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ABSTRACT: 
 
Accurate digital terrain models (DTM) are one of the most important requirements for many applications in coastal management and 
safety, such as the calculation of the volume of dunes and dikes for the purpose of coastal protection. Airborne LIDAR sensors 
provide dense height information of large areas in an efficient manner, therefore such data are appropriate to derive suitable DTM. 
Besides reasons of efficiency and economy, the accuracy and especially the reliability of the data are essential factors for the 
applicability in safety related domains. In case of moderate surface roughness in non-vegetated areas LIDAR DTM usually provide a 
standard deviation in height of less than 15cm. However, the accuracy and reliability of the LIDAR DTM points suffer if the laser 
beam interacts with vegetation. Several filter algorithms were developed in order to eliminate the vegetation points in LIDAR data 
sets. Usually, they apply geometric criteria, for instance the slope in a defined neighbourhood, to solve this task. However, in areas 
of very dense vegetation and rough terrain, where only a few laser pulses are able to penetrate the canopy, such processing often 
fails resulting in an upward height shift of the derived DTM. In this paper additional features are proposed, which correspond to the 
reflectance characteristics of the backscattering objects, to support the filtering proccess. The introduced new algorithm uses 
intensity information and the distribution of multiple echoes for adaptive determination of the weights during an iterative surface 
fitting. Based on several control areas located in different types of coastal shrubberies the potential of this method is demonstrated. 
The results show that the integration of the new features decreases the differences between the LIDAR based surface and the control 
measurements by a few centimetres. 
 
 

1. INTRODUCTION 

1.1 Motivation 

Nowadays, airborne LIDAR is one of the most important 
techniques for the derivation of area-wide digital terrain models. 
The advantages of this contact free measurement method are 
especially noticeable in the coastal region of the German North 
Sea, where access for terrestrial surveying is limited due to 
dense vegetation on the islands and frequently flooded terrain in 
the Wadden Sea. The LIDAR DTM quality depends basically 
on the sensor and flight parameters (e.g., scanner device and 
flying altitude), the applied post-processing methods (e.g., strip 
adjustment and georeferencing), and the scene topography. In 
case of moderate surface roughness in non-vegetated areas 
LIDAR DTM usually provide a standard deviation in height of 
less than 15cm. However, if the laser beam interacts with 
vegetation, the accuracy and reliability of the LIDAR DTM 
points suffer. The vegetation impact depends on the type of 
plants and season, especially plant height and density influence 
the penetration rate of the laser pulses. Low vegetation often 
can not be separated from the ground beneath, resulting in 
reflection composed of mixed signals, whose center of gravity 
is located above the terrain surface. Consequently, the measured 
time of flight and the resulting distance to the sensor are too 
short, leading to a height bias. Tall vegetation may cause 
multiple echoes at various height levels, which can be resolved 
if the provided range resolution of the scanner system is high 
enough. Many filtering techniques developed for DTM 
generation rely on the assumption that the last echo represents 
the ground. However, even these echoes are frequently caused 

entirely by signals of scatterers situated in vegetation layers 
resulting again in a shorter distance measurement. Several filter 
algorithms were developed, which use geometric criteria, such 
as slope and height differences, to eliminate the vegetation 
points from the data set (see section 1.2 for more details). The 
most important requirement of these filters is the existence of a 
suitable number of ground points. However, the study area 
located at the coast of the German part of the North Sea is 
covered by various dense vegetation types, such as shrubberies, 
which prevent the penetration of the laser pulses in areas of 
considerable size. Another problem arises from the aspect that 
the vegetation often occurs in small valleys. Therefore, 
vegetation points are sometimes lower than the surrounding 
ground on the ridges. These facts lead to unsatisfactory results 
of common filter algorithms. In this paper a new method is 
introduced, which integrates the reflectance characteristics of 
the backscattering objects, in order to support the filtering 
process. 
 
1.2 State of Research 

Various filter algorithms for eliminating non-ground points in 
LIDAR data sets were developed considering different 
landscape types. The dissertation of Sithole (2005) provides a 
comprehensive overview about the existing methods, their 
classification depending on diverse criteria, a description of the 
ISPRS filter test (see also Sithole and Vosselman (2004)), and 
an approach of a new filter technique. Sithole distinguished the 
filter algorithms regarding data structure, neighbourhood, 
measure of discontinuity, single step vs. iterative, basic filter 
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concepts, and external information. Four main groups were 
defined according to the following basic filter concepts: 
 

 Slope based (e.g., Vosselmann, 2000, Roggero, 2001) 
 Block minimum (e.g., Wack and Wimmer, 2002) 
 Surface based (e.g., Kraus and Pfeifer, 1998) 
 Clustering/Segmentation (e.g., Brovelli, 2002) 

 

The use of multiple echoes and reflectance information was 
another criterion. However, among all contributors of the 
ISPRS test only the algorithm of Brovelli (2002) considered the 
difference between the first and last echoes in the labelling 
process. The stored intensity values given for every LIDAR 
point were not yet integrated in any of the analysed filtering 
methods. However, several approaches for classification of 
objects from the LIDAR point clouds exploited this feature. For 
example, Moffiet et al. (2005) investigated the capabilities of 
the different returns (ground and vegetation, first, last, and 
single pulse) as well as the related intensity to classify diverse 
tree types. Tóvári and Vögtle (2004) used the intensity values 
among other features, in order to discriminate buildings, 
vegetation, and terrain. Brzank et al. (2008) developed an 
algorithm, in order to classify water areas in LIDAR data sets of 
the Wadden Sea considering the intensity as one important 
feature. 
A sound physical model of the complex interaction between the 
laser beam and distributed scatterers located inside the beam 
cone is a prerequisite for interpretation and analysis of full-
waveform LIDAR data provided by some advanced sensor 
devices. Based on the radar equation Jelalian (1992) described 
the fundamental relations between the emitter, the reflecting 
object and the receiver applied to the lidar technique. Sensor 
and target dependent parameters are separated and an object 
dependent cross section is defined. Additionally, Wagner et al. 
(2006) pointed out the dependencies between the spatial 
variations of the cross section and the amplitude as well as the 
width of the reflected echoes. In the next step these theoretical 
considerations should result in practical applications of the 
intensity and echo width in classification and filtering 
algorithms. 
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The approach described in this paper is mainly based on robust 
filtering proposed by Kraus and Pfeifer (1998). This iterative 
algorithm uses linear prediction as interpolation method for the 
initial surface modelling. The residuals of the LIDAR points 
with respect to the surface of the previous iteration determine 
the weights for the next adjustment iteration using a special 
transfer function (Equation 1). Low weights are assigned to 
points lying above the fitted surface (probably vegetation), 
while points located beneath the surface (probably ground) are 
given a high weight. The algorithm stops, if the changes of the 
unknowns are below a predefined threshold or the maximum 
number of iterations is reached. Finally, a threshold with regard 
to the residuals is defined, in order to classify the LIDAR points. 
 
 
 
      (1) 
 
 
 
where p(ri) = weight of point i 
 a,b = definition of steepness 
 ri = residual of point i 
 g = shift in the direction of ri 

2. THE NEW FILTERING ALGORITHM 

2.1 Initial Considerations 

The approach described here was developed in the framework 
of a project in close collaboration with different agencies 
operating in the field of coastal management and protection. 
The topic focused on the estimation of the height shift in 
LIDAR data caused by various vegetation types (e.g., coastal 
shrubberies). Initially, the relationship between different object 
as well as data driven features and the accuracy of the LIDAR 
data in vegetated areas was investigated (Göpfert and Heipke, 
2006). For this purpose the correlation between the height shift, 
which was determined using terrestrial control measurements in 
several training areas, and the features was calculated. 
Subsequently, the most meaningful features were used, in order 
to classify the LIDAR data into predefined accuracy intervals. 
The intensity values of the echoes were identified as one of the 
features, which show a significant negative correlation to the 
height shift. However, the features have the drawback that the 
accuracy intervals do not correspond to distinct and easily 
separable clusters in feature space, which is required for 
classification methods that partition the feature space into crisp 
regions assigned to the different classes. Considering a single 
vegetation type the height shift exhibits a rather continuous 
characteristic. Thus, in a new approach (Goepfert and Soergel, 
2007) this issue was tackled by modelling the height shift with 
respect to the features using continuous functions. This function 
fitting process is realised in areas, where control measurements 
are available. Subsequently, the adjusted functions of the 
different features were used to estimate the height shift for 
LIDAR points within other regions of similar vegetation.  
 
 
 
 
 
 
 
      (a) 
 
 
 
 
 
 
 
 
 
 
 
 
      (b) 
 
 
 
 
 
 
Figure 1.  Dependency between intensity values and height 
shifts for multiple and single echoes of two areas with different 
size: a) 297 single echoes, b) 1183 single echoes 
(Riegl-Scanner LMS-Q560) 
 
Another advantage compared to the first approach results from 
the calculation of the features based on the irregularly 
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distributed point clouds, which increases the significance of the 
features because additional interpolation effects are avoided. 
Figure 1 visualises two examples of the modelled dependencies 
between the intensity values and the height shift for training 
areas of different size. 
 
However, the second method still has several drawbacks. On 
the one side multiple extensive control measurements are 
required as training areas in order to fit robust functions and 
guarantee the transferability to other regions. On the other side 
the larger (and thus more inhomogeneous) the training areas, 
the larger are the residuals of function fitting (see Figure 1). 
Due to the rise in the inhomogeneity of the vegetation height 
and density distribution, the significance of the intensity values 
suffers. Figure 2 illustrates this relationship. If the vegetation 
heights differ strongly in the area of interest, similar cross 
sections (and thus intensity values) can result for echoes in 
various heights above the ground. Therefore, the applicability 
of the intensity values depends on the extent of the considered 
neighbourhood. Thus, the training areas of the second approach 
have to be small enough with respect to the homogeneity of the 
vegetation and large enough regarding robust function fitting. 
Furthermore, the fact that higher vegetation often occurs in 
valleys and therefore similar cross sections, which are related to 
different height shifts, are located in the same absolute height 
makes the situation even more complicated in larger training 
areas of considerable ground and vegetation variations (Figure 
2). 
 
Additionally, other statements about the intensity distribution 
can be made by analysing Figure 1, which are important in 
designing a new filtering algorithm: 

1. The higher the single echo is located in the vegetation, 
the smaller is its intensity value. 

2. Single echoes exist with intensity values as well as 
height shifts similar to first reflections. 

3. Due to a loss of energy caused by preceding 
reflections, which are above the detection threshold, 
the mean intensity of true last echoes is smaller than 
the same value of single undisturbed ground echoes. 

4. The intensity of last echoes varies strongly depending 
on the object cross sections and the amount of pulse 
energy of the previous echoes. Because these 
influencing variables are difficult to separate, the 
intensity values of last echoes are less useful. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  The correlation between the intensity values 
(corresponding to the reflecting cross section) and height shifts 
strongly depends on the homogeneity of the vegetation height 
and density distribution in the area of interest. 
 
Besides the results of the data analysis theoretical 
considerations support the use of intensity in the filtering 

process. The intensity values given with the data might be 
derived from the measurements in different manners by the 
providers. However, in any case they represent a function of the 
signal amplitude, which depends on the spatial variation of the 
cross section (see Wagner et al., 2006). Reflectivity, 
directionality of the scattering, and the effective area of the 
reflecting surface of an object are combined in the concept of 
the cross section. This cross section is defined to model 
properties of individual point targets. In order to address 
distributed targets, a so-called differential cross section is more 
appropriate. Therefore, the amplitude of the echoes as well as 
the intensity values of the LIDAR points are related to the 
characteristics of parts of a complex object, such as plant 
structure, and consequently to the vegetation density. In the 
basic case of normal incidence with uniform intensity, flat bare 
ground yields a homogeneous cross section (coinciding with the 
circular footprint) as well as a narrow pulse width and high 
amplitude, whereas for a signal consisting of terrain and low 
vegetation contributions the pulse width is expanded and the 
amplitude is attenuated. Considering coastal shrubberies in the 
leaf-off period, the higher the echo in the vegetation, the thinner 
are the branches, which contribute to the cross section. 
Therefore, the amplitude as well as the intensity values also 
decrease theoretically for elevated LIDAR points. 
 
2.2 The New Approach 

While in the previous methods the intensity directly participates 
in the calculation of the height shift as one of the features, in the 
new algorithm it is used for the determination of the weights 
during an iterative robust surface fitting 1 . Several 
considerations support this indirect integration of the intensity 
in the process. For instance, if the estimation of the height shift 
is dominated by the feature intensity in the second approach, 
the resulting surface can strongly diverge from the related 
LIDAR heights. In order to avoid this effect, the LIDAR 
heights are the only direct feature (observations) in the new 
algorithm, while the intensity values take part in the 
determination of the weights. Another reason is related to the 
theory of the adjustment process. Originally, the weights are 
calculated using the a priori standard deviation of the associated 
observations, i.e., the heights of the LIDAR points. The broader 
the echo width and the lower the separability of the amplitude 
as well as the intensity from noise, the more uncertain is the 
determination of the exact position of the echo. Therefore, a 
lower intensity value indicates a larger standard deviation and 
subsequently a smaller weight. 
 
The new algorithm performs an iterative surface fitting in a 
local neighbourhood centred in the currently considered single 
or last echo. The method starts with an initial fitting of a local 
first or second order surface (observation equations in Equation 
2) using equally weighted single and last echoes of one flight 
strip in a moving window (yellow circle in Figure 4a). 
 
 iiii zyxafr −= ),,ˆ(    (2) 
 
where  ri = residual of point i 
 â = vector of the unknowns (parameters of the 
  surface 
 xi,yi = coordinates of point i 
 zi = observation of point i 

                                                                 
1 The basic concept of robust filtering can be found in Kraus 

and Pfeifer (1998). 
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The resulting residuals are analysed in order to update the 
weights of the observations for the next iteration. The weights 
consist of two parts. Equation 1 directly transfers the residuals 
into the first component of the weight p(ri), assuming that 
points below the surface belong to ground and points above the 
surface to vegetation. The second part p(Ii) is calculated by 
analysing the intensity for single echoes and the echo 
distribution for last echoes. For this purpose two linear transfer 
functions are determined: 
1. If at least three first echoes are available in the 

neighbourhood, a weight of 0.2 is assigned to their mean 
intensity defining one point of the intensity transfer 
function (referring to statement 2 in section 2.1). 
Otherwise, a weight of 0.4 is given to the mean intensity of 
those single echoes with the largest negative residuals 
(probably vegetation – statement 1). These empirical 
values take into account that with a higher probability the 
first echoes belong to vegetation. The other point of the 
transfer function is determined by the mean intensity of the 
single echoes with the largest positive residuals (probably 
ground – statement 1). These points receive a weight of 1. 
Following statement 3 only the intensity values of the 
single echoes are considered in this part of the algorithm. 
The linear intensity transfer function, which is visualised 
in Figure 3, is limited to weights between 0 and 1 and is 
updated after each iteration depending on the residuals. 

2. As pointed out in statement 4 of section 2.1 the intensity of 
last echoes is less useful. Therefore, their second weight 
component in the adjustment process is defined by the 
height difference to their related first echoes. This concept 
is based on the assumption that a larger height difference 
increases the probability for the last echo to be a ground 
point. The echo distribution transfer function is 
determined by the echoes with the largest difference 
(weight 1) in the considered window and a notional 
difference of 0m (weight 0.2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Determination of partial weights by using the 
intensity information in combination with the residuals of the 
previous surface fitting 
 

 
where pi = total weight of point i 
 p(ri) = weight component of point i based on the 
 residual 
 p(Ii) = weight component of point i based on the 
 intensity or echo distribution 
 

In order to calculate the overall weights of the LIDAR echoes, 
the values defined directly by the residuals and the weights 
resulting from the analysis of the intensity and echo distribution 
are multiplied (Equation 3). In every iteration the weights are 
updated according to the mentioned rules. The process stops 
after a predefined maximum number of iterations. Finally, the 
residual of the central LIDAR point is stored and the mask 
continues to the next last or single echo in the file. After 
processing all LIDAR points in the file the filtering is 
performed by comparing the residuals with a defined threshold. 
Due to the dependence of the intensity values on features of the 
laser scanning devices, such as temporal pulse stability and the 
applied intensity measurement method, their applicability is 
checked for every iteration and window position according to 
the statement 1 in chapter 2.1. If the single echoes below the 
fitted surface have smaller intensity values than the points 
above, this constraint of the model is met and the intensity is 
used in the filtering process. Otherwise, only the first part of the 
weight, which is directly derived from the residuals, is used. 
The information “Intensity used” in the experiments (see below) 
refers to this test. 
 
 

3. EXPERIMENTS 

The experiments are based on three flight missions and several 
training areas, which were surveyed by using tachymetry and 
GPS techniques. The data for the first mission were collected in 
March 2004 during a measurement campaign of the company 
TopScan with an ALTM 2050 scanner from Optech covering 
the East Frisian island Juist. The flying altitude was 1000m and 
the system provided an average point density of 2 points/m2. 
Most of the investigations were carried out using data collected 
by the company Milan-Flug GmbH covering the region of the 
East Frisian Island “Langeoog” in leaf-off periods (April 2005 
and 2006). During these campaigns a LMS-Q560 system of the 
company Riegl was used. Flying at a height of 600m the system 
provided an average point density of 2.9 points/m2. The training 
areas consist of several populations of coastal shrubberies, such 
as Japanese rose, common sea buckthorn, and creeping willow. 
A detailed description of the reference data can be found in 
(Göpfert and Heipke, 2006). 
 
The experiments in this section focus on the verification of the 
benefit, which is obtained by integrating intensity and multiple 
echo information in the filtering process. Two initial tests 
quantify the influence of the neighbourhood size (Table 1) and 
the number of iterations (Table 2) on the surface modelling 
accuracy with respect to the control measurements based on the 
training area “Willow 2” in strip 1 of the flight mission 
“Langeoog 2005”. Additionally, they determine suitable values 
of these two parameters for the subsequent investigations. The 
parameters a and b of the function for robust filtering (Equation 
1) are set to 1.5 and 2, while 0 is assigned to g for all the 
following tests. 
 
In the first experiment the surface fitting is performed in 3 
iterations (according to the findings in Table 2) using a plane 
concerning neighbourhoods of different area (Table 1). If the 
size of the moving window is extended, the mean and the 
standard deviation of the differences between the true (control 
measurements) and the fitted surface increase. With larger 
windows the adjusted plane is not able to model the variations 
of the real surface with adequate accuracy. The radius is limited 
to 2.5m in the further analysis as a suitable compromise based 
on the following considerations. On one side the relatively large 
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value is chosen, in order to preserve a minimum number of 
points for surface fitting as well as for the discrimination of 
vegetation and ground echoes based on the residuals. This 
successful distinction is required for robust filtering as well as 
for the determination of the intensity transfer function. With 
respect to this separability of the echoes a suitable radius 
depends on the penetration rate of the laser beam in the current 
vegetation. Enough points, which conform to statement 1 in 
section 2.1 (test for the use of intensity), should exist in the 
mask for the applicability of intensity in the algorithm. The 
higher percentage of the “used intensity” in larger 
neighbourhoods (last column of Table 1) supports these 
considerations. On the other side a larger radius decreases the 
accuracy of the fitted surface and the quality of the intensity 
transfer function in areas with inhomogeneous vegetation (see 
also Figure 1 and 2). 
 

Radius (m) Mean 
(cm) 

Std. Dev. 
(cm) 

Number 
of Points 

Intensity used 
(%) 

1,5 5,12 7,70 24 73,7 
2,0 5,33 7,98 42 77,7 
2,5 5,41 9,08 63 81,2 
3,0 5,68 10,85 92 84,5 
5,0 7,83 19,20 250 95,1 

 
Table 1:  Influence of the size of the defined neighbourhood on 
the mean and standard deviation of the differences between the 
true (control measurements) and the fitted surface, number of 
considered points, and the percentage of window positions with 
used intensity (control area “Willow 2” in strip1 of flight 
“Langeoog 2005”) 
 

Iterations 
  

1 2 3 5 10 

Mean (cm) 7,021 5,479 5,413 5,408 5,408
Std. Dev. (cm) 10,375 9,146 9,078 9,073 9,073

Table 2:  Influence of the number of iterations on the mean and 
standard deviation of the difference between the true (control 
measurements) and the estimated surface, (control area “Willow 
2” in strip1 of flight “Langeoog 2005”) 
 

Test Side  
(Scanner- Altitude) 

Number 
of 

LIDAR 
Points 

Intensity 
used-plane 

(%) 

Intensity 
used-second 

order surface 
(%) 

Number of 
Points in 
Vicinity 
(r=2.5m) 

Juist 2004 
(ALTM 2050 - 1000m)         

Rose/Willow 4046 89,7 88,7 48 
          

Langeoog 2005 
(LMS-Q560 - 600m)         

Rose/Sea Buckthorn (Strip1) 3015 99,8 99,8 63 
Rose/Willow (Strip1) 497 99,4 99,3 57 
Sea Buckthorn 1 (Strip1) 820 99,1 99,8 67 
Sea Buckthorn 2 (Strip1) 574 91,6 92,5 60 
Rose 1 (Strip1) 736 96,5 98,5 57 
Rose 2 (Strip1) 450 91,8 90,7 62 
Rose 2 (Strip2) 265 89,8 89,8 37 
Willow 1 (Strip1) 419 93,1 93,1 68 
Willow 2 (Strip1) 453 81,2 83,7 63 
Willow 2 (Strip2) 260 77,3 83,1 37 
          
Beach Grass (Strip1) 705 87,2 86,5 59 
          

Langeoog 2006  
(LMS-Q560 - 600m)         

Sea Buckthorn 1 (Strip11) 522 94,8 97,5 42 
Sea Buckthorn 2 (Strip11) 302 74,2 77,8 31 

Sea Buckthorn 2 (Strip12) 199 80,9 91,0 21 

Table 3.  Information of the different control areas: overall 
number of LIDAR points, percentage of window positions with 
used intensity for first and second order surface, number of 
points in the neighbourhood (r=2.5m) 
Table 2 illustrates the influence of the number of iterations on 
the accuracy of the method. Obviously, the mean and the 
standard deviation of the differences between the true and the 
estimated residuals decrease continuously and a stable solution 
is achieved after a few iterations, which is an indicator for the 
applicability of the method. In the further analysis three 
iterations are used.  
 
The percentage of the LIDAR points, in whose vicinity the 
intensity values correspond to the residuals (see statement 1 in 
section 2.1), is above 90 % for most of the training areas, 
located in populations of different coastal shrubberies (Table 3). 
A lower percentage can be observed for most of the areas with 
smaller point density. This result confirms the initial 
experiments related to moving windows of different size (Table 
1). A potential explanation of this phenomenon takes the 
location of the training areas into account. The two test regions 
“Willow 2” and “Rose 2” are situated at the border of strip 2 of 
the campaign 2005. Due to the larger inclination of the laser 
beam compared to the nadir view the penetration rate and the 
variations of the cross sections are smaller. Therefore, the 
significance of the intensity may decrease at the border of the 
flight strip. The increasing standard deviations for the two test 
sides support this assumption. 
 
 
 
 
 
 
 
  (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (b) 
 
 
 
 
 
 
Figure 4.  If the distribution of intensity values and the related 
residuals correspond to the theory in the area of interest (yellow 
circle in (a) – diameter: 5m), intensity is used for filtering 
(small white points), otherwise not (black points). The green 
points in (a) belong to control measurements for an entire 
population of Sea Buckthorn. Background: (a) orthophoto, (b) 
biotope mapping. 
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The applicability of the reflectance information is also limited 
to coastal shrubberies (Figure 4). While the points with the used 
intensity are sparsely and randomly distributed in the meadow 
and heath, this information is almost always integrated during 
the surface fitting procedure of points in the test side “Sea 
Buckthorn 2” (green dots in Figure 4a) and the region of 
shrubbery on the left border of the image (see the biotope 
mapping in Figure 4b). Due to the low vegetation heights and 
different backscattering cross sections of meadow and heath the 
significance of the intensity feature is poor. However, this 
underlines the usefulness of intensity values as one feature 
among others for classification purposes. 
 
Table 4 summarises the mean and the standard deviations of the 
differences between the true (control measurements) and the 
fitted surface for all test sites and flight campaigns using 
different methods. In comparison to the initial fitting, the robust 
filtering forces the surface to the lower LIDAR echoes with 
respect to the control measurements in every test region. The 
integration of the reflectance information always enhances this 
effect. Additionally, the standard deviation decreases for 67% 
of the test sites by using the intensity based weights. 
The discrepancies of the mean differences between the various 
test sites seem to a large extent to depend on their location in 
the flight strip. Due to an insufficient post processing of the 
data providers the strips are somewhat tilted. This aspect results 
in a systematic offset depending on the location within the 
flight strip. Because of the small size of the test sites (average: 
20m x 20m) this aspect does not strongly influence the 
comparison of the methods with regard to one of the test sites. 
 

Plane (cm) 

Initial Robust Robust + Int 
Test Side 

(Scanner- Altitude) 
Mean Dev. Mean Dev. Mean Dev. 

Juist 2004 
(ALTM 2050 - 1000m)       

Rose/Willow 53,9 58,2 50,8 56,6 43,7 52,4 
              

Langeoog 2005 
(LMS-Q560 - 600m)             

Rose/Sea Buckthorn (Strip1) 15,0 17,4 12,7 16,6 11,0 16,4 
Rose/Willow (Strip1) 20,6 7,4 19,6 7,2 18,1 7,1 
Sea Buckthorn 1 (Strip1) 15,0 12,5 14,3 12,3 12,7 11,9 
Sea Buckthorn 2 (Strip1) 16,5 11,1 15,7 10,5 13,9 9,3 
Rose 1 (Strip1) 7,8 8,3 7,3 8,2 6,4 8,2 
Rose 2 (Strip1) 6,5 4,2 6,3 4,1 5,5 4,2 
Rose 2 (Strip2) -2,4 5,4 -2,5 5,4 -3,7 5,6 
Willow 1 (Strip1) 12,6 6,0 12,3 6,0 10,8 5,9 
Willow 2 (Strip1) 7,0 10,4 6,4 9,8 5,4 9,1 
Willow 2 (Strip2) 4,8 12,2 4,1 11,9 3,2 12,6 
              
Beach Grass (Strip1) 13,8 20,6 13,7 20,6 12,8 20,7 
              

Langeoog 2006 
(LMS-Q560 - 600m)             

Sea Buckthorn 1 (Strip11) 2,1 11,1 0,9 11,0 -1,3 10,7 
Sea Buckthorn 2 (Strip11) -1,9 10,5 -2,9 9,7 -5,5 8,0 
Sea Buckthorn 2 (Strip12) -1,4 10,2 -2,3 9,5 -4,8 9,0 

Table 4.  Mean and standard deviation of the difference 
between the true (control measurements) and the fitted surface 
for the initial fitting, robust filtering, and robust filtering with 
intensity information 
 
If the variation of the ground increases, the use of the second 
order surface slightly improves the results. However, the trend 
is similar to the application of the plane. 
 
 

4. CONCLUSIONS 

A new filtering algorithm was introduced, which transfers the 
intensity and echo distribution of LIDAR points into weights 
for a locally adaptive iterative surface fitting approach. The 
method was investigated using different test sites covered by 
coastal shrubberies during leaf-off periods. The results show 
that the integration of the reflectance information slightly forces 
the fitted surface to the lowest LIDAR echoes regarding the 
control measurements in every test region. Furthermore, the 
new algorithm decreases the standard deviation of the 
differences between the true and estimated residuals with 
respect to robust filtering in many test areas. 
However, the points for the intensity transfer function are 
determined only empirically. In future research the separability 
of the intensity values of the lowest and the highest echoes with 
regard to the previous fitted surface should be analysed using 
statistical tests. The significance of this feature can be further 
used, in order to decide about the integration of the reflectance 
information and subsequently to define the transfer function. 
For future work upcoming scanning devices, which are able to 
record the full waveform, can provide new meaningful features. 
For instance, the pulse width can be a quality criterion by itself. 
It describes the uncertainty of the target surface and the range 
measurement for the related echo and can therefore be easily 
integrated in the determination of the weights of the filtering 
process. 
The promising findings in this paper encourage us to investigate 
the transferability of the method to other vegetation types. For 
instance, the assumption that the higher the LIDAR echoes in 
the vegetation the smaller the cross sections and the intensity 
values, could also be true for deciduous trees during the leaf-off 
period, because, among others, the cross section is also 
influenced by the diameter of the reflecting branches. 
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