mb 1:1,500 1:50,000

Frame size (pix) 848x480 752x582
Pixel size (µm) 12 8.6
Frame rate (Hz) 30 25

Approx. baselength b (m) 0.1 1
Length sequence (img) 280 150

Table 1: Some parameters from the datasets.

consecutive frames. The length of the sequence refers to the num-
ber of images which were used for the examples. Noteworthy is
the small image scale from the FLI-MAP video; the calibrated fo-
cal length of this video device is only 6mm. From this geometric
set-up no highly accurate forward intersection can be expected,
refer to the section on the resulting point cloud. Some undistorted
images from both sequences are shown in Figure 4.

Figure 4: Some frames from both datasets (undistorted images).
Upper part: UAV, lower part: FLI-MAP.

3.1 Results

3.1.1 Super resolution images An example for a super reso-
lution image is taken from the UAV dataset. The chosen target
scale factor is 1.5. In Figure 5 the gray value profiles (red chan-
nel) across the building’s roof edge are shown. The left image
shows in its upper area a part of the original image, but scaled by
factor 1.5 (linear interpolation applied). The line across the edges
indicates the location of the grey value profile as shown below the
image. The SRI image, computed from the mean value of corre-
sponding points is shown in the right part of Figure 5, including
the gray value profile captured at the same image position as in
the original image.

In general one can see that the SRI seems to be a bit sharper com-
pared to the original one: The tiles on the roof are less smeared
than in the original image. The profile supports the visual impres-
sion. Especially in the edge region more details are shown. As an
example two points at the profile graph are pointed out by a black
arrow. The arrow no. 1 points to the quite salient point in the
profile indicating the position of the steep edge where the light
grey becomes dark grey. The corresponding area in the profile
of the original image is smoother. The arrow no. 2 points to the
edge at the eave of the roof where the tiles are showing a lighter
colour compared to the red colour on the overall roof area1. In
the computed SRI image this edge is really existing, but not in
the original image.

The SRI as computed from the respective median value of cor-
responding pixels is not shown here, because no significant dif-
ference can be observed compared to the SRI computed from the
mean value. This can be explained by the use of solely redundant
matches: by this means no gross errors are expected which may
influence the SRI from the mean values and thus the robust values
from the median computation are close to the mean.

3.2 3D point cloud

In order to evaluate the expected accuracy from forward inter-
section first a theoretic approximation for the height accuracy is
made. In the given examples, especially in the FLI-MAP video,
the height component is the critical component.

Generally, given an approximated stereo normal case, the height
difference between two points is estimated as

H ≈ b · f
px

(2)

with px: x-parallax.

If only the uncertainty in parallax measures spx is considered,
the accuracy for height measurements is derived from the partial
derivative with respect to px:

sH =

„
H2

b · f
«
· spx =

H

b
·mb · spx (3)

In the case at hand more than 2 rays are intersected and thus the
expected accuracy and reliability is higher, but nevertheless the
approximation reasonably reflects the quality for forward inter-
section.

To estimate the actual expected accuracy for forward intersec-
tion, the parameters from Table 1 need to be inserted into equa-
tion 3. The baselength b is chosen in such a way that a suffi-
cient overlapping area is ensured: For UAV it is b = 2m and

1The overall intensity of these tiles is larger than on the roof area.
However, as the profile shows the red channel, the grey values from the
roof area are larger
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Figure 5: Example for SRI images. The output scale factor is 1.5. Left: original image. Right: SRI computed from the mean values.

for FLI-MAP it is b = 40m. The standard deviation for parallax
measures is estimated being equal to the pixel size. Setting these
numbers into equation 3, the expected accuracy for height mea-
surements is: UAV: sH = 0.27m and FLI-MAP: sH = 2.95m.
The accuracy in X and Y coordinate direction is estimated by
sX ≈ sY ≈ sx · mb. If sx is set to the half of the pixelsize,
one obtains for the UAV dataset: sX ≈ sY ≈ 1cm and for the
FLI-MAP dataset: sX ≈ sY ≈ 20cm.

In Figures 6 and 7 the resulting point clouds from the UAV and
FLI-MAP sequences, respectively are displayed. The upper part
shows the colours as captured from the images, i.e. the mean
value from all correspondences, and in the lower part the height
is coded through the colour, where one full circle in the colour
space equals 10m in object space. The FLI-MAP scene is only
partly shown.

As no comparison with reference data could be accomplished yet,
only a visual inspection of the results is possible. In the point
cloud computed from the UAV dataset one could easily identify
the roof of the large building. Vertical walls are not visible as
this building was only captured from nadir views. In the height
coded image also the main structures are clearly visible, but some
inaccurate points appear as kind of pepper pattern.

The point cloud as computed from the FLI-MAP dataset is very
intersting. If the scene is watched from approximately nadir view-
ing angle as shown in the figure, the upper point cloud, i.e. with
the original colours, looks quite accurate, but the height coded
view reveals the problems. There is a lot of noise existing that
prevents from identifying the structures. The first observation,
namely the good appearance of the true colour model from close
nadir view can be explained by the relatively good accuracy of
X/Y -coordinate components: a point is projected to a good pla-
nar position, but the Z-value is inaccurate. This, however is not
observable from a close-to nadir viewing position. In contrast,
the error in Z-component is fully reflected in the second view,
where the height is coded.

4 CONCLUSIONS AND FURTHER WORK

This paper presents a possible workflow for airborne video data
processing up to the computation of so-called super resolution
images (SRI) and 3D point clouds. Results are shown for two
datasets: the first was captured by a drone at 30m flying height
and the second one from a helicopter at 270m flying height above
ground. The SRI images shows some more details as the respec-
tive original image at a higher nominal resolution. The results
for the 3D point cloud shows and confirms that the quality of the
computed 3D coordinates largely depends on the flight configu-
ration and camera parameters.

To increase the quality of the obtained 3D coordinates will be the
core focus of the further work. One means to filter bad points
will be to analyse the covariance matrix of the computed point
coordinates. A further way to increase the quality will be to pro-
cess the points in object space. As shown from the examples, the
X/Y -component has a better accuracy than the Z-value. There-
fore a strategy could be to correct the Z-component by analysing
the colour value of adjacent points in the X/Y -plane.

Next to this, the computation of by-products like 2.5D surface
models and orthoimages will be treated in the future, including
the semantic interpretation of the scene. According to the results
from the SRI computation, it can be expected that the classifi-
cation and segmentation will benefit from the increased image
quality obtained through the large overlapping ratio.
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Figure 6: Point cloud derived from the UAV-dataset. Upper
image: colour captured from images, lower part: colour used for
height coding.
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