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ABSTRACT: 
 
Multi-resolution TIN model is a promising solution for achieving rapid visualization speed and interactive frame rates in the 
contexts of visualization, virtual reality (VR), and geographic information systems (GIS). Most of previous automatic algorithms are 
not able to identify topographic features, such as peak, pit, ridge, channel and pass, so as to produce poor approximations when a 
model is simplified to a low level of detail. This paper proposes a new method for constructing multi-resolution TIN models with 
multi-scale topographic feature preservation. The proposed method is driven by a half-edge collapse operation in a greedy 
framework and employs a new quadric error metric to efficiently measure geometric errors. We define topographic features in a 
multi-scale manner using a center-surround operator on Gaussian-weighted mean curvatures. Then we employ an adaptive weight 
based on topographic features for the control of simplification process. Experimental results identify that proposed method performs 
better than previous methods in terms of topographic feature preservation, and can achieve multi-resolution TIN models with a 
higher accuracy.  
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1. INTRODUCTION 

High-resolution terrain model leads to a dilemma between the 
rendering time, interactive frame rates, and data processing. A 
model with a fixed resolution is not good for all applications 
and all users because of different requirements, available 
computer resources, and affordable time. Therefore, it would be 
ideal for users to have the ability to control the size of the 
model, the processing time needed, and the accuracy of the 
model. The representation of digital terrain models at different 
levels of accuracy and resolution has an impact on applications 
such as Geographic Information Systems (GISs), Virtual 
Reality (VR), progressive transmission of spatial data, mobile 
visualizations, and Web-GIS. Multi-resolution terrain models 
allow for representation, analysis and manipulation of terrain 
data at variable resolutions, decreasing the burden of rendering 
and achieving interactive frame rates, and provide a promising 
solution for the progressive transmission of spatial data, spatial 
data compression, mobile visualizations, and so on. However, 
the existing methods and algorithms mainly focus on the 
accuracy and running times of generating the levels-of-details 
(LoDs) of terrains. Less attention has been paid to topographic 
features preservation of terrains, particularly at a low resolution 
model. Suppose that the original topographic features are lost at 
a low resolution terrain model. Poor visualization effects and 
spatial analysis results will be generated. 
 
In this paper, we propose an algorithm for generating multi-
resolution terrain models with a good performance in terms of 
good preservation of topographic features and rapid running 
time. Two key issues are encompassed in the proposed method, 
namely, measuring deviations between the original terrain 

model and its approximations based on a new error metric, 
detecting and adaptively ranking topographic features based on 
the Gaussian-weighted of surface curvatures. The former one 
aims to achieve rapid running time; the latter one aims to 
preserve topographic features during the generation of multi-
resolution TIN models hence improve the accuracy of multi-
resolution models in terms of the RMSEs and Hausdorff 
distances (Hausdorff distance is defined as the maximal 
Euclidean distance between any point of original model and the 
closest point of its approximation.). 
 
 

2. PREVIOUS WORK 

There has been extensive research work on generating multi-
resolution models. In this section, we review previous work, 
focusing on only those contributions most relevant to this paper. 
Readers can refer to Luebke D. et al. (2003) for the surveying 
of these simplification schemes. The local operators including 
vertex removal, edge collapse, and triangle collapse, are 
commonly used for generating multi-resolution models. Among 
these local operators, edge collapse and triangle collapse 
operators can be conceptualized as gradually shrinking the 
appropriate geometric primitive such as edge and triangle to a 
single vertex. Therefore, they are well suited for implementing 
geomorphing between successive LoDs. Moreover, the 
advantage of the iterative edge collapse operator is its 
hierarchical structure which is essential to retaining the 
topological relationship of the model. The main difference 
among these edge collapse algorithms is in the selection of the 
candidate edges and determination of new vertices. Garland and 
Heckbert (1997) proposed quadric error metrics (QEM) and, 
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based on this, developed QSlim software (QSlim 1997). Yang 
et al. (2005) proposed a simplification method which extends 
the full-edge collapse and vertex split algorithms to 
dynamically generate multi-resolution TIN models. However, 
previous simplification methods have difficulties in preserving 
topographic features at a low resolution terrain model. Lee et al. 
(2003) developed a mesh saliency model for capturing visually 
interesting regions on a mesh. They modified the quadrics-
based simplification method (QSlim) of Garland (1999) by 
weighting the quadrics with mesh saliency. Their work provides 
a good start in merging perceptual criteria with mathematical 
measures based on discrete differential geometry for terrains. 
However, their method is quite time consuming. Therefore, 
their method is difficult in practice application of the terrain 
models which are in the great volume of data. 
 
 

3. PROPOSED ALGORITHM 

3.1 The new quadric error metric 

The edge collapse simplification method involves two main 
issues: one is choosing a measure that specifies the cost of 
collapsing an edge e  (simplification error measure); the other 
is determining the position of the vertex v  that replaces the 
edge (vertex placement). Kobbelt et al. (1998) has proved that 
the topological operator to vertex placement does not have a 
significant impact on the simplification results. The quality of 
the simplification result is much more sensitive to the criteria 
which decides where to execute the reduction operation. 
Therefore, Kobbelt et al. (1998) recommended to apply the 
topological operator itself as simple as possible. Following their 
considerations, in this paper, we use half-edge collapse operator 
(as illuminated in Figure 3) to simplify the input TIN models. 
We apply the half-edge collapse operator to simplify the 
topology of original TIN models because this operator does not 
contain any unset degrees of freedom. Moreover, this reduction 
operation does not create new geometry, i.e., the new vertex. 
Therefore, the vertices of the decimated TIN generated by half-
edge collapse are always a proper subset of the original vertices. 
 
 

 
 

Figure 1: Half-Edge collapse. 
 
In this paper, we are concerned with rapid producing 
approximations which remain faithful to the original 
topographic features. Therefore, the geometric errors should 
reflect how much that half-edge collapse changes the surface 
and the error measures also should be cheap to evaluate. 
Previous QEM-based methods estimate the simplification errors 
by accumulating the distance of the new vertex from the 
original surfaces. In order to achieve rapid simplification, we 
adopted a more efficient measure of these errors.  
 
In our approach, the simplification error is measured by the 
distance of vertex from the “new” planes which undergo a 
transformation following a half-edge collapse. As shown in 

Figure 1, a half-edge collapse ( ,  causes the 

triangular mesh  to degenerate and the remaining triangles 

)i j jv v v→

nT
s1n nT T− T= −

nT

 to undergo a transformation. A straight solution 
to estimate the current error during the reduction process is to 
compute the deviation of the submesh  that replaces the 

mesh  in the th step of the simplification. After singular 

triangles 

1nT −

n
sT

iv jv

( )tT i

 are removed, the transformation of ( ,  

can be interpreted to be pull the vertex  into  and its 

adjacent triangles T i  are transformed to  by replacing 

 with , and vice versa. These triangles  (red 
triangles in Figure 1) are defined as the triangles which 
surround the vertex  but are not adjacent to . In our 
approach, a big difference from the QEM-based method is that 
the new quadric error metric is defined over the triangles 

(

)i j jv v v→

jv

( )tT i

jv

iv

( )tT i′( )

iv

t

′  or ( )jtT ′ ) that have been transformed in a half-edge 

collapse ( ( ,  or ( , ) rather than all of 
the neighbour triangles. As shown in Figure 2, we make an 
error quadric bounding the region by accumulating both the 
squared distance and . Where 

)i j

E

jv v v→

( )iQ v

)i j iv→v v

( )jQ vE
 ( )iQ vE  is the squared distance of the vertex iv  from the 

“new” planes ( )tT i′ ; 

 ( )jQ vE  is the squared distance of the vertex jv  from the 

“new” planes ( )tT j′ . 

 
 

 

 
 

Figure 2: Measuring the cost of half-edge collapse. 
 
Garland (1999) applied “Quadric” to assess the cost of edge 
collapses because it provided a very convenient representation 
for the squared distance. Readers can refer to (Garland, 1999) 
for the detail of “quadric” representation. In our approach, we 
apply this “quadric” to represent the squared distance for its 
computationally efficient. For example, as shown in Figure 2, 

given one of the “new” planes  which is the set of all 

points 

( )tT i′

  = 0n v d× +

d
 with a unit normal  and 

a scalar constant , for point , the quadric  is defined 

  [   ]Tn a b c=

Qiv
 
 

                       (1) 2( , , ) ( , , )TQ A b c nn dn d= =
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where A  is a  matrix, 3 3×   TA nn= ,  is a 3-vector, 

, and  is a scalar. The squared distance of 

point  to the plane  can be calculated using the second 
order equation 

b
  d

iv

b = n c ( )iQ v

( )tT i′

 
 

( ) 2T T
iQ v v Av b v c= + +                                  (2) 

 
 
Therefore, given a set of fundamental quadrics  

determined by a set of planes 

( )i iQ v

( )tT i′ , the quadric error  

is computed by the sum of the quadrics : 

( )iQ vE
( )i iQ v

 
 

( ) ( ) ( )( )
i

n n

Q v i i i i

i i

E Q v Q= =∑ ∑ v

Q vE

                              (3) 

 
 
In light of the greedy framework, the collapsed half-edge is 
selected in an increasing order of cost, which is calculated 
according to the new quadric error metric. In general, a good 
simplification algorithm should preserve important regions, 
such as the regions with salient topographic features. 
Consequently, the edges in the regions with salient topographic 
features should have heavier weights (we will introduce the 
topographic-feature weights in next section). Therefore, these 
two distances  and  should be weighted by the 

topographic importance of  and , respectively. Then, we 

take the minimum as the cost of this half-edge collapse  

and implement half edge collapse ( ,  or 

 according to the minimum cost. Therefore, the 
new quadric error metric can be written as 

( )iQ vE

iv

( )jQ vE

iv jv
,i jeC

jv)i jv v →
( , )i jv v →

 
 

, ( ) ( )  min{ , }
i j i je i Q v jC Eω ω=                                (4) 

 
 
where iω  and jω  are the weights from the feature map W  

for topographic salience of vertex  and  , respectively. In 

the case of Figure 2, , so , 

the half-edge collapse ( ,  should be implemented, 
and vice versa. Since the new quadric error metric does not 
involve the decimated triangles (

iv
jE E

v

jv
)( ) (i ji Q v Q vω ω<

)i j jv v →
,i je iC Eω= ( )iQ v

sT ) or evaluating the optimal 
position of new vertex for error measurement and cost 
determination, it is more computationally efficient than the 
previous QEM. 
 
3.2 Detecting topographic features 

Wood (1996) subdivided of all points on a terrain surface into 
one of plane, peak, pit, ridge, channel, and pass (as illustrated in 
Figure 3), which are defined as topographic features. The 

proposed algorithm firstly detects the topographic features 
according to the curvature of terrain surface. 

 
         (a)                         (b)                      (c) 
 
 

(a)                   (d)                     (e)                         (f) 
 

Figure 3: The category of topographic features: (a) plane, (b) 
peak, (c) pit, (d) ridge, (e) channel, and (f) pass. 

 
The geometric curvature of terrain surface indicates the 
property of a terrain surface. The mean curvatures of vertices of 
a surface identify whether they are feature vertex or zero-
feature vertex. Extensive research work has been done for 
estimating discrete mean curvature of TIN based surfaces. 
Unfortunately, no one is widely accepted as the most accurate 
method or the best method for curvature estimation. Surazhsky 
et al. (2003) showed that the paraboloid fitting method 
(Hamann, 1993) is the best one for estimating the mean 
curvature of meshes. The paraboloid fitting method 
approximates a small neighborhood of the TIN model around a 
vertex v  by an osculating paraboloid. The mean curvature of 
the vertex on the terrain surface is considered to be identical to 
the mean curvature of the osculating paraboloid. Therefore, in 
this paper, assume a direction x and , the osculating 
paraboloid can be represented by following equals 

y z x= ×

 
 

2z ax bxy y 2= + +                              (5) 
 
 
The coefficients ,  and  are found by solving a least 

square fit to each vertex  and its neighboring vertices. Then, 
the mean curvature is computed as

a b c
iv

+H a c= . 
 
In our method, we firstly compute mean curvature for each 
vertex. Then, we compute the Gaussian-weighted average of the 
mean curvatures for each vertex within a radius 2σ , where σ  
is Gaussian's standard deviation. The topographic features are 
determined at different scales by varyingσ .The multi-scale 
model is used to ignore local perturbations that go against the 
overall trend of the linear feature. Let the mean curvature map 
M  define a mapping from each vertex of a TIN model to its 
mean curvature, i.e. let ( )M v  denote the mean curvature of 

vertex . Let the neighborhood v ( , )N v σ  for a vertex , be the 
set of points within a distance

v
σ . In our scheme, we use the 

Euclidean distance ( , )N v σ = { :||v v ||i i v σ− <
)

, is a 

vertex on the TIN surface}. Let G M
iv

( (v),σ  denote the 

3

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B6b. Beijing 2008 

 



Gaussian-weighted average of the mean curvature. 
( ( ), )G M v σ can be computed by using underlying formula: 

2 2

( , 2 )

2 2

( , 2 )

( ) exp[ || || /(2 )]

( ( ),G M v σ )
exp[ || || /(2 )]

i

i

i

v N v

i

v N v

M x v v

v v
σ

σ

σ

σ

∈

∈

− −

=
− −

∑

∑
     (6) 

 
 

where σ  is the standard deviation of the Gaussian filter. For all 
the results in this paper we have used seven 
scales {1 , 2 , 3 , 4 , 5 , 6 , 7 }σ ε ε ε ε ε ε ε∈ , where ε  is defined 
as 0.3% of the length of the diagonal of the bounding box of the 
model (Lee et al., 2005). 
 
In our method, we assigned a weight to each vertex according 
to the relationship between it and the global topographic 
features. Let the topographic feature map W  define a mapping 
from each vertex of a TIN model to its feature. As shown in 
Figure 4 (b), the mean curvature map may have far too many 
“bumpy” being flagged as features. However, we can promote 
salience maps with a small number of high values by 
calculating Gaussian-weighted mean curvature in large scale. 
One can see that the topographic features are more coherent in 
the large-scales. Figure 4(c)-(f) gives an overview of 
topographic feature map such as peak, pit, ridge, channel and 
pass in different scales. We use pseudo-colours to texture the 
surface according to the feature weights: warmer colours (reds 
and yellows) show high weights, cooler colours (greens) show 
low weights, and blues show zero-feature. We guide the order 
of iterative half-edge collapses using a weight mapω  derived 
from the topographic feature mapW . In our algorithm, we use 
values of Gaussian-weighted mean curvature to evaluate the 
point to the extent of topographic feature. In order to improve 
the speed of processing, we don’t classify different features, 
such as peak, pit, ridge, channel and pass in our algorithm. 
However, the feature classification can easily be achieved 
according to the rules of Wood (1996). 
 
 

 
 
     (a)                                     (b)                                   (c) 

 
 
    (d)                                      (e)                                    (f)        
 

Figure 4: Topographic feature detection: Image (a) shows the 
“Crater” model, image (b) shows its mean curvature distribution. 
Images (c) - (f) show the salient features at scales of 1ε , 3ε , 

5ε , and 7ε . 
 
 

4. RESULTS AND DISCUSSION 

Among previous simplification methods, the QEM-based 
method holds much promise in terms of its time efficiency and 
relatively high quality of approximations. Garland and Zhou 
(2005) extended the QEM-based algorithm to simplify 
simplicial complexes of any type embedded in Euclidean spaces 
of any dimension and based on this, developed new GSlim 
software. However, the performance of their newer GSlim 
system on triangulated models is essentially identical to that of 
the earlier QSlim 2.0.  
 
Surazhsky and Gotsman (2005) have tested nine softwares for 
mesh simplification, including both commercial (Geomagic 
Studio 5.0 ， Rapidform 2004 ， 3ds max 7 ， Maya 5.0 ，

Action3D Reducer 1.1，SIM Rational Reducer 3.1 and VizUp 
Professional 1.5) and academic offerings (QSlim 2.0 and 
Memoryless Simplification). They examined these software 
packages on the seven models of different sizes, properties and 
acquisition sources. According to their experiment results, they 
concluded the Hausdorff distance reflects visual fidelity better 
than the average distance. The possible reason is that a large 
deviation from the original surface even at just a small localized 
feature of the mesh can significantly affect the visual perception 
of the model, and this will be reflected in the Hausdorff 
distance even if the rest of the simplified mesh is very close to 
the original. In their experiments, Geomagic Studio was the 
leader with respect to the Hausdorff distance. 
 
Therefore, in the experiments, we use “Crater” model to 
compare our scheme with QSlim 2.0, which use area-based 
weights and optimizes vertex locations, and Geomagic Studio 8, 
which is the latest version of Geomagic Studio, for generating 
multi-resolution models in terms of visual performance, 
geometric errors (RMS), Hausdorff distance and time 
performance. Our approach was implemented in C++ language 
on Windows XP operation system platform. The experiment 
was undertaken in a 3.0GHz Intel Pentium IV machine with 512 
MB of main memory. Figure 5 shows the “peak” in multi-
resolution “Crater” model generated by QSlim 2.0, Geomagic 
Studio 8 and our scheme ( 3δ ε= ) from 199,114 triangular 
faces to 4,000, 2000, and 300 triangular faces, respectively. One 
can see that our new algorithm has better performance in terms 
of the preservation the topographic features. 
 
 

 
 

(a) The “peak” of the original “Carter” model and the results 
simplified by QSlim 2.0. 

 
 

 
 

(b)The results simplified by Geomagic Studio 8. 
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(c) Topographic feature map ( 3σ ε= ) and the results 
simplified by our scheme. 

 
Figure 5: The visual comparison of “peak” by QSlim (Garland, 
1999), Geomagic Studio 8 and our new scheme (4000, 2000 and 

300 triangles, respectively). 
 
Figure 6 shows the multi-resolution “Gargano” model generated 
by QSlim, Geomagic Studio 8 and our new scheme, 
respectively. It is seen that the regions with important 
topographic features were simplified less than other regions and 
topographic features were better preserved. Although in this 
case, our method preserves the desirable high curvature regions 
with topographic features, it can also selectively ignore the 
undesirable high curvature regions, such as small perturbations 
in flat areas. Figure 7 shows the multi-resolution “Shasta” 
model from our new scheme by varyingσ . Notice how our 
method retains more triangles around the regions with 
topographic features than other regions.  
 
 

 
 

(a) An original model 
 
 

 
 

(b) Results from QSlim 2.0 with 7800 and 3900 triangles 
 
 

 
 

(c) Results from Geomagic with 7800 and 3900 triangles 

 

(d) Results from our scheme with 7800 and 3900 triangles 

Figure 6: Multi-resolution “Gargano” model from QSlim 
(Garland, 1999), Geomagic Studio 8 and our new scheme: 
image (a) shows the original model with 780,992 triangles, 
image (b), (c) and (d) show results from QSlim 2.0, Geomagic 
Studio 8 and our new scheme, respectively. 
 
 

 
 

(a) An original “Shasta”model                 (b) 1σ ε=  
 
 

 

(c) 3σ ε=                             (d) 5σ ε=  
 

Figure 7: Multi-resolution “Shasta” model from our new 
scheme: image (a) shows the original model with 935,712 

triangles, image (b), (c), (d) show results from our new scheme 
with 3,000 triangles by 1σ ε= , 3σ ε= , 5σ ε= , 

respectively. 
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(a) The “Gargano” model                       
 
 

 
 

(b) The “Shasta” model 
 
Figure 8: The comparison of geometric error and execution time 
of multi-resolution “Gargano” and “Shasta” models, generated 
by QSlim 2.0, Goemagic Studio 8 and our new schemes. These 
errors were measured using Metro 4.06 (Cignoni et al., 1998). 

 
It is seen from Figure 8 that our new method improves the 
accuracy of multi-resolution models. The relative errors are 

measured by Metro 4.06 (Cignoni et al., 1998) which is based 
on sampling and point-to-surface distance computation. The 
geometric error results show that our new scheme has a better 
performance in terms of RMS geometric error and Hausdorff 
distance. While our algorithm with adaptive weights from 
topographic feature map improves the accuracy greatly in terms 
of Hausdorff distance. We believe that the reason behind this is 
that by leaving high LoD at the regions with important features 
we are ensuring these topographic shapes, which usually 
become deformed in previous simplification, are well preserved 
by our scheme. Therefore, the comparison demonstrates that 
our new scheme is able to achieve a higher accuracy multi-
resolution model and improve the visual fidelity of multi-
resolution model. 
 
Execution time shows that our scheme with new error metrics is 
the fastest of the methods, followed by QSlim 2.0 and 
Geomagic Studio 8. As shown in Figure 8, the time to compute 
topographic feature map depends on the scale at which it is 
computed. Larger scales ensure greater continuity of 
topographic features, but also require identification and 
processing of a larger number of neighborhood vertices and 
therefore are more time consuming. Spatial data-structures such 
as a grid, while a wedge or an octree can greatly improve the 
running time for establishing the neighborhood at a given scale. 
 
 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a half-edge collapse method in the 
greedy framework for constructing multi-resolution model with 
topographic features preservation. We developed a model of 
topographic feature detection using center-surround filters with 
Gaussian-weighted mean curvatures in a multi-scale manner. 
We elaborated the calculation of the new quadric error metric 
and the weights from topographic feature map. We have shown 
how incorporating feature weights can visually enhance the 
results. For a number of examples we have shown in this paper, 
one can see that our method is able to preserve regions with 
topographic features.  
 
We use various models to evaluate the performance of our 
proposed scheme in terms of feature preservation, geometric 
errors and execution times. Moreover, the multi-resolution 
models generated by our scheme were compared with those did 
by QSlim and Geomagic. The comparisons show that our 
scheme is able to generate visually superior and more accurate 
multi-resolution models, and preserve important topographic 
features particularly at a low LoD. Moreover, the new error 
metric evaluates more quickly. It should be equally easy to 
integrate our weight map with any other mesh simplification 
scheme, such as QSlim. 
 
The model of topographic feature detection promises to be a 
rich area for further research. We are currently defining 
topographic features using mean curvature. It should be 
possible to improve this by using better measures of shape, such 
as principal curvatures and normals. Our current method of 
computing topographic feature map in large scale takes a long 
time. It should be possible to significantly speed it up by using 
a multi-resolution mesh hierarchy to accelerate filtering at 
coarser scales. We foresee the computation and use of 
topographic feature detection as an increasingly important area 
in TIN data processing. A number of tasks can benefit from a 
computational model of topographic feature detection, such as 
feature line extraction and shape analysis of TIN model. 
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