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ABSTRACT: 
 
We consider, in this paper, the problem of reconstructing the surface from LIDAR ground elevations. We reconstruct the surface by 
first rotating the LIDAR scan-lines so that they are parallel to the Y-axis, and then approximating the elevations by higher-order 
tensor-product B-splines using the least squared-error criterion. The resulting surface is both accurate and smooth..The 
approximating surface is a linear combination of tensor-product cubic B-splines. So, the coefficients of the tensor-product B-splines 
define the reconstructed surface. Since tensor-product cubic (quadratic) B-splines are non-zero only for four (three) knot-intervals in 
the x-direction and y-direction, the elevation at any point can be found in constant time and a grid DEM can be generated from the 
coefficients of the B-splines in time linear in the size of the grid. 
 
 

1. INTRODUCTION 
 

In this paper, we reconstruct the surface from LIDAR ground 
elevations by approximating the elevations by higher-order 
tensor-product B-splines using the least squared-error criterion. 
 
Mitasova et al. approximated LIDAR elevations using 
regularized splines with tension (Mitasova, 2005). These 
splines are infinitely differentiable everywhere. Brovelli et al. 
approximated LIDAR elevation data by bilinear B-splines 
which are only -continuous (Brovelli, 2004). 0C
 
Higher-order B-splines have continuous higher-order 
derivatives and, unlike regularized splines, B-splines have 
finite support whereby the coefficient matrix of the resulting 
system of linear equations is sparse. We propose using higher-
order B-splines for approximating LIDAR elevations as they 
yield a smooth surface. Tensor-product B-splines are used for 
the approximation. In this paper, we propose rotating the 
LIDAR scan-lines so that they are parallel to the Y-axis, as this 
leads to a more accurate approximation by tensor-product B-
splines. 
 
The least squared-error approximation technique is described in 
Section 2. The results obtained by approximating the LIDAR 
elevations by higher-order tensor-product B-splines are given 
in Section 3. In Section 4, we show that the elevation of the 
reconstructed surface can be computed efficiently and also give 
an efficient method for computing the DEM. We conclude the 
paper in Section 5, with a summary of the advantages of this 
reconstruction. 
 
 

2. LEAST SQUARED-ERROR APPROXIMATION BY 
TENSOR-PRODUCT CUBIC B-SPLINES 

 

In this Section, we consider least squared-error approximation 
by cubic splines. 
A cubic B-spline, , centered at )(xB ix , and with uniform 
knot-spacing Δ , is given by  where )(| − ixxh /| Δ
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A tensor-product cubic B-spline, centered at a point , is 
the product of a cubic B-spline centered at and a cubic 
B-spline centered at . 
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Let and be cubic B-splines along the x and y-

directions, respectively. Let us take  B-splines along the x-
direction and  B-splines along the y-direction. Then, the 

spline surface  which is to be constructed is 
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Let N  be the number of points, , at which the elevations, 

, are known. 
kp

kh
 
A smoothing term is added to the squared-error that is to be 
minimized (Floater, 2000) and the function to be minimized is 
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where c is the coefficient vector, λ,  a positive constant and 
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where ,  and   are the second-order partial 

derivatives of  and 
xxS xyS

,(xS
yyS

[ 1a)y ],[], 221 bab ×  is the domain of S. 
 
This integral can be expressed as 
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A minimum of  must occur at a point c where all partial )(cF
derivatives are zero. 
 
Let 
 

EcccJ T=)( , 
 
where E is a square matrix of dimension yx nnn ×=  whose 
elements are 
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By differentiating (1), we get 

 
hBcEBB TT =+ )( λ ,                                                     (2) 

 
where  and B is the  matrix T
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where ),( kkk yxp = . 
 
Then, the solution to (1) is the solution c to (2). 
 
The matrix  is positive semi-definite. The 
matrix is strictly positive definite if the only solution to 

 is 

EBBG T λ+=

00=GccT =c . 
 
First observe that 

 
0)( == cJEccT  

 
implies that S must be a linear polynomial . Second, 
observe that 

cybxa ++

 
0|||| 2== BcBcBc TT  

 
implies that  for all . Thus, we have that 

 implies that S is a linear polynomial which is 0 at 
every point . Clearly then, if there are at least 3 points  
which do not lie on a straight line, S would have to be 0 and all 
the coefficients  would have to be 0. Since the points  
can never all be collinear, we deduce that G is indeed non-
singular and the minimizer c of (2) is unique. 
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3. RESULTS 
 
As tensor-product B-splines are used for the approximation, 
rotating the LIDAR scan-lines so that they are parallel to the Y-
axis, results in a better approximation. LIDAR elevation data 
(post-rotation) for a rural area scanned from an altitude of 1350 
metres with a point spacing of 1.1 metres are shown in Fig. 1. 
 

 
 
Figure 1: LIDAR elevations: The LIDAR scan-lines have been 

rotated so that they are parallel to the Y-axis. The first 
and last scan-lines in the figure are coincident with the Y-
axis and the right-end edge of the bounding box of the 
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figure, respectively. The elevation values shown are in 
centimetres and are in excess of 115 metres. 

 
The elevation contours of the surfaces obtained by 
approximating the LIDAR elevation data by bilinear and bi-
quadratic splines without rotating the scan-lines and after 
rotating the scan-lines are shown in Figs. 2-4. The shaded 
reliefs are shown in Figs. 5-7 and the surfaces (scaled by a 
factor of 10 in the z-direction) are shown in Figs. 8-10. The 
approximation by bilinear splines after rotating the scan-lines is 
noisy, as is evident from the shaded relief. The approximation 
by bilinear splines, without rotating the scan-lines, has an r.m.s. 
deviation of 2 cm. from the LIDAR elevations. The surface 
obtained by approximating the elevations by 7 x 7 tensor-
product quadratic B-splines (corresponding to 7 B-splines 
along the x-direction and 7 B-splines along the y-direction) has 
a lower r.m.s. deviation from the LIDAR elevations (1.8 cm.). 
 

 
 

Figure 2: Bilinear spline approximation of the data after 
rotation. 

 

 
Figure 3: Bilinear spline approximation of the data without 

rotation. 

 
Figure 4: Bi-quadratic spline approximation of the data after 

rotation. 
 
LIDAR elevation data with gaps for a rural area, again, are 
shown in Fig. 11. The elevations are approximated well by 
tensor-product cubic B-splines as is shown in Fig. 12. 4 x 4 
tensor-product cubic B-splines and a value of 0.000001 for λ 
were used for the approximation and the r.m.s. deviation of the 
surface from the LIDAR elevations is 1.8 cm.. 
 
 

4. COMPUTING THE DEM 
 

In this Section, we show that the elevation of the reconstructed 
surface at a point can be computed efficiently. We then 
describe an efficient way of generating the DEM with low 
memory requirements. 
 

 
Figure 5: Bi-quadratic spline surface approximation of the data 

after rotation. 
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Figure 6: Approximation by bilinear splines after rotation. 

 
We consider, here, the computation for cubic splines. The 
procedure for quadratic splines is similar. 
 
Since tensor-product cubic B-splines are non-zero only for four 
knot-intervals in the x-direction and the y-direction, exactly 16 
tensor-product cubic B-splines contribute to the elevation at a 
point. In contrast, when regularized splines with tension are 
used for the approximation, though points which are 
sufficiently distant from a point, do not significantly contribute 
to the elevation at the point, at least 100 points contribute 
significantly to the elevation at a point (Mitasova, 2005). 
 
Let us assume that the B-splines that are non-zero at a point 

 are , , , , , 
,  and . The elevation at  is 

found by evaluating the right-hand side of Eqn. 2 at  as 
follows: 

)1,1( yx
)(1 yCl+

)(xBk

)(2 y+

)(1 xBk+

)(3 yCl+

)(2 xBk+ )(3 xBk+

(
(

)(yCl

)1,1 yx
)1,1 yx

Cl

 
Figure 7: Approximation by bilinear splines without rotation. 

 
Figure 8: Approximation by bilinear splines after rotation. 

 

We first evaluate the cubic polynomials , ∑
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Figure 9: Approximation by bilinear splines without rotation. 

 
 
Figure 10: Approximation by bi-quadratic splines after rotation. 
 

The quantities in the brackets require 17 operations {where an 
operation is either an addition (subtraction) or a multiplication}. 
So, finding the four  requires 17 + 4 x 7 = 45 operations. )1(xPj

 
Figure 11: LIDAR elevations with gaps. (The elevation values 

are in centimetres and are in excess of 114 metres.) 
 
 

 
 

Figure 12: Surface approximating LIDAR data with gaps. 
 
Then, we find ylyyq Δ−= + /|1| 1

)(1 yCl+ y

 where  is the center of 

the B-spline  and 
1+ly

Δ  is the knot-interval for the 

. The elevation at , which is ∑ , 

can be expressed in a form that is analogous to the expression 
in (3) above. A rearrangement of the terms yields 
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the computation of which requires 21 operations. 
 
Thus, the elevation at any point can be found with 45 + 21 = 66 
operations, or, in constant time. 
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When generating a DEM, we start with the distinct x co-
ordinates, of the points of the DEM grid (Fig. 13), which lie 
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+ : centers of the B-splines 

                            * : grid-points 
 

Figure 13: Computing the DEM 
 

between  and  (  and  lie at least  to the left of  

and  to the right of the first and last data points, respectively, 
in the horizontal direction; and there are no data points in the 
intervals  and ), compute the respective 

 and compute and store the quantities in the 
brackets in expression (3), for these x co-ordinates. This takes 
17  operations where  is the number of distinct x co-
ordinates of the grid that lie between  and . We then 
compute and store the four ,  for each of these 

x co-ordinates. This takes x 4 x 7 = 28  operations. 
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We then take the y co-ordinates of the DEM grid that lie 
between  and and find the corresponding 

. The elevation at the grid-points, , 

whose x co-ordinates lie between  and  and y co-ordinates 
lie between  and , is 
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Thus, the computation of the elevations at these grid-points 
takes 17 + x x 7 operations where  is the number 

of distinct y co-ordinates of the grid that lie between  and 
. 
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Next, we compute  and use ,  to find 
the elevations at the grid-points, whose x co-ordinates lie 
between  and  and y co- ordinates lie between  and . 
We proceed down the grid in this manner, computing the 
elevations at the grid-points till we reach the bottom of the grid. 
Then we return to the top of the grid and repeat the entire 
procedure starting, this time, with the distinct x co-ordinates of 
the grid-points between  and . This process continues till 
the lower right corner of the grid is reached. 
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Thus, the computation of the elevations at the grid-points 
requires 17N +7 +17 +7  = 7  

+17
yNn )3( −xnM MN MN
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yn

 + 7  + 17N operations for an M x N grid. 

 and  can be atmost N +3 and M+3. So, the computation 
time is linear in the size of the grid and the multiplying 
constant is small, viz., 31. 

yNn

xn

 
 

5. CONCLUSIONS 
 
We have seen, in this paper, that rotating the LIDAR scan-lines 
so that they are parallel to the Y-axis results in a better 
approximation and higher-order tensor-product B-splines lead 
to a good reconstruction. The smoothness of the surface results 
from the inherently smooth nature of quadratic (cubic) B-
splines, which are 1 ( 2 )-continuous. C C
 
Tensor-product quadratic (cubic) B-splines are non-zero only 
for three (four) knot-intervals in the x-direction and y-direction. 
Therefore, exactly 9 (16) quadratic (cubic) tensor-product B-
splines contribute to the elevation of the surface at a point. So, 
the elevation at any point can be found in constant time and a 
grid DEM can be generated from the coefficients of the B-
splines in time linear in the size of the grid. 
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