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ABSTRACT: 
 
Mesoscale eddies have a significant impact on the exchange of material and energy in the ocean, and thus their knowledge are of 
great importance for the study of oceanic circulation. Images of sea surface temperature (SST) created from satellite infrared sensors 
are used to detect mesoscale eddies that have a surface signature in temperature. Various techniques, including texture analysis, 
wavelet transform, mathematical morphology, etc., have been used to identify mesoscale eddies from SST images. However, mainly 
due to the strong morphological variation of eddies which causes the absence of a valid analytical model, these approaches either 
have many limitations or are rather complex. The paper proposes a new methodology for automatic detection of mesoscale eddies 
from SST images using artificial neural network (ANN) and edge detection, and it can be summarized in the following steps: 1) pre-
processing to reduce noise and to obtain maps of temperature gradient, its direction and magnitude; 2) using artificial neural network 
to detect the possible eddy centres; 3) removing the false eddy centres; 4) detecting the edge points of the eddies and fitting them 
into ellipses. This approach has been applied to the detection and extraction of mesoscale eddies in the Gulf Stream area using 
NOAA GOES 10 & 12 SST images, and the experiment has proved that this method has the following advantages: 1) It’s effective 
and robust with high detection accuracy (over 90%), especially for the cold-core eddy (over 95%) since the training set used for the 
neural network is mainly composed of cold-core eddies. If more samples of eddies and non-eddies are used to train the neural 
network, the detection accuracy can be further improved. 2) Not only are eddies detected by the approach, but also the parameters of 
eddies such as centre location, size and direction are also calculated at the same time, which can be rather useful for detecting the 
change of eddies in sequential SST images. 3) The procedure is rather simple, efficient and easily reconfigurable, without the need 
of a valid analytical model. It can be adapted to different conditions such as different sizes of eddies, different cores (cold or warm), 
and different resolution of SST images. Therefore, the proposed approach is rather suitable for automatically detecting and 
extracting eddies from satellite SST images. 
 
 

1. INTRODUCTION 

Mesoscale oceanographic phenomena such as mesoscale eddies, 
fronts and upwellings have a significant impact on the exchange 
of material and energy in the ocean, and thus their knowledge 
are of great importance for the study of oceanic circulation. 
Compared to ordinary methods of in-situ observation, the 
technology of marine remote sensing has advantages in 
synoptic coverage of large areas of instant oceanic information, 
collection of long sequence data of global oceans, and 
measurement of marine features. Thus, it has become an 
important method of marine environment monitoring. The 
remote sensing imagery, through data processing and inversion, 
can provide lots of marine feature information related to 
mesoscale oceanographic phenomena, including sea surface 
temperature (SST), chlorophyll concentration, sea surface wind 
speed field, etc. Among them, SST, the first marine 
environment parameter obtained by marine remote sensing, is 
widely used in the research on mesoscale oceanographic 
phenomena, ocean-atmosphere heat exchange, global climate 
change, fishery resources and pollution monitoring (Feng, 
1999). Since almost all the marine dynamic processes are 
related to SST directly or indirectly, mesoscale oceanographic 
phenomena such as mesoscale eddies, fronts, and upwellings 
can be effectively detected by using SST. With the massive 
increase of SST data, it is necessary and urgent to detect the 
marine phenomena in SST images automatically.  
 

Various techniques, including texture analysis, wavelet 
transform, mathematical morphology, etc., have been used to 
identify mesoscale eddies from SST images. For instance, 
Alexanin and Alexanina (2000)  described the SST images as a 
set of oriented textures in the temperature field, calculated the 
dominant orientation of the radiation contrasts and fitted it into 
the elliptical model of eddies. However, mainly due to the 
strong morphological variation of eddies which causes the 
absence of a valid analytical model, these approaches either 
have many limitations or are rather complex (Marcello, J. et al., 
2004). 
 
This paper proposes a new methodology for automatic detection 
of mesoscale eddies from SST images using artificial neural 
network (ANN) and edge detection. 
 
 

2. APPROACH 

The approach can be summarized in the following steps: 1) pre-
processing to reduce noise and to obtain maps of temperature 
gradient, its direction and magnitude; 2) using artificial neural 
network to detect the possible eddy centres; 3) removing the 
false eddy centres; 4) detecting the edge points of the eddies 
and fitting them into ellipses. 
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Figure 1. Eddy detection procedure 

  
2.1 Pre-processing 

In the first step, a low pass filter is used to reduce the noise 
caused by clouds and other atmospheric phenomena. Then, an 
edge detector such as Prewitt is applied to the filtered SST 
image to calculate the vertical and horizontal temperature 
gradients.  
 
After the vertical and horizontal temperature gradient maps are 
smoothed by a local average operator, which can both reduce 
the noise and enhance areas of the strong gradient, map of the 
temperature gradient direction and magnitude is also calculated.  
 
2.2 Detecting Eddy Centres with ANN 

In the second step, for each point in the gradient direction map, 
a numerical vector describing the region surrounding the point 
can be obtained by using a binary mask centred on it and 
reading the gradient direction at ‘1’ locations(Castellani, 2006). 
As shown in Figure 2, in which black represents ‘1’ and white 
represents ‘0’, a  9×9 mask is used to obtain a 81-dimentional 
vector representing the gradient field  around the centre point. 
 
 

 
 

Figure 2.  9×9 mask 
 

Hundreds of eddy centres and non-eddy centres in the SST 
images are selected by experts, and their corresponding 
numerical vectors of gradient direction are used as input to train 
the artificial neural network such as multilayer perceptron 

(MLP) and self-organizing maps (SOM). And the output of the 
neural network is represented as a vector with two elements 
indicating whether it’s an eddy centre or not.  

SST images 

 
Gradient direction map 

Pre-processing 

Detecting with ANN

Different structures and different parameters of the neural 
network are tested and assessed by the learning accuracy to 
achieve optimization. After the architecture is optimized and 
the neural network is trained, it can be used to scan the new 
gradient direction map calculated from a new SST image, and 
the result can also be a map in which each point is a positive or 
negative eddy centre response. For convenience, the grey level 
value of the point in the result map is assigned 255 when the 
response is positive and 0 when negative. Then, a map of 
possible eddy centres is obtained. 
 
2.3 Removing False Centres 

In the third step, the result map of possible eddy centres is 
smoothed by a local average operator to remove the noise, since 
the positive response should accumulate in the central areas of 
eddies while the false detections tend to be scattered evenly in 
the map. After the smoothing, an iterative threshold algorithm 
can be used to further remove false detections.  In addition, the 
area of each connected region of possible eddy centres is 
calculated, and the region whose area is smaller than a certain 
threshold is removed. 
 
2.4 Ellipse Fitting 

In the final step, the centre of mass of each connected region in 
the detection result map is calculated and considered as the true 
eddy centre. In the corresponding gradient magnitude map, 
from each eddy centre, draw a line with a certain length every 
π/256 from 0 to 2π clockwise. The length of the line can be 
determined by the possible maximum radius of eddies in the 
area. For each point on the line, a mask is used to calculate the 
local average in its neighbourhood, and the result is assigned to 
this point.  
 
 

 
 

Figure 3.  3×7 oblique mask 
 

As shown in Figure 3, P1 is the current point on the line, and P2 
is the next point. The average gradient magnitude of the points 
with the same number is calculated, and the average of 7 
average gradient magnitudes is assigned to P1. 
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Then, for each line, the location with the maximum value is 
found and considered as the edge point of the eddy. Therefore, 
a total of 512 edge points can be obtained for each eddy centre. 
Finally, according to the least squares principle, these edge 
points are fitted into an ellipse which can represent the location, 
size and direction of the eddy.   
 
 

3. EXPERIMENT 

This approach has been applied to the detection and extraction 
of mesoscale eddies in the Gulf Stream area using NOAA 
GOES 10 & 12 SST images.  
 
3.1 Data 

NOAA GOES 10 & 12 SST data is available from May 5 of 
2003 to the present at a 6km spatial resolution, and its coverage 
is from 180W to 30W and 45S to 60N. Data is obtained at a 
near real-time rate with 1 hour, 3 hour, and 24 hour files of SST, 
and the data format is binary. Daily files of SST are selected for 
this experiment and read into ENVI using IDL procedure. Then, 
the SST images are cut into the size of 700×700 for the Gulf 
Stream area where eddy phenomena occur frequently.  
 
43 SST images from 2003 to 2006 are used, and their gradient 
direction and magnitude maps are obtained. Then, 95 eddies are 
sampled, while 398 non-eddies are sampled. In the purpose of 
balance, eddy samples are duplicated to reach 380. Thus, a total 
of 778 vectors are obtained for the training of ANN. The whole 
data are divided into the training set (60%), the validation set 
(20%), and the test set (20%). The target is set as two-
dimensional vectors: (1, 0) represents eddy and (0, 1) represents 
non-eddy. 
 
3.2 Architecture and Parameters of ANN 

 This experiment chooses MLP (Lippmann, 1987), which is the 
multilayer feedforward network usually using backpropagation 
(BP) (Rumelhart et al., 1986) as the learning rule. It is 
composed of three parts: an input layer, one or more hidden 
layers, and an output layer. The input layer receives the input; 
the hidden layer receives the signals from the previous layer, 
sums them with weights, and uses transfer function to produce 
new signals; the output layer receives the signal from the 
hidden layer, and produces the output. BP algorithm consists of 
two processes: the feedforward of signals and the 
backpropagation of errors. If the output doesn’t meet the 
requirement, errors will be propagated backward and 
apportioned to neurons and the weights and bias will be 
adjusted. These two processes repeat until the output meets the 
requirement or certain learning iterations are reached. 
Parameters such as learning rate and momentum constant can 
affect the speed of convergence and the performance. 
 
Different number of hidden layers, learning rate, momentum 
constant, and other different parameters are tested, and several 
architecture and parameters with good performance are shown 
in the Table 1. 
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7 
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56 

10   0.04 0.3 3000 0.0281
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1 
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6  

0.93
20 

5 3 0.03 0.2 1462 0.0257
067 

0.910
3 

0.985
3 

0.94
52 

 
Table 1. MLP training result 

 
3.3 Scanning and Fitting 

A new SST image (Figure 4(a)) is pointwise scanned using the 
trained network, and a map of possible eddy centres (Figure 
4(b)) is obtained. Then, the map is smoothed by a 5×5 average 
mask (Figure 4(c)), and turned into binary map by thresholding 
method (Figure 4(d)). The area of each connected region in the 
binary map is calculated, and the region whose area is smaller 
than a certain threshold is removed. The mass centres of the 
remaining region are considered as true eddy centres. Finally, 
rays are drawn to detect the edge points, and the detected edge 
points are fitted into ellipses (Figure 4(e)).  
 
 

 
(a)SST image on Day 247, 2005 

 

 
(b) Possible eddy centres 
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4. CONCLUSION 

 

The experiment has proved that this method has the following 
advantages. Firstly, it’s effective and robust with high detection 
accuracy (over 90%), especially for the cold-core eddy (over 
95%) since the training set used for the neural network is 
mainly composed of cold-core eddies. If more samples of 
eddies and non-eddies are used to train the neural network, the 
detection accuracy can be further improved. Secondly, not only 
are eddies detected by the approach, but also the parameters of 
eddies such as centre location, size and direction are also 
calculated at the same time, which can be rather useful for 
detecting the change of eddies in sequential SST images. 
Thirdly, the procedure is rather simple, efficient and easily 
reconfigurable, without the need of a valid analytical model. It 
can be adapted to different conditions such as different sizes of 
eddies, different cores (cold or warm), and different resolution 
of SST images. Therefore, the proposed approach is rather 
suitable for automatically detecting and extracting eddies from 
satellite SST images.  

(c) Smoothed 
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