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Abstract - Remote sensing provides a useful tool for 

mapping invasive species across large areas.  This study 

compared the effectiveness of imagery derived from three 

multi-spectral (Landsat Thematic Mapper (TM), SPOT 5, 

and Quickbird) and hyperspectral (Hyperion) imaging 

platforms for detection of the invasive species Lantana 

camara L. in eastern Australia.  Landsat TM multi-

spectral (MS) image provided an overall accuracy of 

85.1% and a kappa coefficient of 0.78 while SPOT 5 gave 

an overall accuracy of 84.9% and a kappa value of 0.77.  

Quickbird showed an overall accuracy of 84% and a 

kappa coefficient of 0.76.  The Hyperion image gave an 

overall accuracy of 80% with a kappa value of 0.69.  The 

highest producer (83%) and user accuracy (84%) for 

lantana was shown by Hyperion.  The findings indicate 

that remote sensing technology can contribute to enhanced 

planning and decision making by scientists and resource 

managers involved in lantana research and management.   
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1. INTRODUCTION 

Invasive species pose a major threat to the earth's biodiversity 
because they often dramatically affect the structure and 
functioning of ecosystems (Binggeli, 1996).  The economic 
and environmental impacts of such species have been 
documented by several authors (Henderson et al., 2006; Day 
et al., 2003; Mack et al., 2000; Vitousek et al., 1996).  One 
such species, lantana (Lantana camara L.) is a major weed in 
many tropical and subtropical countries outside its native 
range (Day et al., 2003).  In Australia, lantana currently covers 
more than 4 million ha (Day et al., 2003).  It costs the 
Australian grazing industry in excess of $121 million per 
annum in lost production and management as well as 
negatively affecting more than 1300 native species including 
279 plant and 93 animal species listed as rare or threatened in 
Australia (Johnson, 2007).   

Remote sensing is a useful tool for mapping and monitoring 
invasive species.  Broadband multi-spectral (MS) sensors 
collect data in discrete channels with fairly wide bandwidths 
which are few and far apart while hyperspectral sensors 
usually collect data in hundreds of narrow channels.  Due to 
the averaging of reflectance over a wide area in broadband 
sensors, considerable data may be lost and fine spectral 
features that are characteristic of vegetation may not be 
detectable.  However, the narrow bandwidths of hyperspectral 
sensors deliver more information about the fine spectral 
features of vegetation, thus permitting a range of more precise 
applications such as invasive species identification.   

 

The aim of this study was to compare the effectiveness of both 
broadband multi-spectral as well as hyperspectral sensors for 
detecting the invasive species Lantana camara L.   

2. METHODOLOGY 

2.1 Study Site 

This study was conducted in north-eastern New South Wales 
(NSW), Australia (Figure 1).  Past logging had led to an 
altered forest structure and a reduction in canopy cover that 
encouraged weed establishment, particularly lantana.  The 
level of lantana infestation is high especially in previously 
logged areas where it suppresses forest regeneration and 
succession.  Large patches of lantana exist and there are also 
large areas of rainforest with no gaps in the canopy where it 
does not occur.   

 

 

Figure 1.  Map showing location of study area and 
surrounding National Parks and State Forests.   

 

2.2 Image and Image Processing 

Commonly available imagery from three different broadband 
sensors was used.  The images differed in their spatial, 
spectral and radiometric resolutions.  The Quickbird image 
was acquired on 10 September 2004.  It was rectified using 14 
points taken visually from a Department of Environment and 
Climate Change (DECC) road layer.  The resulting image used 
for further analysis in this study had an average root mean 
square (RMS) error of 3.44 pixels and was well aligned with 
the road layer.  Univariate statistics were calculated for the 
image and relative atmospheric correction was performed 
satisfactorily.  The Landsat 5 TM scene used in this study was 
acquired on 9 September 2004.  The image was cloud free and 
had been radiometrically and geometrically corrected prior to 
delivery and rectified to the world geodetic survey 1984 
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(WGS 84) datum and the Universal Transverse Mercator 
(UTM) zone 56 coordinate system.  The SPOT 5 image was 
acquired on 4 March 2005.  The scene was cloud free and had 
been orthorectified prior to delivery to the Geocentric Datum 
of Australia 1994 (GDA94) datum and the Map Grid of 
Australia (MGA) zone 56 coordinate system.  The image had 
an RMS error of 0.16 pixels.  The Ortho and Geocoding 
Wizard in ERMapper was used to transform this map 
projection to the WGS84 datum and the UTM zone 56 
coordinate system.  This was done to ensure that all images 
were in the same map projections.   

The Hyperion image was acquired on 24 May 2005.  Although 
the level 1 radiometric (1R) product has a total of 242 bands, 
only 198 bands are calibrated.  Several of the Hyperion 
sensor's bands are unusable, particularly those at wavelengths 
most prone to atmospheric scattering, so that United States 
Geological Survey (USGS) delivers level 1R Hyperion data 
with 44 bands set to 0 values (USGS, 2003).  Among the 198 
bands, there are four remaining bands in the overlap between 
the two spectrometers.  These are the visible and near-infrared 
(VNIR) bands 56 and 57 and shortwave infrared (SWIR) 
bands 77 and 78.  It is usual to eliminate two of these to obtain 
196 unique bands.  In this study, bands 8 to 57 and 79 to 224 
were selected as 196 unique bands since the SWIR band 78 
had the higher level of base noise after de-striping (Datt et al., 
2003).  Hyperion bands are also affected by the three major 
water vapour absorption areas as well as features due to O2 
and CO2 where very little signal from the ground surface is 
recorded by the sensor.  Datt et al. (2003) suggested that these 
bands, which are most likely to contain unstable atmospheric 
artefacts, can also be eliminated. Based on this, a subset of 
155 ‘stable’ bands was selected for further analysis.  
Atmospheric correction of the Hyperion scene was performed 
with ENVI‘s Fast Line-of-sight Atmospheric Analysis of 
Spectral Hypercubes (FLAASH).  This procedure converts the 
data from radiance to apparent surface reflectance and is an 
important procedure for spectral analysis based mapping 
methods.  The image was pre-processed prior to conversion 
using the following steps: repair of ‘bad’ pixel values, fixing 
of out-of-range data, fixing of outliers, de-smiling and de-
striping (Datt et al., 2003).  These researchers found that the 
pre-processing steps were the best noise management strategy 
and selection of 155 stable bands provided a simple but 
effective way of avoiding any residual noise that may remain 
after the processing.  A Landsat Thematic Mapper (TM) 
rectified image was used as a base map for georectification.  
The Landsat image had been terrain corrected prior to delivery 
and provided systematic radiometric and geometric accuracy 
by incorporating ground control points while employing a 
Digital Elevation Model (DEM) for topographic accuracy 
(USGS, 2010).  The 30m pixel size provided adequate spatial 
resolution and rectification insured that geographic fidelity 
was consistent throughout the image.  Ten ground control 
points (GCP) were selected with good dispersion throughout 
the image.  A first order polynomial transformation with 
nearest neighbour resampling was used to retain as much 
spectral fidelity as possible.  The resulting image had an 
estimated total root mean square (RMS) error of 0.0795 pixels 
or about 2.4 m.  A sub-scene covering the areal extent of the 
Quickbird image was extracted from the Landsat TM, SPOT 5 
and Hyperion images using the ENVI image processing 
software package (ENVI 2003).  These sub-scenes were used 
in subsequent classifications.   

A visual assessment showed that there was no visible change 
between the lantana as observed in September and the lantana 

observed 8 months later in May.  The area had also remained 
stable as it is a protected area of national park.  Therefore, 
even though the SPOT 5 image was captured approximately 
six months and the Hyperion image was captured 8 months 
after the Quickbird and Landsat TM images, the delay would 
not exert any tangible impact on the mapping accuracy as 
there had been virtually no change in the distribution and 
density of lantana.  Data for training sites and accuracy 
analysis was also collected from areas which were mature and 
undisturbed and this was also verified through the forest 
rangers who worked in the area.  This was done to account for 
the gap between the image acquisition times.   

2.3 Multi-spectral Image Classification 

Ground Control Points (GCPs) and data for training classes 
were collected between the 3rd and 4th of September 2004.   
The extent of lantana and the coordinates of each site were 
recorded.  An estimated scale of low to high density was 
assigned to the level of lantana; low density reflected no 
lantana or the presence of odd, small individual plants, 
medium density was an intermediate level of lantana where 
healthy growth was visible but it was still low and had not 
grown upon itself, high density represented extreme 
infestations of lantana, often over 2 meters in height, and 
using trees for climbing.  For supervised classification, 50 
training areas were derived by field work and visual image 
inspection.  These training areas were merged into three 
specific land-cover classes for the classification, namely 
pasture, forest and lantana.  Training classes such as pasture 
were determined visually from the image and field knowledge.  
Each classification was performed and assessed with identical 
training and accuracy assessment samples to ensure 
comparable results for the three multispectral images of 
varying spatial and spectral resolutions.  Instead of using a 
single pixel at each of the 50 training sites, a cluster of pixels 
was taken around the point.  The 50 points were exported to 
ArcGIS (ESRI 2008) and a buffer covering an area of 90 m x 
90 m on the ground was generated around each point.  This 
polygon layer was then used as training areas for each image.   
For the SPOT 5 and Quickbird images, these buffers captured 
approximately a 9x9 and 37x37 window respectively around 
each sampling point.  A Maximum Likelihood classification 
was performed using ENVI software. 

A second visit to the field was undertaken to verify the 
accuracy of the classification and determine how well the 
classified pixels matched with the ground data.  Coordinates 
for 95 sites had been randomly selected within the study area.  
Thirty five of these had been identified as pasture, twenty five 
as forest and thirty five as lantana in the classified image.  The 
data sheet for the accuracy field visit noted the coordinates of 
the sampling location but did not include the vegetation class 
as to eliminate bias from the accuracy check.  The accuracy 
assessment samples were taken to be the same size (90 m x 90 
m) and were generated in a similar way to the training 
samples.  Each cluster of pixels was treated as one sampling 
unit and during the field visit vegetation was noted within this 
area.  These data were used to derive an error matrix and the 
kappa (K) value was calculated.   

 

 

2.4 Hyperspectral Image Classification 
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Field data were collected at various sample locations in the 
same study site and typical vegetation categories were 
identified and noted.  After careful evaluation of the 
vegetation data from these sample sites, 72 sites were chosen 
based on vegetation structure.  Of these 72 sites, some 
consisted of large pure stands of lantana and some were free of 
lantana infestation.  The area selected for each site was 
homogeneous within a 60 m x 60 m square, the equivalent of 
four Hyperion pixels.  The data collected for each square 
included the GPS coordinates, main vegetation species, 
percent canopy cover and ground cover.  These data were used 
for training and validation of the classifier.  The categories 
were generalized into two classes, lantana and non-lantana.  
One additional class labelled pasture was created and regions 
of interest were defined by visual means from the imagery as 
it was a spectrally distinct class.   

For the classification, three specific land-cover classes, 
pasture, lantana and non-lantana, were identified based on 
field knowledge.  Pasture was chosen because it was 
identifiable in the image and therefore its spectra could be 
easily extracted from the image for classification.  Non-
lantana was created because we were only interested in lantana 
as a target species.  Therefore all other vegetation types were 
put into a single class labelled non-lantana.  Twenty-nine sites 
that were identified from field knowledge as pure lantana and 
non-lantana (this last category consisted of a mixture of 
different species but no lantana) were selected for training the 
classifier.  An additional 14 training sites were chosen for the 
spectrally distinct pasture class from the imagery.  Spectral 
reflectance was extracted for these classes from the image by 
creating regions of interest (ROIs) based on visual inspection 
of the Hyperion image and field data.  Mean spectra were then 
extracted for each ROI from the reflectance data to act as 
endmembers for each class.  These were then used as 
reference spectra in the Spectral Angle Mapper (SAM) 
classifier.  SAM compares the angle between the reference 
spectrum vector and each pixel vector in n-dimensional space.  
Smaller angles represent closer matches to the reference 
spectrum.  Pixels further away than the specified maximum 
angle threshold in radians are not classified.  In this study, the 
spectral angle threshold was set to 0.3 radians.  The accuracy 
assessment data consisted of 57 verification sites for the three 
land-cover classes.  These data were used to derive an error 
matrix and the kappa (K) value was calculated.   

3. RESULTS AND DISCUSSION 

The resulting accuracies of the four images presented in this 
study were compared using overall accuracy, kappa value and 
lantana producer and user accuracies (Table 1).  Different 
classification techniques were used in order to optimize the 
information contained in each image to yield the best results 
and also to take advantage of the techniques specifically 
designed for the imagery.  The multi-spectral and 
hyperspectral images could have been classified using one 
standard classification algorithm such as Maximum 
Likelihood.  However, this was not considered optimal in this 
case.  According to Lumme (2004), traditional algorithms like 
Maximum Likelihood tend not to work properly with 
hyperspectral data as it consists of hundreds of channels and 
requires more computation time. Furthermore, a large number 
of training samples are required for this classifier to work 
effectively with hyperspectral data and this may not be 
practically feasible. 

Table 1.  Overall accuracy, Kappa coefficient and lantana 
producer and user accuracies of the three classifications. 

Sensor Overall 
Accuracy 
(%) 

Kappa Lantana 
Producer 
Accuracy 
(%) 

Lantana 
User 
Accuracy 
(%) 

Landsat 
TM 

85.1 0.78 77.0 81.5 

SPOT 5 84.9 0.77 81.5 78.8 

Quickbird 84.0 0.76 77.4 78.7 

Hyperion 80.1 0.69 83.3 84.4 

 

Landsat TM performed marginally better than the other two 
broadband sensors with an overall accuracy that was 0.2% and 
1.1% higher than SPOT 5 and Quickbird respectively.  
Landsat TM also yielded user accuracy for lantana category 
that was 2.7% and 2.8% higher than SPOT 5 and Quickbird 
respectively.  Hyperion yielded a lower overall accuracy of 
80.1% compared to the three broadband sensors.  However, it 
gave the best lantana producer and user accuracies of all four 
sensors.   

Lantana biology lends itself to remote sensing mapping due to 
its preference to grow in monoculture environments in open or 
disturbed areas readily seen by satellite sensors (Stewart et al. 
2008).  It forms dense thickets while crowding out more 
desirable species in such areas.  This was observed in the 
study site where lantana infestation was quite extensive in 
disturbed areas but non-existent in rainforest areas with a 
closed canopy.  Lantana patches were large enough to be 
discernible in the 30 m TM imagery and therefore 
improvement in spatial resolution from 30 to 10 m (SPOT 5) 
and 2.4 m (Quickbird) did not improve the interpretability of 
lantana.  However, Quickbird and SPOT 5 may be more suited 
for the detection of patchy and fragmented infestations.  The 
focus of this study was large, mature and homogeneous stands 
of lantana which lends itself to the large 30 m Landsat TM 
pixels.   

Hyperion, on the other hand, provided the lowest overall 
accuracy and kappa value of the four images.  It did not 
perform as well as Landsat TM despite having a similar spatial 
resolution.  The differences in training site selection and 
accuracy assessment for the hyperspectral image could have 
played a part in the lower overall accuracy.  Also the selection 
of the classification method may have had an impact as well.   
Yang and Everitt (2010) compared five different classification 
methods with hyperspectral and multi-spectral data and found 
that maximum likelihood was superior to other algorithms 
such as SAM.  However, the enhanced spectral resolution of 
the Hyperion image appeared to play a role in the superior 
lantana producer and user accuracies shown by this sensor.   
The narrow bandwidths of the hyperspectral dataset were 
useful in avoiding spectral confusion between lantana and its 
co-occurring species.  This would be difficult to achieve with 
the wide bandwidths and band placements of the broadband 
sensors.  While overall accuracy, producer accuracy and user 
accuracy are each important to understand how well a 
classification performed (Congalton 1991), user accuracy is a 
good measure of the classification’s reliability and subsequent 
success with a land manager.  This study demonstrated that 
Hyperion produced the highest user accuracy for the lantana 
category.   
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4. CONCLUSIONS 

This study has demonstrated the utility of multi and 
hyperspectral remote sensing imagery for mapping the 
invasive species lantana.  Many researchers have evaluated 
various types of imagery to map invasive weeds in different 
parts of the world (Everitt et al., 2008; Lawrence et al., 2006; 
McGowen et al., 2007).  However, there is no single technique 
that is guaranteed to be successful in every situation.  Many 
factors influence the distribution of invasive species.  Among 
these are the size of the area to be mapped, the computational 
requirements, the cost of imagery as well as the complexity of 
the associated plant communities.  Furthermore, choosing 
between multi-spectral and hyperspectral imagery depends on 
factors such as the complexity and similarity of the invasive 
species and its co-occurring species as well as data processing 
capability.  Although multi-spectral imagery generally tends to 
be cheaper and easier to process, hyperspectral imagery 
provides richer spectral information and therefore offers the 
potential for more accurate classification results.  Each study 
site is different in its composition of plant species as well as 
the environmental conditions that are present for growth.  
Therefore it is important to evaluate various types of imagery 
as well as classification algorithms to identify the best ones for 
each particular site.   
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