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Abstract – The greenhouse gases CH4 and N2O that arise 

from agriculture comprise 48% of New Zealand’s total CO2 

equivalent greenhouse gas emissions. The majority of these 

emissions arise directly (enteric CH4) or indirectly (waste 

CH4 and soil N2O) from ruminant animals. Pasture quality 

has a strong influence on feed intake and therefore the 

release of both CH4 and N2O. Digestibility and 

metabolisable energy measures influence the quantity of 

feed eaten – the main determinant of CH4 emissions – while 

the N concentration of the diet consumed influences the 

quantity of N voided in faeces and urine – the main 

determinant of soil N2O emissions. These pasture properties 

vary in space and time, and will have a strong influence on 

the agricultural greenhouse gas budget. In the current 

national greenhouse gas inventory, pasture quality measures 

are rudimentary, relying on one-off surveys with a limited 

spatial coverage. Remote sensing has the potential to 

provide pasture quality estimates at better temporal and 

spatial scales.  

In this paper, we investigated the potential of remote 

sensing for predicting pasture quality. We sampled a range 

of pasture qualities around New Zealand, targeting the 

scheduled path of Landsat ETM+ and checking the 

cloudiness on the location. We applied a radiometric 

correction on the satellite images and modelled three 

pasture quality measurements (nitrogen content, 

metabolisable energy and digestibility) using multiple linear 

regression and some non-linear regression techniques. We 

found that the non-linear regression techniques improved 

the results significantly because there was a non-linear 

relationship in the upper range of pasture quality.  
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1. INTRODUCTION 

 

The non-carbon dioxide (CO2) greenhouse gases CH4 and N2O 

that arise from agriculture comprise 48% of New Zealand’s 

total CO2 equivalent greenhouse gas emissions (Ministry for the 

Environment, 2009). The majority of these emissions arise 

directly (enteric CH4) or indirectly (waste CH4 and soil N2O) 

from ruminant animals. Pasture quality is a key factor in the 

inventory because it has a strong influence on feed intake and 

therefore the release of both CH4 and N2O. Organic Matter 

Digestibility (OMD) and metabolisable energy (ME) influence  

the quantity of feed eaten – the main determinant of CH4 

emissions – while the N concentration of the diet consumed 

influences the quantity of N voided in faeces and urine – the 

main determinant of soil N2O emissions. For the purpose of the 

national greenhouse gas inventory, however, the estimates of 

pasture quality at the national scale for New Zealand are 

rudimentary, relying on pasture quality surveys taken at specific 

points in time and with limited spatial coverage (Ministry for 

the Environment, 2009). 

Near-infrared spectroscopy (NIRS) is generally used for the 

rapid evaluation of chemical composition (Norris et al., 1976), 

and has been widely used to estimate forage quality parameters 

(Zhao et al., 2007). Stepwise multiple linear regression is 

usually used for selecting wavebands that are relevant for 

pasture quality prediction. The key wavelengths for prediction 

were found in the blue range, the red-edge band (700–775 nm), 

and various peaks in the near infrared and short-wave infrared 

(Kawamura et al., 2008).  

Although NIRS techniques have great advantages compared 

with the laboratory chemical method, they are still time-

consuming as they require collection and processing (drying, 

grinding) of vegetation samples. Hand-held spectro-radiometers 

were therefore investigated to improve real-time prediction 

(Mutanga et al., 2004; Starks et al., 2004). Skidmore et al.  

(2010) tested the use of hyperspectral remote sensing to 

estimate forage quality of savannas (trees and grass). They 

mapped the spatial patterns of foliar nitrogen and polyphenols 

using a neural network model and demonstrated the influence of 

fire and soil type on foliar nitrogen concentration. Beeri et al. 

(2007) found that spectral estimates were within 8% between 

field spectrometer and crude protein measurements, and applied 

their algorithm to hyperspectral imagery.  

Field spectrometry is suitable for paddock-scale estimation of 

pasture, but would not be appropriate for providing on-going 

information at national scale. In this context, remote sensing by 

satellite images has the ability to repeatedly cover large areas 

for monitoring trends of pasture condition. Studies on the 

estimation of forage quality variables using remote sensing are, 

however, quite limited. Starks et al. (2006) used six broad 

wavebands similar to Landsat Thematic Mapper and found that 

reflectances in the red and near infrared bands were most highly 

correlated with forage quality measures. They also found that 

the ratios blue/red were most highly correlated with crude 

protein (r2 = 0.71). Phillips et al. (2006; 2009) studied the use of 

satellite images to estimate forage quality and quantity using the 

Modified Soil Adjusted Vegetation Index (MSAVI), which is 

computed with Red and NIR bands, to minimise soil 

background influences. Their results showed that the estimation 

of forage quality and quantity had an error of less than 20%.  

In this paper, we test the ability of remote sensing images to 

predict three pasture quality parameters (digestibility, ME and 

N content) using Landsat ETM+. We fitted linear and non-

linear regressions and assessed their predictive capability. 

 

2. METHODS 

 

2.1. Pasture quality sampling 

 

We targeted the scheduled path of Landsats 5 and 7 and 

checked the cloudiness on that day before sampling paddock 

sites across New Zealand. Since Landsat has a repeat coverage 

interval of 16 days, we had only one to two images per month 

available on average for each location. We allowed up to 7 days 

of deviation from the actual pasture sampling date, to give 

technical staff sufficient time to access the farm location. We 

assumed that pasture quality varied little within that time 

interval.  

A database was compiled for regression analysis using data 

from this sampling campaign supplemented with historical 
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datasets for which spatially explicit referenced measurements of 

pasture quality were examined to match archived Landsat 5 TM 

and Landsat 7 ETM+ images (Ausseil et al., 2009). These 

pasture quality estimates were collected between 2001 and 

2008. 

The database used for regression comprised 389 samples evenly 

distributed between the North Island and the South Island. The 

regression dataset covered a broad range of ME, OMD and N 

content. OMD values ranged from 30.1% to 90.3%; ME values 

ranged from 4.8 to 13.3 MJME/kg; and N content ranged from 

0.2 to 5.1% (Table 1). The histogram for OMD, ME and N 

content are shown on figure 1. 

 

Table 1 Statistics of OMD, ME and N content 

Variable Minimum Mean Maximum Standard 

deviation 

OMD 30.1 68.6 90.3 10.3 

ME 4.8 10.18 13.3 1.4 

N content 0.2 2.7 5.1 0.8 

 
Fig 1. Histogram of input OMD (%), ME (MJME/kg) and N 

content (%). 

 

The native tussock grasslands have very low values for all 

parameters, and sheep and beef farms have generally lower 

OMD, ME and N content than dairy farms, due to the 

differences in soils, slope, environment and in farm 

management practices. Two binary factors were therefore 

added: IsTussock and IsSheepBeef, which are categorical 

variables to account for the different groups (Tussock = 1, non-

tussock = 0, sheep and beef farms = 1, not sheep and beef farm= 

0). There were five observations with tussock, and 258 with 

sheep and beef farms. 

 

2.2. Satellite data 

 

The radiometric correction of the Landsat 5 and 7 imagery 

followed the algorithms developed by Dymond and Shepherd 

(2004). Each sampled paddock extracted from the satellite 

image was processed to standardised spectral reflectance 

(spectral reflectance at nadir view for the satellite and 50o 

elevation for the sun). Processing of satellite imagery to 

standardised reflectance involves physical modelling of 

radiation: from the sun and sky through the atmosphere; 

reflection of the light from the vegetation canopy; and the 

transmission of the reflected light through the atmosphere to the 

satellite sensor. We used the 6S code (Vermote et al., 1997) to 

model irradiance and transmission of light through the 

atmosphere, and WAKII (Dymond et al., 2001) to model 

bidirectional reflectance of vegetation. 

 

2.3.  Regression fitting 

 

Multiple linear and non-linear regressions were fitted to predict 

OMD, ME and N content using the R software version 2.12.0 

(R Development Core Team, 2010) and a selection of packages. 

Linear regressions were tested including multiple linear, robust 

regression (package robust), and least trimmed squared (LTS) 

regression (package robustbase). The robust and LTS regression 

puts less weight on influential observations with high errors. 

The non-linear regressions tested were generalised additive 

models (GAM) (package mgcv), multivariate adaptive splines 

models (package earth), random forest (package 

RandomForest), and Gradient Boosting model (package gbm). 

GAM and Multivariate Adaptive Splines are both methods that 

use non-parametric functions to allow flexible function 

description of complex response to variables. GAM uses 

smoothing splines, and multiple adaptive spline regression uses 

piecewise linear basis functions. Random Forest and Gradient 

boosting models are regression trees techniques that both build 

a large collection of regression trees and optimise the result.  

In order to compare all the models equally, we used the root 

mean square error (RMSE): 

 

 

df

SSE
RMSE =  

where ∑ −=

n

ii predobsSSE 2)( the sum of square errors 

(obsi being the observed value and predi the predicted value for 

sample i) and df the degrees of freedom. 

 

R-squared was also computed. Note that we haven’t provided 

adjusted R-squared to enable comparison between models. 

 

3. RESULTS 

 

Tables 2, 3 and 4 show results for linear and non-linear 

regression fitting for ME, OMD and N content respectively. 

 

Table 2 Performance of multiple regressions models for ME 



 

 

 

Regression type SSE RMSE 

(in 

MJME/kg) 

R2 

Multiple linear 322 0.92 0.59 

Robust regression 323 0.92 0.58 

LTS regression 323 0.92 0.58 

Generalised additive model 267 0.84 0.66 

Multivariate adaptive spline 293 0.88 0.62 

Random Forest 134 - 0.85 

Gradient boosting model 240 - 0.69 

 

Table 3 Performance of multiple regressions models for OMD 

Regression type SSE 

(x103) 

RMSE 

(in %) 

R2 

Multiple linear 16.27 6.53 0.60 

Robust regression 16.29 6.54 0.60 

LTS regression 16.40 6.57 0.60 

Generalised additive model 13.10 5.86 0.68 

Multivariate adaptive spline 14.40 6.15 0.64 

Random Forest 7.10 - 0.85 

Gradient boosting model 13.00 - 0.67 

 

Table 4 Performance of multiple regressions models for N 

content 

Regression type SSE RMSE 

(in %) 

R2 

Multiple linear 145 0.62 0.43 

Robust regression 146 0.62 0.43 

LTS regression 148 0.62 0.45 

Generalised additive model 119 0.56 0.53 

Multivariate adaptive spline 133 0.59 0.48 

Random Forest 57 - 0.83 

Gradient boosting model 106 - 0.59 

 

Since ME and OMD are highly correlated variables (correlation 

= 0.98), the results presented in tables 2 and 3 are similar in 

performance of the regression models. For those two variables, 

a stepwise linear regression selected bands –7 and the two 

qualitative variables IsTussock and IsSheepBeef. Band 1 was 

therefore dropped out for all the linear and non-linear 

regressions tested. The results show an RMSE between 0.59 and 

0.92 MJME/kg and for ME 4.3% and 6.57% for OMD. The 

robust or LTS regressions did not significantly improve the 

multiple linear regression. The best fitting results were obtained 

with the random forest model for both ME and OMD. Figure 2 

shows the observed versus predicted OMD. Similar results were 

obtained for ME (figure not shown). There is an over-prediction 

in the lower range (below 50% of OMD) and an under-

prediction in the higher range (over 80% OMD) that was 

reduced with the Random forest model. 

For nitrogen content, a stepwise regression selected bands 1, 2, 

3, 4, 7 and one qualitative variable IsSheepBeef. Band 5 and 

IsTussock were therefore dropped for all the linear and non-

linear regressions tested. The results show an RMSE between 

0.39 and 0.62 %. As for ME and OMD, the robust, least 

trimmed or generalised least square regressions did not 

significantly improve the multiple linear regression. The best 

fitting results were obtained with the random forest model, as 

for ME and OMD. Figure 3 shows the observed versus 

predicted N content. There is an over-prediction in the lower 

range (below 2%) and an under-prediction in the higher range 

(over 3.5%) that was reduced with the random forest model.  

 

 
Fig 2. Observed vs predicted OMD (%) with multiple linear 

regression (grey dots) and random forest (black crosses). 

 

 
Fig 3. Observed vs predicted Ncontent (%) with multiple linear 

regression (grey dots) and random forest (black crosses). 

 

4. DISCUSSION 

 

The histogram of values for ME and OMD covered the full 

range of pasture quality in New Zealand. The histograms were 

left-skewed, showing some very low values of ME and OMD. 

The correlations for the regressions were improved from 

previous research (R-squared around 0.5 for OMD, ME and N 

content) (Dymond et al., 2002; Dymond et al., 2006). This is 

due to the use of Landsat ETM+ to locate the paddocks within 

30-m pixels rather than the 1-km pixel size of SPOT 

VEGETATION used previously. 

The predictions for ME, OMD and N content all showed some 

under-prediction in the higher range of pasture quality. This can 

be an issue for the inventory as it might be hard to assess any 

improvement in pasture over time. Non-linear regressions 

improved model fitting compared with the multiple linear 

regression. This is due to the ability to fit non-linearities, 



 

 

 

especially in the upper range of pasture quality. Machine 

learning techniques such as Random Forest and stochastic 

gradient boosting showed the best fit of models, although there 

was still some remnant over-prediction in the lower range and 

under-prediction in the upper range, suggesting a lack of 

informative power in the predictors. These models however 

have a tendency to over-fit on a sample of data, thus reducing 

their predictive power. The over-fitting may occur as the 

measurement errors in the sample (due to variability in quality 

within the paddock) and in the spectral reflectance (due to the 

atmospheric correction and spatial resolution) are unknown. 

Choosing the right model will therefore depend on the ability of 

the model to predict pasture quality over space and time in a 

robust manner.    

N content has the lowest model fitting results. This may be due 

to the growth of pasture that influences the greenness of the 

pasture, and time between satellite measurement and sample 

taken This hypothesis is supported by Lamb et al.  (2002), who 

found a significant influence of canopy biomass for low-level 

LAI on red-edge determination of leaf nitrogen concentration of 

ryegrass.  

The regression equations can be used in an operational system 

by applying the equations on MODIS images. The MODIS 

sensor provides images at a regular interval (every 10 days) but 

a lower spatial resolution (250–500 m). This is appropriate to 

get a single image of New Zealand at regular time stamps. An 

overlay of GIS layers can therefore be used as inputs (MODIS 

data, land-use type and vegetation type), producing pasture 

quality maps as outputs. It will then be possible to monitor 

pasture quality trends over time in different bioclimatic regions 

of New Zealand, and also get a better estimate of greenhouse 

gas emissions over time.  

 

5. CONCLUSIONS 

 

The estimation of pasture quality is an important component of 

the greenhouse gas inventory of New Zealand, since the 

methane and nitrous oxide emissions are mainly driven by 

livestock dry matter intake. Although we have found limited 

agreement between spectral broad bands and pasture quality 

parameters, the prediction would still be valuable to monitor 

trends over time. 

  

The non-linear regression techniques have improved the fitting 

results compared to multiple linear regression. These models 

better represent the non-linearities especially in the upper range 

of pasture quality. However, machine learning techniques such 

as random forest or stochastic gradient boosting make the 

interpretation difficult and have limited abilities in a predictive 

mode. 

 

The next step of this research will be to test the various 

regression models in a predictive mode, and discard models that 

have over-fitted data and made the predictions unreliable over 

the full spatio-temporal dataset. 
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