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ABSTRACT: 
 
This paper presents a multi-way tree based multi-scale line structure for progressive transmission of vector data. By topological 
restraints, the structure maintains the consistent topological relations among the lines of different scales. By integrating the data of 
the same scale into one certain level node, the structure provides more efficient hierarchical data management. And the order of the 
points in the original line is described by the relative order of points in the multi-scale line tree, so that we can restore the line in any 
scale, which also supports the modification of multi-scale line without rebuilding of the multi-scale structure. Meanwhile, the data in 
different scale are independent of each other, so that we can store the data in different scale into different tables in database, which 
will improve the first access efficiency. 
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1. INTRODUCTION 

Geographic space is a complicated system with geographic 
elements with self-similarity in different scales interacting with 
each other. Geographic space in different scales represents 
different geographic phenomena and geographic laws. In the era 
of paper maps, people produced a series of maps with different 
map scales to reflect different geographic phenomena in 
different scales.  
 
Geographic Information System (GIS) is an electronic tool to 
manage maps. The concept of map scale in traditional map has 
also changed. The functions of zoom in and zoom out make 
maps be able to be displayed in any map scales. However, 
traditional GIS can only manage maps with a single scale. So 
zoom in operation doesn’t bring into the increasing of map 
information, while zoom out operation makes map information 
be too dense to be discerned so as to make it hard for users to 
get main information in the map. Secondly, operations of zoom 
in and zoom out are just to make maps with a single map scale 
to be displayed with different view scales which cannot reflect 
geographic phenomena in different scales in nature.  
 
The data volume of geographical data is usually massive. 
Although the bandwidth of the network has got remarkable 
improved, the rapid growth of spatial data and the users’ 
demands to the high resolution spatial data soon exhausts the 
limitedly improved bandwidth, which situation is more serious 
in wireless network. Nowadays, the limited bandwidth of the 
network has become an important bottleneck for the web 
issuing and access of the massive, high resolution spatial data 
across the web, which appears more serious to mobile devices 
based on the wireless network, such as cell phones, PDAs, on 
which a great deal of detailed data in the high resolution spatial 

data cannot be displayed, while still occupy bandwidth to 
download.  
 
Progressive transmission of vector data provides a promising 
solution to that problem. The skeleton data with low resolution 
are transmitted to the client at first, then by users’ request the 
detailed increment data are transmitted to the client and 
integrate with the existing data on the client to restore the high 
resolution data, so as to reduce the redundant data transmission, 
improve the utilization of the bandwidth while preserving the 
precision of the original data.  
 
The key to the progressive transmission of vector data is to 
generate the multi-scale representation of spatial data. The ideal 
way is just to maintain a single base map with very large map 
scale. By user’s demands, maps with small scales are generated 
from that base map on the fly. The abstract of map is a process 
of map generalization. Map generalization should preserve 
topological and geometric consistency among maps with 
different scales. So map generalization has to deal with 
complicated and time-consuming geometric computation, and 
meanwhile there exist a great deal of subjective factors which 
are hard to be regularized. Till now, the efficiency and the 
results of map generalization still cannot satisfy the demands of 
on-the-fly map generalization. Anther way is to maintain a 
multi-version map database. Similar to traditional paper maps, 
the multi-version technology integrates a series of maps with 
different map scales together. By users’ requests for different 
map scales, the system accesses maps with corresponding scale 
and returns them to the users, so that users can get maps with 
corresponding map scales in different view scales. The multi-
version technology satisfies the demands of users for maps with 
different scales. However, it also brings some new problems. 
Firstly, the system has to maintain maps with different scales, 
which heavies the burdens of system. Secondly, data update 
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brings problems of maintenance of integrity and consistency of 
maps with different map scales. Thirdly, there inevitably exists 
redundancy among maps with different scales. Massive spatial 
data make redundancy great. And last, the multi-version 
technology can only provide maps with maps with several 
predefined scales. It cannot generate maps with any scale. A 
compromising way is to pre-process the map with large map 
scale by map generalization methods to generate a series of 
maps with different map scales. The results are managed in a 
hierarchical data structure and build vertical indexes among 
maps with different map scales. For the one hand, this method 
gets the high access efficiency as that in multi-version map 
database, for another hand, it also avoids the problems of 
maintenance of data integrity and reduces the redundancy. 
 
There are two kinds of multi-scale data structures. One is object 
collection hierarchical structure and another one is object detail 
hierarchical structure. The object collection hierarchical 
structure is on the spatial object level, which is corresponding 
to selection and merging operators in map generation. The 
spatial object appears or doesn’t appear in some hierarchy of 
the tree according the weight of the spatial object in the spatial 
object collection. This kind of data structure includes Reactive 
tree, GAP tree etc. spatial objects own inner structure and the 
details of the spatial objects varies according to the map scales. 
Object detail hierarchical structures represent the degree of the 
detail of line objects in different scales. Object detail 
hierarchical structures simplify the line in different scales, and 
stores the details structures into multi-scale structures like Strip 
tree[2], BLG tree, etc. However, both Strip-tree and BLG-tree 
are binary trees. The details with the same scales scatter in the 
different levels of the trees. So the paper design a new 
hierarchical structure, named multi-scale line tree (MSLT) [3], 
to mange multi-scale line generates by line simplification 
algorithms.  

1 3 2 2 2 4 3 3 1… 

 
The details with same scale lie in the same tree hierarchy. Only 
the complete coarse skeleton line is stored in the first hierarchy 
of the MSLT. And only increment data are stored in the other 
levels of the tree. So the MSLT also supports progressive 
transmission of vector data across Web. When the user request 
line data with finer scales, the system only need to transmit 
increment data and integrate with the existing data in the client 
to restore the complete line in the finer scale So as to avoiding 
repeating transmission. It’s very useful in network environment 
with limited bandwidth.  
 
 
2. GENERALIZATION ALGORITHM OF THE 

MULTI-SCALE LINES 

2.1 Generalization algorithm of the multi-scale lines 

A geographical line is a complicated entity made up of lines 
with different resolution, in which the line with high resolution 
contains the information in the line with low resolution. 
Therefore, a line can be represented as a coarse skeleton and a 
series of details with different resolution. 
 

nDDCC ⊕⊕⊕= 11  
 
 

The generalization of multi-scale is a process to iteratedly 
simplify details with different resolution. There are many 
algorithms in map generalization to simplify lines, among 

which Visvalingam-Whyatt(VW) is an algorithm to simplify 
lines from bottom to top. At first, the algorithm eliminates the 
most detailed, namely the least important, vertices from the 
original line, and then iteratedly eliminate the most 
unimportand points from the current line. The VW algorithm is 
a progressive line simplification in according with the congition 
of human being in the zoom in and zoom out of the map. In this 
paper, we use VW algorithm to generate the multi-scale 
structure of the lines. 
 
At, first, a threshold list {ε | εi，εi<εi+1} under different scales 
is predefined and they are applied into the line simplification in 
turn from beginning of the smallest one. At the beginning, εn is 
used to simplify the line C and get the result line Cn and the 
detailed increment data Dn. Then simplify Cn with threshold εn-

1. Iteratedly simplify the line with threshold in the list until 
reaching ε1, and we can get a skeleton line C1 of C and a series 
of increment data Di according to threshold εi. 
 
 

 
 
 
According to the level of each vertex in the line in the threshold 
list, we assign a level id for each vertex. And we define the 
level id of the corasest skeleton is 1, and that in the most 
detailed level is n+1. based on the level id of the vertices, we 
can construct the hierarchical structure of the line.  
 
 
 
2.2 Topological consistency in line simplification 

VW algorithm does not take topological relationships into 
account. So after simplification, lines may intersect themselves 
or other lines. For example, two lines separating from each 
other may be intersected. 
 
 

A A 

  
 
Line simplification is a process of vertex elimination, so 
topological inconsistency comes from wrong vertex elimination 
(Fig 1). There are two kinds of vertices in the line, the vertices 
which can be eliminated and the vertices which cannot be 
eliminated. The first kind of vertices can just affect the 
precision of the line, while the second kind of vertices may 
cause inconsistency in topological relationships. 
Uneliminatable vertices can be summarized into following two 
categories: 

1) endpoints of the arc, 
2) inner vertices of the arc. 
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Figure 1Topological inconsistency 
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The endpoints of the arc are key vertices in topological 
relationship among spatial entities (Fig1 a, b). We can know 
such vertices before line simplification. When we build 
topological relationships on the spatial data without topological 
relationships, the endpoints of arcs are this kind of 
uneliminatable vertices. 
 
 

 
 

Figure 2 .  Multi-scale line structure 
 
The inner vertices may cause the simplified lines to intersect 
themselves or other spatial entities (Fig 1 c). Such vertices can 
only be dynamically judged in the process of line simplification. 
The regulation is that when there is a vertex p falling into the 
triangle made up of vertex pi and his previous vertex pi-1and 
next vertex pi+1, the elimination of pi is doomed to intersect 
with himself or other lines, so vertex pi is a uneliminatable 
vertex. 
 
By the constraints of two kinds of uneliminatable vertices, we 
can preserve the consistency of the topological relationships 
after line simplification. 
 
 

3. MULTI-SCALE LINE MODEL 

3.1 Multi-scale line model 

After iterated line simplification, we classify the vertices in the 
line into different scale levels. Now we can build a multi-scale 
line structure to preserve the simplification result, so that when 
users access the multi-scale line, we just need to traverse the 
multi-scale line structure rather than simplify the line on the fly. 
 
The multi-scale line model is a tree structure, made up of three 
kinds of nodes, the root node, level nodes and data block nodes. 
Fig2 shows the hierarchical structure. 
 
I) Root Node. Root node is the entrance of the multi-scale line 
mode. It encapsulates the metadata of the line, such as id of the 
line, the Minimum Bounding Box, the levels of the hierarchy, 
and the access methods of the model. When users request data 
from the model, the Root Node locate to the related scale level 
according the scale information from users and call related 
methods to generate the line or increment data according to the 
scale. 
 
II) Level Node. Level Nodes consist of main frame of the multi-
scale line model. All vertices with the same scale are 
aggregated into the same level node. Compared with Strip tree 
and BLG tree, the level in the model of the paper appears more 
clear and easily to be extended. 
 
The level node is defined as following in C++: 

struct ScaleNode 
 
{ 

 float       fScale 
long            lLevelCount;; 

   DataBlock *pBlockList;  
}; 
 

fScale is the scale of the current level node. When users request 
data, the model determines which level should be visited 
according to fScale.  
 
lLevelCount describes how many levels the model has.  
pBlockList points a data node list.  
 
In the multi-scale line mode, only the first level preserves the 
complete coarse line, while rest levels just preserve the 
increment data to the neighbouring previous level, which reduce 
the data redundant data and is easy to be maintained. 
III) DataBlock Node. Neighbouring vertices in the line with the 
same scale make up of a DataBlock Node. As Fig 2 shows, the 
first 4 vertices and the last 3 vertices make up of two data node 
respectively.  
 
The DataBlock Node is defined in C++ as following:  
 

struct DataBlock 
{  

FPOINT    *pPoints;  
long             lPointCount;  
DataBlock *pSibling;   
DataBlock  *pChild; 
long             lChildCount; 

}; 
 

pPoints recorods the coordinates of the vertices in the line. 
lPointCount describes how many vertices in the Data Block 
Node.  
 
pSibling points next neighbouring Data Block Node in the same 
level. 
 
pChild points the DataBlock Node of next level just after 
current DataBlock Node. And lChildCount describe how 
DataBlockNodes of next level from current DataBlockNode to 
his sibling DataBlock Node, which are used to build vertical 
index among levels of the multi-scale line model. 
The resolution of the vertices between two neighbouring 
DataBlockNodes are higher than those in these two 
DataBlockNodes, therefore they are simplified into a line 
segment under current scale. 
 
3.2 Vertical index  

We have built the tree based hierarchical structure of the multi-
scale line. And we need to know how the vertices between 
neighbouring levels are interrelated with each other, so as to 
rebuild the original line structure level by level. The vertical 
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index provides us a way to interrelate the vertices between 
neighbouring levels. 
 
As Fig 3 shows, a line C on the Level_i+1 is simplified into a 
line segment S in Level_i. vs and ve are two endpoints of S. 
Therefore, if inserting the eliminated vertices on the detail level 
between vs and ve, we can restore the line C in Level_i+1. The 
pChild of BlockS points to the DataBlockNode on the 
Level_i+1 with vs as his previous vertex, and lChildCount 
records how many DataBlocks there are between vs and ve on 
the Level_i+1. And now, we build the vertical index of the 
multi-scale line mode. By traversing vertical index, we can get 
increment data of the line on any scales, and restore the line on 
any specified scales. 
 

 

 
 
 

4. OPERATION ON MULTI-SCALE LINE  

4.1 Generate line in the specified scale 

When users request the line with coarsest level, we just need to 
return them the line on the first level. 
 
When users request line in the level i, we need to traverse the 
multi-scale line mode with depth first. At first, the model 
determines the scale level nLevel according to the users’ 
request, and that is the highest level the model traverse. The 
algorithm first visit the first DataBlock dataBlock on the top 
level of the multi-scale line model. If there is the child node in 
dataBlock, the algorithom turns to the child DataBlock node 
referenced by pChild to get detail data of the line and iteratedly 
visit the child node until reach level i. Or from the DataBlock 
referenced by pChild, the algorithm visits his lChildCount 
sibling nodes. According to the visiting order, append the 
vertices to a vertex array to generate the line C under the scale 
level i. 
4.2 Increment data 

Increment data are the vertices eliminated when line is 
simplified from scalei to scalej. Increment data not only express 
the detail data, but also the inserting position of the detail data 
in the original line, so that we can restore original data from 
increment data. 
The structure of the increment data is defined as following:  
struct IncrementDataSet   
 
{ 

double        dScale[2]  
GFPoints Points;  
GNumbers Offsets;  
GNumbers Anchors;  

}; 
 
dScale is an array with two elements, scalei and scalej.  
Points records the coordinates of the increment vertices.  
After simplification, the line may be simplified into several sub 
lines. As Fig 3 shows, the increment data between Level i+1 
and Level i are made up of two sub lines.  
 
Offsets records the number of vertices in each sub line. As Fig3 
shows, since there are no more detailed data between two sub 
lines on Level i+1, the two sub lines can be integrated into one 
increment line.  
 
Anchors array records the location where the increment data 
should be inserted into when we rebuild line from scalej to 
scalei. 
 
The generalization of increment data is a process of traversing 
of multi-scale line. At first, determine the level i and level j 
corresponding to scalej and scalei. And then, by algorithm in 
Section 4.1, traversing the multi-scale line mode, the only 
difference is just to record the vertices between Level i and 
Level j. But we need to count the number of vertices with the 
level less than Leveli, and those are anchors. 
 
4.3 Rebuild original line 

Rebuilding is a reverse process of line simplification. By 
gradually integrating increment data and simplified data, we 
can rebuild the original line step by step.  
 
 

 

 
 

Figure 4 Rebuild original line 
 
After generating increment data, we can use increment data and 
existing line data to restore line with high resolution. Some 
parts of the line are simplified into line segments, therefore as 
long as the eliminated vertices are inserted into original position, 
the line is restored. In increment structure, each piece of 
increment sub ling corresponds to sub line i under scale i. 
Anchor array records the location of each piece of simplified 
line in Leveli. We just insert increment sub line into subline i, 

vs 
lChildCount = n 
pChild 

… 

 … 

ve 

 … 
…

…

n 

Figure 3 Vertical Index 
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then we can restore the line under scale scale j. Fig 4 show the 
process of line rebuilding. 
 
 

5. EXPRIMENTS 

Compared with models in [3][4], the model proposed in this 
paper owns following characters: 
 
1) The models in this paper support editing. We use related id 
instead of absolute id to build vertical index in the line to 
represent order of vertices in the line. When new vertex is add 
into the line, we just need to modify several nodes in the multi-
scale line model in local area, without affecting the whole 
structure.  
 
2) Efficient database access. For the models in [3][4], even we 
just request the line in the coarsest level, it still must get data 
with all scale level. Spatial data are usually stored in the fields 
of BLOB field. The efficiency to access the BLOB field is low. 
The data in different level in our model are independent of each 
other. Therefore, data in different level can be stored into 
different tables or tablespaces. When users just need data with 
coarsest scale, we just need read data of that level. 
 
In this paper, we developed a prototype system for 
generalization and representation of multi-scale line. The 
system simplified the lines into three levels. The results are 
showed in Fig 5. We can find the lines in the third level are 
very close to the shape of original lines while the data volume is 
just 31.4% of original one. So we still can get good visual 
effects when users firstly request data and get satisfying web 
response speed, which is meaningful to mobile terminals such 
as cell phones and PDAs based on the wireless network. 
From Fig 5 we can also find topological relationships are also 
well persevered.  
 
 

 
 
We compared the response time or our model and that in [3] for 
retrieving the data with coarsest scale from database and render 
on the screen. The experiment environment is PIII800，512M 
RAM，SQL Server2000. The experiment result is showed in 

Table 1. We use two line data packages in this experiment. The 
data volumes of the two data packages are 1.9 MB and 3.2 MB, 
and the data volumes of the first level after simplification are 
0.57MB and 0.96MB respectively. We measure the response 
time of user request to the coarsest level of data for the first 
time. For the first data package, the response time of our model 
is 0.42s while that of MSLT is 1.03s. Since there is less 
database IO cost, it need less response time in our model. 
 
 

Data Volume(MB) Response time for first users’ request(s)

Original Data First Level MSLT Our model 

1.9 0.57 1.03 0.42 

3.2 0.96 0.47 0.19 

 
Table 1 response time of retrieving and rendering of data of 

coarsest level between MSLT and our model 
 
From above table, we can draw such conclusion that our model 
is more efficient in retrieving and render coarsest data for the 
first user access. 
 
 

6. CONCLUSION 

Scale is anther important property of spatial data besides 
geometry and attribute. In this paper, based on the analysis of 
spatial characters of spatial lines, by Visvalingam-Whyatt 
algorithm, we simplify spatial line into different scales. In this 
paper, we present a multi-way tree based multi-scale line model 
to store and manage line information under different scales. By 
increment data, the simplified lines can integrate with 
increment data to restore original data. Compared with Strip 
tree, our model can clearly manage data under different scales. 
Compared with MSLT of Jones, our model supports edition of 
multi-scale line, and own high database access efficiency. 
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