
ACCURACY OF LACUNARITY ALGORITHMS IN TEXTURE CLASSIFICATION OF 
HIGH SPATIAL RESOLUTION IMAGES FROM URBAN AREAS  

 
 

M. N. Barros Filho a, *, F. J. A. Sobreira b 

 
a Faculty ESUDA, R. Barão de Itamaracá, 460/1802, 52020-070, Recife, Brazil  

- mbarrosfilho@gmail.com 
b UNICEUB - Centro Universitário de Brasília, Brasília - DF, Brazil  

- fabiano.sobreira@gmail.com 
 

Commission III, WG III/4 
 
 
KEY WORDS:  Accuracy, Algorithms, Texture, Classification, High Resolution, Urban 
 
 
ABSTRACT: 
 
Lacunarity based measures can be described as texture recognition approaches that provide a flexible yet theoretically consistent 
mean of characterizing the morphology of urban spatial patterns across different scales. This paper proposes a comparison between 
the Gliding-Box and Differential Box-Counting algorithms based on the concept of lacunarity to recognize and classify textures of 
urban areas with different inhabitability conditions through the analysis of binary and grayscale images from 30 ® Quickbird sensor 
image samples from Recife (Brazil), captured in October 2001, with 250 x 250 meters in size. Results show that the Differential Box 
Counting algorithm applied in grayscale images improves the discrimination between textures from urban areas with different 
inhabitability conditions, and it reveals a strong correlation between urban morphology and socioeconomic patterns. 
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1. INTRODUCTION 

Satellite images are rich sources of information about earth 
surface, and provide wide coverage, frequent updates and 
relatively low costs. Over the last years, with the significant 
improvements in image resolutions and digital image 
processing techniques, remote sensing activities have been 
increasingly focused on urban environments. The development 
of techniques to extract and classify high resolution satellite 
images is an important task in urban planning, especially those 
from developing countries which lack reliable and accurate 
maps to represent their rapid and informal growth.   
 
Despite current advances in remote sensing technologies, 
accurately classifying high spatial resolution satellite images 
into urban land-use classes remains a challenge. Urban areas are 
composed of objects with different forms and materials, and 
high spatial resolution images from these areas lead to a more 
complex combination of surfaces with different spectral 
reflectance (Myint, 2007).  
 
Besides that, high spatial resolution images have, in general, 
low spectral resolution (a small number of bands), and this may 
make difficult the distinction between different urban features 
with similar reflectance in the visible wavelength (Donnay et al, 
2001). Traditional per pixel spectral classification algorithms 
like maximum likelihood do not take into account the spatial 
arrangement of neighborhood pixels, and spectral attributes 
alone cannot provide good classification results.  
 
Texture is a description of the spatial variability of pixel tones 
in a digital image, and it may improve image classification of 
urban areas. Texture analysis of digital images aims to 
recognize and to distinguish spatial arrangements of gray levels 
values, based on methods which measure the spatial variability 

of pixel tones in an image. The higher the variability, the less 
homogeneous or uniform will be the image texture (Barros 
Filho and Sobreira, 2005).  
 
A texture pattern is scale dependent. It may varies significantly 
according to the size and spatial resolution of a digital image. A 
very small image may contains parts of a pattern, and it may not 
be able to characterize the whole pattern, whereas a large image 
may be composed of more than one single pattern and could not 
be able to properly describe it as well. In the same way, a pixel 
in a low spatial resolution image may represent an integrated 
sign of many patterns smaller than the pixel size. As the spatial 
resolution increases the image pixels could become smaller than 
the analyzed pattern, generating spectral noises that degraded 
image classification (Mesev, 2003). 
 
Lacunarity based measures provide a flexible yet theoretically 
consistent mean of characterizing texture patterns across 
different scales. Experiments with binary ® Quickbird images 
from the city of Recife (Brazil) showed that it is possible to 
distinguish texture patterns of urban areas with different 
inhabitability conditions. Urban areas with better inhabitability 
conditions had high lacunarity values than those with worse 
conditions. These differences, however, tend to decrease as the 
scales become finer (Barros Filho, 2006; Barros Filho and 
Sobreira, 2007). These results are coherent with another 
experiment done in the city of Campinas (Brazil), when textures 
of  binary ® Ikonos images were analyzed (Barros Filho and 
Sobreira, 2005).  
 
Experiments with binary ® CCD/CBERS-2  image data of 20 m 
spatial resolution from the same city (Recife, Brazil), showed 
an opposite relation between lacunarity and inhabitability: in 
general, image from urban areas with better inhabitability 
conditions have lower lacunarity values than those from poor 
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areas. This is because small gaps, very common in slums, 
cannot be detected in low spatial resolution images (Barros 
Filho, 2007).  
 
Despite these relevant findings, binary image samples do not 
represent the real textures of the original images. Lacunarity 
results strongly depend on the image threshold (Alves Junior 
and Barros Filho, 2005). Moreover, some valuable information 
about the spatial arrangement of the image tones may be lost 
when a gray-level image with 8 bits, for instance, is converted 
to a binary one with only 1 bit. In order to avoid this problem, 
new lacunarity algorithms have been proposed to work with 
grayscale images (Dong, 2000; Myint et al, 2006). 
 
In this context, the present paper focus on the effects of spatial 
scales and radiometry of high spatial resolution satellites 
images in texture classification of urban areas with different 
inhabitability conditions. For this purpose, we calculated 
lacunarity measures of binary and grayscale images through 
different algorithms. Before introducing lacunarity, some 
characteristics of the fractal theory should be described. 
 
 

2. FRACTALITY 

As said above, any texture pattern is scale dependent. Actually, 
there is not a single or preferred scale to characterize a texture 
pattern. According to Mandelbrot (1982), the length of a 
coastline in a map depends on the ruler size used to measure it. 
In other words, if the coastline is measured with a large ruler, 
many details will not be calculated. Whereas if this same 
coastline is measured with a smaller ruler, a large number of 
measurement would be required, and bigger would be its length. 
The more accurately we try to measure the length of a fractal 
curve, the longer we find it. As the size of the ruler tends to 
zero, the length of the curve tends to infinite. 
 
Considering this relation, it is possible to generalize that any 
spatial pattern is governed by a scaling law: the bigger your size 
r is, the smaller will be its quantity N(r). Mathematically, this 
relationship can be represented by a logarithm graph which 
plots the pattern size (X axis) by its frequency (Y axis). The 
slope of the regression line in this graph corresponds to the 
fractal dimension D, and express the level of irregularity of the 
pattern or its space filling efficiency (Mandelbrot, 1982).  
 
Fractal dimension is based on the hypothesis that spatial 
patterns are self-similar, that is, they repeat themselves among 
many scales and exhibit a certain hierarchical dependency when 
they are simultaneously analyzed in different scales. This 
hierarchical dependency may provide valuable information to 
characterize such patterns. Many image texture analyses have 
been used to differentiate urban land-use classes, applying and 
comparing diverse fractal dimensions.  
 
There are many algorithms to estimate the fractal dimension of 
an image. One of the most applied is the Box-Counting 
algorithm. According to this algorithm, an image is 
systematically covered with grids. Each one is composed by 
adjacent boxes of size n21 , where n takes increasing integer 
values from 0 to infinite. For each successive grid, the number 
of boxes N(n) of this size which are needed to cover the image 
are counted. The fractal dimension is defined as: 
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Where D = fractal dimension 
 n =  any integer value  
 N(r) = number of boxes of size r 
 
Fractal dimension (D) reveals the degree of gray tones 
concentration in an image (De Keersmaecer et al, 2003). The 
more uniform the spatial distribution of the mass (a set of 
selected pixels) in an image, the more close to 2 will be its 
fractal dimension. Otherwise, if the mass is concentrated in a 
single point of the image, D will be zero. Thus, in general, 
dispersed spatial patterns have values of D closer to 2 than 
aggregated ones.  
 
Despite its importance in understand spatial patterns, fractal 
dimension cannot provide a complete description of urban 
patterns because such patterns are not exactly self-similar. In 
other words: images are not really fractals. They do not exhibit 
the same structure at all scales. Images with similar fractal 
dimension can have different textures (Mandelbrot, 1982; Lin 
and Yang, 1986). Individual elements when aggregated gain 
new properties that cannot be explained by their original 
properties. This means that inference of results from different 
spatial aggregated levels may lead to ecological fallacy. 
 
 

3. LACUNARITY 

The concept of lacunarity was established and developed from 
the scientific need to analyze multi-scaling texture patterns in 
nature (mainly in medical and biological research), as a 
possibility to associate spatial patterns to several related 
diagnosis. Regarding texture analysis of urban spaces registered 
by satellite images, lacunarity is a powerful analytical tool as it 
is a multi-scalar measure, that is to say, it permits an analysis of 
density, packing or dispersion through scales. In the end, it is a 
measure of spatial heterogeneity, directly related to scale, 
density, emptiness and variance. It can also indicate the level of 
permeability in a geometrical structure. 
 
Lacunarity can be defined as a complementary measure of 
fractal dimension or the deviation of a geometric structure from 
its translational invariance (Gefen et al, 1984). It permits to 
distinguish spatial patterns through the analysis of their gap 
distribution in different scales (Plotnick et al, 1996). Gaps in an 
image can be understood as pixels with a specific value (e.g. 
foreground pixels in binary images) or a certain interval of 
values (in grayscale images). The higher the lacunarity of a 
spatial pattern, the higher will be the variability of its gaps in an 
image, and the more heterogeneous will be its texture. 
 
There are many algorithms to calculate lacunarity of an image. 
Among them, two algorithms have been commonly used: 
Gliding-Box and Differential Box-Counting. In the next section 
it will describe the basic characteristics of each one. 
 
3.1 Gliding-Box  

The Gliding-Box algorithm was proposed by Allain and Cloitre 
(1991). According to this algorithm a box of size r slides over 
an image. The number of gliding-box with radius r and mass M  
is defined as n(M,r). The probability distribution Q(M,r) is 
obtained by dividing n(M,r) by the total number of boxes. 
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Lacunarity at scale r is defined as the mean-square deviation of 
the variation of mass distribution probability Q(M,r) divided by 
its square mean. 
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where = lacunarity at box size r )(rL
 M  = mass or pixels of interest 

),( rMQ = probability of M in box size r  
 
The Gliding-Box algorithm when applied to binary images 
(images with only 1 bit) counts only the foreground pixels. This 
is because each pixel in a binary image can only have one of 
two possible values (either background or foreground). Whereas 
in greyscale images, one pixel can have many values. In an 8 
bits image, for instance, each pixel can have values. In this 
case it measures the average intensity of pixels per box which is 
the difference between the maximum and minimum intensity 
value at each box of size r (Karperien, 2007). 
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3.2 Differential Box Counting 

The Differential Box-Counting (DBC) algorithm was proposed 
by Dong (2000) based on the Gliding-Box algorithm described 
before, and the Differential Box-Counting algorithm proposed 
by Sarkar and Chaudhuri (1992) to fractal dimension estimation. 
According to this algorithm, a gliding-box of size r is placed at 
the upper corner of an image window of size W x W. The 
window size W should be an odd number to allow the computed 
value to be assigned to a central pixel, and r < W. Depending 
on the pixel values within the r x r gliding-box, a column with 
more than one cube may be necessary to cover the maximum 
pixel value by stacking cube boxes on the top of each other. If 
the minimum and maximum pixel values within a given column 
fall in cubic box u and v, respectively. Then, the relative height 
of the column will be (Myint et al, 2006): 
 
 1),( +−= uvjin r      (3) 
 
where   = relative height of column at i and j ),( jin r

 V = cubic box with maximum pixel value 
 U = cubic box with minimum pixel value 
 
When the gliding-box slides over the W x W image window, the 
mass will be: 
 

),(
,
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where  mass of  the grayscale image =rM
  = relative height of column at i and j ),( jin r

 
Then, the mass M in equation 2 is replaced by in equation 3 
to obtain the lacunarity in the W x W window. The lacunarity 
value is assigned to the central pixel of the window and the W x 
W window slides throughout the whole image. 

rM

 
Figure 1 illustrates an example of a column with three cubic 
boxes r x r x r (boxes 1, 2, and 3) on a image window W x W. 

The vertical bars within the column represent the pixel gray 
level values. The red square represent the central pixel of the 
window which is assigned the lacunarity value. The minimum  
pixel value is inside box 1 (which correspond to box u of 
equation 3). The maximum pixel value is inside box 3 (box v in 
equation 3). So, the relative height of the column at this 
particular location will be: 3 – 1 + 1 = 3. 
  

 
 

Figure 1.  Example of the DBC algorithm 
 
 

4. EXPERIMENTS 

The image samples selection firstly requires the construction of 
a methodology to identify urban areas with high and low 
inhabitability conditions. A socioeconomic index was created 
from Census 2000 data of the city of Recife (Brazil). The index 
values range between 0 and 1. The closer to 1 an urban area is, 
the higher its inhabitability conditions. Then, these values were 
geo-referenced to each census sector’s centroid of the city. 
Finally, these centroid’s points were interpolated by Ordinary 
Kriging, generating a raster surface which was used as 
reference to the image samples selection (Barros Filho, 2006). 
 
Then a RGB composition of a © Quickbird image, with spatial 
resolution of 0.70 meters, was laid over the raster surface 
described above, and 30 image samples with 250 x 250 meters 
were selected from this image. Fifteen of them are from urban 
areas with high inhabitability condition, while the other fifteen 
are from areas with low inhabitability conditions. These image 
samples were then enhanced through a histogram equalization 
and converted to grayscale and binary images. 
 
Appendixes A and B show, respectively, all the grayscale and 
binary image samples generated from the 30 RGB images of 
urban areas with high (images with prefix A) and low (images 
with prefix B) inhabitability condition. As we can see in those 
images, the grayscale image offer more information than binary 
ones. For instance, we can clearly distinguish the shadows of 
the buildings from the trees and the roads in the grayscale 
images, while this is not possible to do in the binary images of 
the same areas. Moreover, buildings are more clearly identified 
in grayscale images than in the binary ones. Some black areas 
of the binary images which seem to be non-built areas are 
actually rooftops with different materials. 
 
Finally, Gliding-Box and Differential Box-Counting lacunarity 
were estimated for 11 box sizes (in pixels): 2 x 2, 4 x 4, 5 x 5, 8 
x 8, 10 x 10, 16 x 16, 20 x 20, 32 x 32, 40 x 40, 80 x 80, and 
160 x 160. The maximum box size corresponds to 45% of the 
image size. The boxes were set up to slides 2 by 2 pixels (on the 
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horizontal and vertical axes) over the images. The image 
background was defined as black.  
 
 

5. RESULTS AND CONCLUSIONS 
 
In this section we make a brief discussion about the lacunarity 
results obtained with the two algorithms presented before, 
considering their possibilities in the discrimination of textures 
from the image samples selected in the last section. In order to 
permit a better comprehension of the difference between these 
algorithms, the mean lacunarity, Lm, of the selected box sizes 
was calculated and compared through a statistical discriminant 
analysis. 
 
Table 1 shows the discrimiant analysis results from the mean 
lacunarity values of binary images As and Bs under the 
Gliding-Box algorithm. As we can see, only 50% of these 
images were correctly classified (images not shaded in Table 1), 
that is, the previous group defined by the inhabitability 
conditions of the urban area where the image was extracted, is 
the same as the posterior group generated through the 
discriminant analysis of the mean lacunarity value of this 
particular image.  
 

Group Image 
 

Lm 
 

Score 
 Previous Posterior

A1 1.29 1.21 1 1 
A2 1.25 0.20 1 1 
A3 1.22 -0.27 1 2 
A4 1.23 -0.09 1 2 
A5 1.28 0.85 1 1 
A6 1.29 11.9 1 1 
A7 1.22 -0.25 1 2 
A8 1.23 -0.16 1 2 
A9 1.22 -0.35 1 2 
A10 1.23 -0.24 1 2 
A11 1.24 0.18 1 1 
A12 1.23 -0.13 1 2 
A13 1.21 -0.50 1 2 
A14 1.23 -0.23 1 2 
A15 1.29 11.06 1 1 
B1 1.22 -0.40 2 2 
B2 1.22 -0.41 2 2 
B3 1.24 0.01 2 1 
B4 1.23 -0.13 2 2 
B5 1.27 0.77 2 1 
B6 1.19 -10.38 2 2 
B7 1.20 -0.88 2 2 
B8 1.23 -0.20 2 2 
B9 1.19 -0.97 2 2 
B10 1.26 0.53 2 1 
B11 1.25 0.22 2 1 
B12 1.21 -0.57 2 2 
B13 1.26 0.62 2 1 
B14 1.24 0.01 2 1 
B15 1.23 -0.13 2 2 

Table 1.  Discriminant analysis results for binary images  under 
the Gliding-Box algorithm  

 
A better distinction between images As and Bs is generated 
when the same Gliding-Box algorithm is applied to grayscale 
images (table 2). In this case, 80% of the image samples were 
correctly classified. So, we can conclude that the higher the 
radiometric resolution of an image, the better will be its texture 
discrimination and therefore a better socioeconomic pattern 
distinction of image samples. 
 
 

Group Image 
 

Lm 
 

Score 
 Previous Posterior

A1 1.15 0.03 1 1 
A2 1.18 0.67 1 1 
A3 1.14 -0.03 1 2 
A4 1.14 -0.03 1 2 
A5 1.18 0.63 1 1 
A6 1.18 0.68 1 1 
A7 1.14 -0.10 1 2 
A8 1.17 0.49 1 1 
A9 1.18 0.66 1 1 
A10 1.16 0.20 1 1 
A11 1.15 0.10 1 1 
A12 1.16 0.26 1 1 
A13 1.16 0.22 1 1 
A14 1.15 0.00 1 2 
A15 1.18 0.64 1 1 
B1 1.10 -0.96 2 2 
B2 1.10 -0.83 2 2 
B3 1.11 -0.74 2 2 
B4 1.11 -0.77 2 2 
B5 1.16 0.30 2 1 
B6 1.12 -0.54 2 2 
B7 1.14 -0.02 2 2 
B8 1.14 -0.03 2 2 
B9 1.11 -0.63 2 2 
B10 1.12 -0.55 2 2 
B11 1.12 -0.49 2 2 
B12 1.31 32.47 2 1 
B13 1.11 -0.76 2 2 
B14 1.10 -0.86 2 2 
B15 1.11 -0.77 2 2 

 
Table 2.  Discriminant analysis results for grayscale images  

under the Gliding-Box algorithm  
 
Table 3 shows the discriminant analysis results from grayscale 
images under the Differential Box-Counting algorithm. In this 
case, 90% of the selected images were correctly classified. Only 
2 image samples (B5 and B7) were assigned to different groups. 
Considering these results, we can conclude that the DBC 
applied in grayscale images is the most appropriate algorithm to 
discriminate texture from urban areas with different 
inhabitability conditions. 
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Group Image 

 
Lm 

 
Score 

 Previous Posterior
A1 1.14 1.14 1 1 
A2 1.17 5.95 1 1 
A3 1.14 0.71 1 1 
A4 1.14 0.68 1 1 
A5 1.17 5.57 1 1 
A6 1.17 5.93 1 1 
A7 1.14 0.16 1 1 
A8 1.16 4.51 1 1 
A9 1.17 5.87 1 1 
A10 1.15 2.38 1 1 
A11 1.15 1.64 1 1 
A12 1.15 2.84 1 1 
A13 1.15 2.60 1 1 
A14 1.14 0.87 1 1 
A15 1.17 5.61 1 1 
B1 1.09 -6.31 2 2 
B2 1.10 -5.28 2 2 
B3 1.11 -4.67 2 2 
B4 1.10 -4.84 2 2 
B5 1.15 3.12 2 1 
B6 1.11 -3.17 2 2 
B7 1.14 0.69 2 1 
B8 1.14 0.62 2 1 
B9 1.11 -3.91 2 2 
B10 1.11 -3.28 2 2 
B11 1.12 -2.81 2 2 
B12 1.13 -1.39 2 2 
B13 1.10 -4.83 2 2 
B14 1.10 -5.54 2 2 
B15 1.10 -4.87 2 2 

 
Table 3.  Discriminant analysis results for grayscale images  

under the Differential Box Count algorithm 
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